Acute effect of Melon Manis Terengganu peel powder on glycemic response, perceived satiety, and food intake: a randomized, placebo-controlled crossover trial in adults at risk of type 2 diabetes

Ying Qian Ong, Sakinah Harith, Mohd Razif Shahril, Norshazila Shahidan, Hermizi Hapidin, Ying Qian Ong, Sakinah Harith, Mohd Razif Shahril, Norshazila Shahidan, Hermizi Hapidin

Abstract

Background: Melon Manis Terengganu (MMT) peel has a high dietary fiber content, but there is no data examining its health benefits in adults at risk of type 2 diabetes. The objective of the study was to evaluate whether consumption of MMT peel powder improves glycemic response, satiety, and food intake in adults at risk of type 2 diabetes.

Methods: An open-label, randomized, placebo-controlled, crossover design trial was conducted among adults (n = 30, ages 18-59 y) at risk of type 2 diabetes. They consumed Formulation 3 (formulated MMT peel powder) [A] and control (glucose) [B] with study breakfast based on randomly assigned treatment sequences (AB, BA) established by Research Randomizer ( www.randomizer.org ). Capillary blood glucose and perceived satiety were determined at baseline (0 min), 30, 60, 90 and 120 min, followed by a post-intervention food intake measurement.

Results: The repeated measures analysis of variance (ANOVA) revealed significant time (F = 84.37, p < 0.001, ηp2 = 0.744), condition (F = 22.89, p < 0.001, ηp2 = 0.441), and time*condition effects (F = 24.40, p < 0.001, ηp2 = 0.457) in blood glucose levels. Respondents (n = 30) who consumed Formulation 3 also had a significantly lower blood glucose 2-hour incremental area under the curve (iAUC) of 134.65 ± 44.51 mmol/L*min and maximum concentration (CMax) of 7.20 (7.10, 8.20) mmol/L with relative reduction of 26.8 and 13.3% respectively, when compared with control (p < 0.001). Besides, significantly greater perceived satiety, lower energy and fat intake as well as higher dietary fiber intake were also observed in the intervention group compared with the placebo group (p < 0.05). There were no marked side effects associated with the ingestion of the test products.

Conclusions: Short-term consumption of formulated MMT peel powder may improve glycemic response, increase perceived satiety and reduce food intake in adults at risk of type 2 diabetes with the potential to be utilized as a functional beverage. Medium-to long-term clinical trial is warranted to determine whether taking this formulated MMT peel powder on a daily basis has an influence on health outcomes.

Trial registration: ClinicalTrials.gov Identifier: NCT05298111. Registered 28/03/2022.

Keywords: At risk of type 2 diabetes; Food intake; Glycemic response; Melon Manis Terengganu peel; Perceived satiety.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
CONSORT flow diagram of the study. CONSORT, Consolidated Standards of Reporting Trials
Fig. 2
Fig. 2
AUC of perceived satiety of placebo and intervention group. The presented results are indicated as mean values ± standard error of mean. *Significant differences between groups. Tested using paired t-test

