Mutations Located outside the Integrase Gene Can Confer Resistance to HIV-1 Integrase Strand Transfer Inhibitors

Isabelle Malet, Frédéric Subra, Charlotte Charpentier, Gilles Collin, Diane Descamps, Vincent Calvez, Anne-Geneviève Marcelin, Olivier Delelis, Isabelle Malet, Frédéric Subra, Charlotte Charpentier, Gilles Collin, Diane Descamps, Vincent Calvez, Anne-Geneviève Marcelin, Olivier Delelis

Abstract

Resistance to the integrase strand transfer inhibitors raltegravir and elvitegravir is often due to well-identified mutations in the integrase gene. However, the situation is less clear for patients who fail dolutegravir treatment. Furthermore, most in vitro experiments to select resistance to dolutegravir have resulted in few mutations of the integrase gene. We performed an in vitro dolutegravir resistance selection experiment by using a breakthrough method. First, MT4 cells were infected with human immunodeficiency virus type 1 (HIV-1) Lai. After integration into the host cell genome, cells were washed to remove unbound virus and 500 nM dolutegravir was added to the cell medium. This high concentration of the drug was maintained throughout selection. At day 80, we detected a virus highly resistant to dolutegravir, raltegravir, and elvitegravir that remained susceptible to zidovudine. Sequencing of the virus showed no mutations in the integrase gene but highlighted the emergence of five mutations, all located in the nef region, of which four were clustered in the 3' polypurine tract (PPT). Mutations selected in vitro by dolutegravir, located outside the integrase gene, can confer a high level of resistance to all integrase inhibitors. Thus, HIV-1 can use an alternative mechanism to develop resistance to integrase inhibitors by selecting mutations in the 3' PPT region. Further studies are required to determine to what extent these mutations may explain virological failure during integrase inhibitor therapy.IMPORTANCE Integrase strand transfer inhibitors (INSTIs) are increasingly used both as first-line drugs and in rescue therapy because of their low toxicity and high efficacy in both treatment-naive and treatment-experienced patients. Until now, resistance mutations selected by INSTI exposure have either been described in patients or selected in vitro and involve the integrase gene. Most mutations selected by raltegravir, elvitegravir, or dolutegravir exposure are located inside the catalytic site of the integrase gene, but mutations outside the catalytic site of the integrase gene have also been selected with dolutegravir. Following in vitro selection with dolutegravir, we report, for the first time, a virus with selected mutations outside the HIV-1 integrase gene that confer resistance to all integrase inhibitors currently used to treat patients, such as raltegravir, elvitegravir, and dolutegravir. Our observation may explain why some viruses responsible for virological failure in patients treated with dolutegravir did not show mutations in the integrase gene.

Keywords: 3' PPT; dolutegravir; human immunodeficiency virus; integration.

Copyright © 2017 Malet et al.

Figures

FIG 1
FIG 1
Phenotypic analysis of the 9053 virus selected under DTG compared to the wild-type Lai virus. Cells were infected in 96-well plates with wild-type (WT) or mutant virus. (A) HeLa P4 cells infected in triplicate with increasing concentrations of the inhibitor DTG, RAL, EVG (0 to 800 nM), or AZT (0 to 51 μM). (B) PBMCs infected in quadruplicate with increasing concentrations of DTG (0 to 1,000 nM).
FIG 2
FIG 2
Sequencing of the 3′ PPT region of viruses during DTG selection. (A) Analysis of samples throughout all selection steps. nt, nucleotides; aa, amino acids. (B) Clonal analysis of supernatants on days 55 and 65.
FIG 3
FIG 3
The 9053 virus is able to replicate in the presence of DTG. Viruses were used at a level of 50 ng of p24 antigen/106 MT4 cells in the presence of DTG at different concentrations (0, 100, and 500 nM). The p24 antigen levels under the different conditions of the experiment were monitored. WT, wild type.
FIG 4
FIG 4
The NL43 virus carrying all of the mutations described in the 9053 virus was resistant to DTG. Both the wild-type and 9053 viruses were used to infect HeLa P4 cells in triplicate in 96-well plates in the presence of increasing concentrations of DTG (0 to 300 nM). WT, wild type.
FIG 5
FIG 5
Susceptibility of wild-type and ΔNef NL43 viruses to DTG and RAL. All data shown are mean values ± standard errors (error bars) of three independent experiments. WT, wild type.