References

    1. Krawȩcka A, Sobota A, Sykut-Domańska E. Functional cereal products in the diet for type 2 diabetes patients. Int J Food Sci. 2019;2019:4012450. doi: 10.1155/2019/4012450.
    1. Uusitupa M, Khan TA, Viguiliouk E, Kahleova H, Rivellese AA, Hermansen K, et al. Prevention of type 2 diabetes by lifestyle changes: a systematic review and meta-analysis. Nutrients. 2019;11(11):2611. doi: 10.3390/nu11112611.
    1. International Diabetes Federation. IDF Diabetes Atlas. 10th ed. International Diabetes Federation; 2021. . Accessed 17 Dec 2021.
    1. National Institute of Health Malaysia. Non-Communicable Diseases: Risk Factors and other Health Problems (NHMS 2019). Vol. 1. National Institute of Health Malaysia; 2019. . Accessed 17 Dec 2021.
    1. Davies MJ, D’Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the european association for the study of diabetes (EASD) Diabetes Care. 2018;41(12):2669–2701. doi: 10.2337/dci18-0033.
    1. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach. Diabetes Care. 2012;35(6):1364–1379. doi: 10.2337/dc12-0413.
    1. Ley SH, Hamdy O, Mohan V, Hu FB. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet. 2014;383(9933):1999–2007. doi: 10.1016/S0140-6736(14)60613-9.
    1. Ong YQ, Harith S, Shahril MR, Shahidan N, Hapidin H. Organoleptic, hypoglycemic and in vitro starch digestion effects of formulated melon Manis Terengganu peel powder. Int Food Res J. 2022;29(6).
    1. Aisyah Athirah H, Muhammad FM, Wahizatul Afzan A, Wan ZW. Effects of different storage temperatures on physicochemical characteristics and quality of melon Manis Terengganu (Cucumis melo var. Inodorus cv. Manis Terengganu 1) Trans Malaysian Soc Plant Physiol. 2018;25:183–191.
    1. Ong YQ, Harith S, Shahril MR, Shahidan N, Hapidin H. Determination of vitamins, minerals, heavy metals and anti-inflammatory activity of melon Manis Terengganu peel. Biosci Res. 2021;18(1):1131–1139.
    1. Ong YQ, Sakinah H, Shahril MR, Norshazila S. Bioactive compounds in Cucumis melo L. and its beneficial health effects: a scoping review. Malaysian Appl Biol. 2019;48(4):11–23.
    1. Ng SH, Robert SD, Wan Ahmad WAN, Wan Ishak WR. Incorporation of dietary fibre-rich oyster mushroom (Pleurotus sajor-caju) powder improves postprandial glycaemic response by interfering with starch granule structure and starch digestibility of biscuit. Food Chem. 2017;227:358–368. doi: 10.1016/j.foodchem.2017.01.108.
    1. Yao CK, Burgell RE, Taylor KM, Ward MG, Friedman AB, Barrett JS, et al. Effects of fiber intake on intestinal pH, transit, and predicted oral mesalamine delivery in patients with ulcerative colitis. J Gastroenterol Hepatol. 2021;36(6):1580–1589. doi: 10.1111/jgh.15311.
    1. Oo AM, Al-Abed A, Abed AA, Lwin OM, Kanneppady SS, Sim TY, Mukti NA, et al. Type 2 diabetes mellitus prediction in Malaysia using modified diabetes risk assessment tool. Malaysian J Public Heal Med. 2020;20(1):15–21. doi: 10.37268/mjphm/vol.20/no.1/art.442.
    1. Djarot P, Badar M. Formulation and production of granule from Annona muricata fruit juice as antihypertensive instant drink. Int J Pharm Pharm Sci. 2017;9(5):18–22. doi: 10.22159/ijpps.2017v9i5.16506.
    1. Muhamad N, Sahadan W, Ho LH. Effect of drying temperatures and extraction solvents on total phenolic, flavonoid contents and antioxidant properties of immature Manis Terengganu melon (Cucumis melo) J Agrobiotechnology. 2018;9(1S):114–121.
    1. Oliver Chen CY, Rasmussen H, Kamil A, Du P, Blumberg JB. Orange pomace improves postprandial glycemic responses: an acute, randomized, placebo-controlled, double-blind, crossover trial in overweight men. Nutrients. 2017;9(2):130. doi: 10.3390/nu9020130.
    1. de Cock P. Erythritol. In: Sweeteners and sugar alternatives in food technology. Hoboken: Wiley-Blackwell; 2012. p. 213–41.
    1. Camacho-arriola M. Postprandial glycemic response of whole peas and lentils and their flours in adults with type 2 diabetes. Ames: Iowa State University; 2020.
    1. Dai FJ, Chau CF. Classification and regulatory perspectives of dietary fiber. J Food Drug Anal. 2017;25(1):37–42. doi: 10.1016/j.jfda.2016.09.006.
    1. Hardacre AK, Yap SY, Lentle RG, Monro JA. The effect of fibre and gelatinised starch type on amylolysis and apparent viscosity during in vitro digestion at a physiological shear rate. Carbohydr Polym. 2015;123:80–88. doi: 10.1016/j.carbpol.2015.01.013.
    1. Karaman E, Yılmaz E, Tuncel NB. Physicochemical, microstructural and functional characterization of dietary fibers extracted from lemon, orange and grapefruit seeds press meals. Bioact Carbohydrates Diet Fibre. 2017;11(11):9–17. doi: 10.1016/j.bcdf.2017.06.001.
    1. Kementerian Kesihatan Malaysia. Panduan penyajian hidangan sihat semasa mesyuarat. Vol. 2, Bahagian Pemakanan Kementerian Kesihatan Malaysia; 2011. . Accessed 17 Dec 2021.
    1. Burton-Freeman B, Liyanage D, Rahman S, Edirisinghe I. Ratios of soluble and insoluble dietary fibers on satiety and energy intake in overweight pre- and postmenopausal women. Nutr Heal Aging. 2017;4(2):157–168. doi: 10.3233/NHA-160018.
    1. World Health Organization. Capillary sampling - WHO Guidelines on Drawing Blood - NCBI Bookshelf. WHO Guidelines on Drawing Blood: Best Practices in Phlebotomy. World Health Organization; 2010. . Accessed 28 July 2021.
    1. Rebel A, Rice MA, Fahy BG. The accuracy of point-of-care glucose measurements. J Diabetes Sci Technol. 2012;6(2):396–411. doi: 10.1177/193229681200600228.
    1. FAO/WHO. Carbohydrates in human nutrition. Report of a joint FAO/WHO expert consultation. In: FAO Food and Nutrition Paper. FAO/WHO; 1998. . Accessed 6 Aug 2021.
    1. Tey SL, Salleh NB, Henry J, Forde CG. Effects of aspartame-, monk fruit-, stevia- and sucrose-sweetened beverages on postprandial glucose, insulin and energy intake. Int J Obes. 2017;41(3):450–457. doi: 10.1038/ijo.2016.225.
    1. Winham DM, Hutchins AM, Thompson SV. Glycemic response to black beans and chickpeas as part of a rice meal: a randomized cross-over trial. Nutrients. 2017;9(10):1095. doi: 10.3390/nu9101095.
    1. Stewart ML, Zimmer JP. A high fiber cookie made with resistant starch type 4 reduces post-prandial glucose and insulin responses in healthy adults. Nutrients. 2017;9(3):237. doi: 10.3390/nu9030237.
    1. Kim HK, Nanba T, Ozaki M, Chijiki H, Takahashi M, Fukazawa M, et al. Effect of the intake of a snack containing dietary fiber on postprandial glucose levels. Foods. 2020;9(10):1–11.
    1. Yesmin F, Ali M, Sardar M, Munna M, Baksh S. Effects of dietary fiber on postprandial glucose in healthy adults. Mediscope. 2018;6(1):25–29. doi: 10.3329/mediscope.v6i1.38940.
    1. De Carvalho CM, De Paula TP, Viana LV, Machado VM, De Almeida JC, Azevedo MJ. Plasma glucose and insulin responses after consumption of breakfasts with different sources of soluble fiber in type 2 diabetes patients: a randomized crossover clinical trial. Am J Clin Nutr. 2017;106(5):1238–1245.
    1. Chusak C, Henry CJ, Chantarasinlapin P, Techasukthavorn V, Adisakwattana S. Influence of clitoria ternatea flower extract on the in vitro enzymatic digestibility of starch and its application in bread. Foods. 2018;7(7):102. doi: 10.3390/foods7070102.
    1. Kay B. The acute effect of soluble dietary fibre-enriched pudding products on glycemic and insulinemic response in adults at risk for type 2 diabetes. Canada: The University of Guelph; 2016.
    1. Russell WR, Baka A, Björck I, Delzenne N, Gao D, Griffiths HR, et al. Impact of diet composition on blood glucose regulation. Crit Rev Food Sci Nutr. 2016;56(4):541–590. doi: 10.1080/10408398.2013.792772.