References

    1. Rausch JW, Le Grice SFJ. 2004. ‘Binding, bending and bonding’: polypurine tract-primed initiation of plus-strand DNA synthesis in human immunodeficiency virus. Int J Biochem Cell Biol 36:1752–1766. doi:10.1016/j.biocel.2004.02.016.
    1. Sorge J, Hughes SH. 1982. Polypurine tract adjacent to the U3 region of the Rous sarcoma virus genome provides a cis-acting function. J Virol 43:482–488.
    1. Karageorgos L, Li P, Burrell CJ. 1995. Stepwise analysis of reverse transcription in a cell-to-cell human immunodeficiency virus infection model: kinetics and implications. J Gen Virol 76:1675–1686. doi:10.1099/0022-1317-76-7-1675.
    1. Li Y, Xuan S, Feng Y, Yan A. 2015. Targeting HIV-1 integrase with strand transfer inhibitors. Drug Discov Today 20:435–449. doi:10.1016/j.drudis.2014.12.001.
    1. Hightower KE, Wang R, Deanda F, Johns BA, Weaver K, Shen Y, Tomberlin GH, Carter HL, Broderick T, Sigethy S, Seki T, Kobayashi M, Underwood MR. 2011. Dolutegravir (S/ GSK1349572 ) exhibits significantly slower dissociation than raltegravir and elvitegravir from wild-type and integrase inhibitor-resistant HIV-1 integrase-DNA complexes. Antimicrob Agents Chemother 55:4552–4559. doi:10.1128/AAC.00157-11.
    1. Hare S, Smith SJ, Métifiot M, Jaxa-Chamiec A, Pommier Y, Hughes SH, Cherepanov P. 2011. Structural and functional analyses of the second-generation integrase strand transfer inhibitor dolutegravir (S/ GSK1349572 ). Mol Pharmacol 80:565–572. doi:10.1124/mol.111.073189.
    1. Summa V, Petrocchi A, Bonelli F, Crescenzi B, Donghi M, Ferrara M, Fiore F, Gardelli C, Gonzalez Paz O, Hazuda DJ, Jones P, Kinzel O, Laufer R, Monteagudo E, Muraglia E, Nizi E, Orvieto F, Pace P, Pescatore G, Scarpelli R, Stillmock K, Witmer MV, Rowley M. 2008. Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. J Med Chem 51:5843–5855. doi:10.1021/jm800245z.
    1. Grinsztejn B, Nguyen B-Y, Katlama C, Gatell JM, Lazzarin A, Vittecoq D, Gonzalez CJ, Chen J, Harvey CM, Isaacs RD, Protocol 005 Team . 2007. Safety and efficacy of the HIV-1 integrase inhibitor raltegravir (MK-0518) in treatment-experienced patients with multidrug-resistant virus: a phase II randomised controlled trial. Lancet 369:1261–1269. doi:10.1016/S0140-6736(07)60597-2.
    1. Cooper DA, Steigbigel RT, Gatell JM, Rockstroh JK, Katlama C, Yeni P, Lazzarin A, Clotet B, Kumar PN, Eron JE, Schechter M, Markowitz M, Loutfy MR, Lennox JL, Zhao J, Chen J, Ryan DM, Rhodes RR, Killar JA, Gilde LR, Strohmaier KM, Meibohm AR, Miller MD, Hazuda DJ, Nessly ML, DiNubile MJ, Isaacs RD, Teppler H, Nguyen BY, BENCHMRK Study Teams . 2008. Subgroup and resistance analyses of raltegravir for resistant HIV-1 infection. N Engl J Med 359:355–365. doi:10.1056/NEJMoa0708978.
    1. Malet I, Delelis O, Valantin MA, Montes B, Soulie C, Wirden M, Tchertanov L, Peytavin G, Reynes J, Mouscadet JF, Katlama C, Calvez V, Marcelin AG. 2008. Mutations associated with failure of raltegravir treatment affect integrase sensitivity to the inhibitor in vitro. Antimicrob Agents Chemother 52:1351–1358. doi:10.1128/AAC.01228-07.
    1. Delelis O, Thierry S, Subra F, Simon F, Malet I, Alloui C, Sayon S, Calvez V, Deprez E, Marcelin AG, Tchertanov L, Mouscadet JF. 2010. Impact of Y143 HIV-1 integrase mutations on resistance to raltegravir in vitro and in vivo. Antimicrob Agents Chemother 54:491–501. doi:10.1128/AAC.01075-09.
    1. Fourati S, Charpentier C, Amiel C, Morand-Joubert L, Reigadas S, Trabaud MA, Delaugerre C, Nicot F, Rodallec A, Maillard A, Mirand A, Jeulin H, Montès B, Barin F, Bettinger D, Le Guillou-Guillemette H, Vallet S, Signori-Schmuck A, Descamps D, Calvez V, Flandre P, Marcelin AG, ANRS AC11 Resistance Study Group . 2015. Cross-resistance to elvitegravir and dolutegravir in 502 patients failing on raltegravir: a French national study of raltegravir-experienced HIV-1-infected patients. J Antimicrob Chemother 70:1507–1512. doi:10.1093/jac/dku535.
    1. White K, Kulkarni R, Miller MD. 2015. Analysis of early resistance development at the first failure timepoint in elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate-treated patients. J Antimicrob Chemother 70:2632–2638. doi:10.1093/jac/dkv149.
    1. Moreno S, Berenguer J. 2015. Efficacy of dolutegravir in treatment-experienced patients: the SAILING and VIKING trials. Enferm Infecc Microbiol Clin 33(Suppl 1):26–30. doi:10.1016/S0213-005X(15)30006-9.
    1. Blanco JL, Oldenbuettel C, Thomas R, Mallolas J, Wolf E, Brenner BG, Spinner CD, Wainberg MA, Martinez E. 2017. Pathways of resistance in subjects failing dolutegravir monotherapy, abstr 42. Conference on Retroviruses and Opportunistic Infections, 13 to 16 February, Seattle, WA .
    1. Kobayashi M, Yoshinaga T, Seki T, Wakasa-Morimoto C, Brown KW, Ferris R, Foster SA, Hazen RJ, Miki S, Suyama-Kagitani A, Kawauchi-Miki S, Taishi T, Kawasuji T, Johns BA, Underwood MR, Garvey EP, Sato A, Fujiwara T. 2011. In vitro antiretroviral properties of S/ GSK1349572, a next-generation HIV integrase inhibitor. Antimicrob Agents Chemother 55:813–821. doi:10.1128/AAC.01209-10.
    1. Quashie PK, Mesplède T, Han YS, Oliveira M, Singhroy DN, Fujiwara T, Underwood MR, Wainberg MA. 2012. Characterization of the R263K mutation in HIV-1 integrase that confers low-level resistance to the second-generation integrase strand transfer inhibitor dolutegravir. J Virol 86:2696–2705. doi:10.1128/JVI.06591-11.
    1. Brenner BG, Thomas R, Blanco JL, Ibanescu RI, Oliveira M, Mesplède T, Golubkov O, Roger M, Garcia F, Martinez E, Wainberg MA. 2016. Development of a G118R mutation in HIV-1 integrase following a switch to dolutegravir monotherapy leading to cross-resistance to integrase inhibitors. J Antimicrob Chemother 71:1948–1953. doi:10.1093/jac/dkw071.
    1. Andreatta K, Miller MD, White KL. 2013. HIV-2 antiviral potency and selection of drug resistance mutations by the integrase strand transfer inhibitor elvitegravir and NRTIs emtricitabine and tenofovir in vitro. J Acquir Immune Defic Syndr 62:367–374. doi:10.1097/QAI.0b013e31827b55f1.
    1. Thierry E, Deprez E, Delelis O. 2016. Different pathways leading to integrase inhibitors resistance. Front Microbiol 7:2165. doi:10.3389/fmicb.2016.02165.
    1. Malet I, Gimferrer Arriaga L, Artese A, Costa G, Parrotta L, Alcaro S, Delelis O, Tmeizeh A, Katlama C, Valantin MA, Ceccherini-Silberstein F, Calvez V, Marcelin AG. 2014. New raltegravir resistance pathways induce broad cross-resistance to all currently used integrase inhibitors. J Antimicrob Chemother 69:2118–2122. doi:10.1093/jac/dku095.
    1. Goethals O, Clayton R, Van Ginderen M, Vereycken I, Wagemans E, Geluykens P, Dockx K, Strijbos R, Smits V, Vos A, Meersseman G, Jochmans D, Vermeire K, Schols D, Hallenberger S, Hertogs K. 2008. Resistance mutations in human immunodeficiency virus type 1 integrase selected with elvitegravir confer reduced susceptibility to a wide range of integrase inhibitors. J Virol 82:10366–10374. doi:10.1128/JVI.00470-08.