    1. Wang J, Wang S, Yang J, Henning SM, Ezzat-Zadeh Z, Woo SL, et al. Acute effects of cinnamon spice on post-prandial glucose and insulin in normal weight and overweight/obese subjects: a pilot study. Front Nutr. 2021;7:374.
    1. Lunde MSH, Hjellset VT, Holmboe-Ottesen G, Høstmark AT. Variations in postprandial blood glucose responses and satiety after intake of three types of bread. J Nutr Metab. 2011;2011:437587. doi: 10.1155/2011/437587.
    1. Higa M, Fuse Y, Miyashita N, Fujitani A, Yamashita K, Ichijo T, et al. Effect of high β-glucan barley on postprandial blood glucose levels in subjects with normal glucose tolerance: assessment by meal tolerance test and continuous glucose monitoring system. Clin Nutr Res. 2019;8(1):55. doi: 10.7762/cnr.2019.8.1.55.
    1. Tosh SM. Review of human studies investigating the post-prandial blood-glucose lowering ability of oat and barley food products. Eur J Clin Nutr. 2013;67:310–317. doi: 10.1038/ejcn.2013.25.
    1. Zurbau A, Noronha JC, Khan TA, Sievenpiper JL, Wolever TMS. The effect of oat β-glucan on postprandial blood glucose and insulin responses: a systematic review and meta-analysis. Eur J Clin Nutr. 2021;2021:1–15.
    1. Stewart ML, Zimmer JP. Postprandial glucose and insulin response to a high-fiber muffin top containing resistant starch type 4 in healthy adults: a double-blind, randomized, controlled trial. Nutrition. 2018;53:59–63. doi: 10.1016/j.nut.2018.01.002.
    1. Silva FM, Kramer CK, de Almeida JC, Steemburgo T, Gross JL, Azevedo MJ. Fiber intake and glycemic control in patients with type 2 diabetes mellitus: a systematic review with meta-analysis of randomized controlled trials. Nutr Rev. 2013;71(12):790–801. doi: 10.1111/nure.12076.
    1. Silva FM, Kramer CK, Crispim D, Azevedo MJ. A high-glycemic index, low-fiber breakfast affects the postprandial plasma glucose, insulin, and ghrelin responses of patients with type 2 diabetes in a randomized clinical trial. J Nutr. 2015;145(4):736–741. doi: 10.3945/jn.114.195339.
    1. Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet. 2019;393(10170):434–445. doi: 10.1016/S0140-6736(18)31809-9.
    1. Post RE, Mainous AG, King DE, Simpson KN. Dietary fiber for the treatment of type 2 diabetes mellitus: a meta-analysis. J Am Board Fam Med. 2012;25(1):16–23. doi: 10.3122/jabfm.2012.01.110148.
    1. Schuchardt JP, Wonik J, Bindrich U, Heinemann M, Kohrs H, Schneider I, et al. Glycemic index and microstructure analysis of a newly developed fiber enriched cookie. Food Funct. 2016;7(1):464–474. doi: 10.1039/C5FO01137J.
    1. Rojas-Bonzi P, Vangsøe CT, Nielsen KL, Lærke HN, Hedemann MS, Knudsen KEB. The relationship between in vitro and in vivo starch digestion kinetics of breads varying in dietary fibre. Foods. 2020;9(9):1337. doi: 10.3390/foods9091337.
    1. Repin N, Kay BA, Cui SW, Wright AJ, Duncan AM, Goff HD. Investigation of mechanisms involved in postprandial glycemia and insulinemia attenuation with dietary fibre consumption. Food Funct. 2017;8(6):2142–2154. doi: 10.1039/C7FO00331E.
    1. Wolever TMS, Tosh SM, Spruill SE, Jenkins AL, Ezatagha A, Duss R, et al. Increasing oat β-glucan viscosity in a breakfast meal slows gastric emptying and reduces glycemic and insulinemic responses but has no effect on appetite, food intake, or plasma ghrelin and PYY responses in healthy humans: a randomized, placebo-controlled. Am J Clin Nutr. 2020;111(2):319–328. doi: 10.1093/ajcn/nqz285.
    1. El Khoury D, Cuda C, Luhovyy BL, Anderson GH. Beta glucan: Health benefits in obesity and metabolic syndrome. J Nutr Metab. 2012;2012:851362.
    1. Muir J. An overview of fiber and fiber supplements for irritable bowel syndrome. Gastroenterol Hepatol. 2019;15(7):387–389.
    1. Mudgil D, Barak S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: a review. Int J Biol Macromol. 2013;61:1–6. doi: 10.1016/j.ijbiomac.2013.06.044.
    1. Gemen R, De Vries JJF, Slavin JL. Relationship between molecular structure of cereal dietary fiber and health effects: focus on glucose/insulin response and gut health. Nutr Rev. 2011;69(1):22–33. doi: 10.1111/j.1753-4887.2010.00357.x.
    1. Logan K, Wright AJ, Goff HD. Correlating the structure and in vitro digestion viscosities of different pectin fibers to in vivo human satiety. Food Funct. 2015;6(1):63–71. doi: 10.1039/C4FO00543K.
    1. Kwong MGY, Wolever TMS, Brummer Y, Tosh SM. Increasing the viscosity of oat β-glucan beverages by reducing solution volume does not reduce glycaemic responses. Br J Nutr. 2013;110(8):1465–1471. doi: 10.1017/S000711451300069X.
    1. Makki K, Deehan EC, Walter J, Bäckhed F. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe. 2018;23(6):705–715. doi: 10.1016/j.chom.2018.05.012.
    1. Weickert MO, Pfeiffer AF. Impact of dietary fiber consumption on insulin resistance and the prevention of type 2 diabetes. J Nutr. 2018;148(1):7–12. doi: 10.1093/jn/nxx008.
    1. Wang K, Li M, Han Q, Fu R, Ni Y. Inhibition of α-amylase activity by insoluble and soluble dietary fibers from kiwifruit (Actinidia deliciosa) Food Biosci. 2021;42:101057. doi: 10.1016/j.fbio.2021.101057.
    1. Cañas S, Rebollo-Hernanz M, Cano-Muñoz P, Aguilera Y, Benítez V, Braojos C, et al. Critical evaluation of coffee pulp as an innovative antioxidant dietary fiber ingredient: nutritional value, functional properties, and acute and sub-chronic toxicity. Proceedings. 2020;70(1):65.
    1. Vujić L, Vitali Čepo D, Vedrina DI. Impact of dietetic tea biscuit formulation on starch digestibility and selected nutritional and sensory characteristics. LWT Food Sci Technol. 2015;62(1):647–653. doi: 10.1016/j.lwt.2014.06.003.
    1. Brennan CS, Tudorica CM. Evaluation of potential mechanisms by which dietary fibre additions reduce the predicted glycaemic index of fresh pastas. Int J Food Sci Technol. 2008;43(12):2151–2162. doi: 10.1111/j.1365-2621.2008.01831.x.
    1. Lattimer JM, Haub MD. Effects of dietary fiber and its components on metabolic health. Nutrients. 2010;2(12):1266–1289. doi: 10.3390/nu2121266.
    1. Sun L, Miao M. Dietary polyphenols modulate starch digestion and glycaemic level: a review. Crit Rev Food Sci Nutr. 2020;60(4):541–555. doi: 10.1080/10408398.2018.1544883.
    1. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359(6380):1151–1156. doi: 10.1126/science.aao5774.
    1. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:36–44.
    1. Deehan EC, Duar RM, Armet AM, Perez-Muñoz ME, Jin M, Walter J. Modulation of the gastrointestinal microbiome with nondigestible fermentable carbohydrates to improve human health. Microbiol Spectr. 2017;5(5).
    1. Den Besten G, Van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–2340. doi: 10.1194/jlr.R036012.
    1. Canfora EE, Meex RCR, Venema K, Blaak EE. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol. 2019;15:261–273. doi: 10.1038/s41574-019-0156-z.
    1. Fuse Y, Higa M, Miyashita N, Fujitani A, Yamashita K, Ichijo T, et al. Effect of high β-glucan barley on postprandial blood glucose and insulin levels in type 2 diabetic patients. Clin Nutr Res. 2020;9(1):43. doi: 10.7762/cnr.2020.9.1.43.
    1. Tongyu M, Chong-Do L. Effect of high dose resistant starch on human glycemic response. J Nutr Med Diet Care. 2021;7(1):049.
    1. Li M, Piao JH, Tian Y, Li WD, Li KJ, Yang XG. Postprandial glycaemic and insulinaemic responses to GM-resistant starch-enriched rice and the production of fermentation-related H2 in healthy Chinese adults. Br J Nutr. 2010;103(7):1029–1034. doi: 10.1017/S0007114509992820.