    1. Wainberg M, Anstett K, Mesplede T, Quashie P, Han Y, Oliveira M. 2014. The R263K mutation in HIV integrase that is selected by dolutegravir may actually prevent clinically relevant resistance to this compound. J Int AIDS Soc 17:19518. doi:10.7448/IAS.17.4.19518.
    1. Kirchhoff F, Greenough TC, Brettler DB, Sullivan JL, Desrosiers RC. 1995. Brief report: absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N Engl J Med 332:228–232. doi:10.1056/NEJM199501263320405.
    1. Salvi R, Garbuglia AR, Di Caro A, Pulciani S, Montella F, Benedetto A. 1998. Grossly defective nef gene sequences in a human immunodeficiency virus type 1-seropositive long-term nonprogressor. J Virol 72:3646–3657.
    1. Calugi G, Montella F, Favalli C, Benedetto A. 2006. Entire genome of a strain of human immunodeficiency virus type 1 with a deletion of nef that was recovered 20 years after primary infection: large pool of proviruses with deletions of env. J Virol 80:11892–11896. doi:10.1128/JVI.00932-06.
    1. Jere A, Fujita M, Adachi A, Nomaguchi M. 2010. Role of HIV-1 Nef protein for virus replication in vitro. Microbes Infect 12:65–70. doi:10.1016/j.micinf.2009.09.009.
    1. Doyon L, Croteau G, Thibeault D, Poulin F, Pilote L, Lamarre D. 1996. Second locus involved in human immunodeficiency virus type 1 resistance to protease inhibitors. J Virol 70:3763–3769.
    1. Nijhuis M, van Maarseveen NM, Lastere S, Schipper P, Coakley E, Glass B, Rovenska M, de Jong D, Chappey C, Goedegebuure IW, Heilek-Snyder G, Dulude D, Cammack N, Brakier-Gingras L, Konvalinka J, Parkin N, Kräusslich HG, Brun-Vezinet F, Boucher CAB. 2007. A novel substrate-based HIV-1 protease inhibitor drug resistance mechanism. PLoS Med 4:e36. doi:10.1371/journal.pmed.0040036.
    1. Thierry S, Munir S, Thierry E, Subra F, Leh H, Zamborlini A, Saenz D, Levy DN, Lesbats P, Saïb A, Parissi V, Poeschla E, Deprez E, Delelis O. 2015. Integrase inhibitor reversal dynamics indicate unintegrated HIV-1 dna initiate de novo integration. Retrovirology 12:24. doi:10.1186/s12977-015-0153-9.
    1. Delelis O, Parissi V, Leh H, Mbemba G, Petit C, Sonigo P, Deprez E, Mouscadet JF. 2007. Efficient and specific internal cleavage of a retroviral palindromic DNA sequence by tetrameric HIV-1 integrase. PLoS One 2:e608. doi:10.1371/journal.pone.0000608.
    1. Delelis O, Petit C, Leh H, Mbemba G, Mouscadet JF, Sonigo P. 2005. A novel function for spumaretrovirus integrase: an early requirement for integrase-mediated cleavage of 2 LTR circles. Retrovirology 2:31. doi:10.1186/1742-4690-2-31.
    1. Song I, Chen S, Piscitelli S, Min S. 2013. Pharmacokinetics (PK) and PK-pharmacodynamic (PD) relationship of dolutegravir (DTG) in integrase inhibitor (INI)-naïve subjects, abstr A-1573. 53rd ICAAC, 10 to 13 September 2013, Denver, CO .
    1. Descamps D, Collin G, Letourneur F, Apetrei C, Damond F, Loussert-Ajaka I, Simon F, Saragosti S, Brun-Vézinet F. 1997. Susceptibility of human immunodeficiency virus type 1 group O isolates to antiretroviral agents: in vitro phenotypic and genotypic analyses. J Virol 71:8893–8898.
    1. Damond F, Collin G, Matheron S, Peytavin G, Campa P, Delarue S, Taieb A, Bénard A, Chêne G, Brun-Vézinet F, Descamps D, French ANRS HIV-2 Cohort (ANRS CO 5 VIH-2) . 2005. Letter. In vitro phenotypic susceptibility to nucleoside reverse transcriptase inhibitors of HIV-2 isolates with the Q151M mutation in the reverse transcriptase gene. Antivir Ther 10:861–865.

Source: PubMed

3
Prenumerera