    1. Blundell J, De Graaf C, Hulshof T, Jebb S, Livingstone B, Lluch A, et al. Appetite control: methodological aspects of the evaluation of foods. Obes Rev. 2010;11:251–270. doi: 10.1111/j.1467-789X.2010.00714.x.
    1. Camps G, Mars M, De Graaf C, Smeets PA. Empty calories and phantom fullness: a randomized trial studying the relative effects of energy density and viscosity on gastric emptying determined by MRI and satiety. Am J Clin Nutr. 2016;104(1):73–80. doi: 10.3945/ajcn.115.129064.
    1. de Graaf C. Texture and satiation: the role of oro-sensory exposure time. Physiol Behav. 2012;107(4):496–501. doi: 10.1016/j.physbeh.2012.05.008.
    1. Forde CG, van Kuijk N, Thaler T, de Graaf C, Martin N. Oral processing characteristics of solid savoury meal components, and relationship with food composition, sensory attributes and expected satiation. Appetite. 2013;60(1):208–219. doi: 10.1016/j.appet.2012.09.015.
    1. Jalil AMM, Combet E, Edwards CA, Garcia AL. Acute effects of breads prepared with β-glucan and black tea on glucose and insulin responses in healthy volunteers. Proc Nutr Soc. 2016;75(OCE2):E68. doi: 10.1017/S0029665116000586.
    1. Wijlens AGM, Erkner A, Alexander E, Mars M, Smeets PAM, De Graaf C. Effects of oral and gastric stimulation on appetite and energy intake. Obesity. 2012;20(11):2226–2232. doi: 10.1038/oby.2012.131.
    1. Chambers L, McCrickerd K, Yeomans MR. Optimising foods for satiety. Trends Food Sci Technol. 2015;41(2):149–160. doi: 10.1016/j.tifs.2014.10.007.
    1. Hogenkamp PS, Mars M, Stafleu A, de Graaf C. Repeated consumption of a large volume of liquid and semi-solid foods increases ad libitum intake, but does not change expected satiety. Appetite. 2012;59(2):419–424. doi: 10.1016/j.appet.2012.06.008.
    1. Zhu Y, Hsu WH, Hollis JH. The impact of food viscosity on eating rate, subjective appetite, glycemic response and gastric emptying rate. PLoS One. 2013;8(6):e67482. doi: 10.1371/journal.pone.0067482.
    1. McCrickerd K, Chambers L, Brunstrom JM, Yeomans MR. Subtle changes in the flavour and texture of a drink enhance expectations of satiety. Flavour. 2012;1(1):1–11. doi: 10.1186/2044-7248-1-20.
    1. Chambers L, Ells H, Yeomans MR. Can the satiating power of a high energy beverage be improved by manipulating sensory characteristics and label information? Food Qual Prefer. 2013;28(1):271–278. doi: 10.1016/j.foodqual.2012.08.008.
    1. Robinson E, Almiron-Roig E, Rutters F, De Graaf C, Forde CG, Smith CT, et al. A systematic review and meta-analysis examining the effect of eating rate on energy intake and hunger. Am J Clin Nutr. 2014;100(1):123–151. doi: 10.3945/ajcn.113.081745.
    1. Al-Mana NM, Robertson MD. Acute effect of resistant starch on food intake, appetite and satiety in overweight/obese males. Nutrients. 2018;10(12):1993. doi: 10.3390/nu10121993.
    1. Giezenaar C, Luscombe-Marsh ND, Hutchison AT, Lange K, Hausken T, Jones KL, et al. Effect of gender on the acute effects of whey protein ingestion on energy intake, appetite, gastric emptying and gut hormone responses in healthy young adults. Nutr Diabetes. 2018;8(1):40. doi: 10.1038/s41387-018-0048-7.
    1. Rebello CJ, O’Neil CE, Greenway FL. Dietary fiber and satiety: the effects of oats on satiety. Nutr Rev. 2016;74(2):131–147. doi: 10.1093/nutrit/nuv063.
    1. Rao TP. Role of guar fiber in appetite control. Physiol Behav. 2016;164(Pt A):277–283. doi: 10.1016/j.physbeh.2016.06.014.
    1. Clark MJ, Slavin JL. The effect of fiber on satiety and food intake: a systematic review. J Am Coll Nutr. 2013;32(3):200–211. doi: 10.1080/07315724.2013.791194.
    1. Wanders AJ, van den Borne JJGC, de Graaf C, Hulshof T, Jonathan MC, Kristensen M, et al. Effects of dietary fibre on subjective appetite, energy intake and body weight: a systematic review of randomized controlled trials. Obes Rev. 2011;12(9):724–739.

Source: PubMed

3
Prenumerera