Early Vascular Damage in Young Women with DM-1 and Its Relation to Anti-Müllerian Hormone: A Cross-Sectional Study

Annelien C de Kat, Hendrik Gremmels, Marianne C Verhaar, Frank J M Broekmans, Felicia Yarde, Annelien C de Kat, Hendrik Gremmels, Marianne C Verhaar, Frank J M Broekmans, Felicia Yarde

Abstract

Vascular function is suggested to be associated with ovarian reserve, but the relationship with microvascular function has never been studied. In this cross-sectional pilot study, the relationship of microvascular damage markers with AMH was studied in premenopausal women. Twenty-two regularly cycling women with type 1 diabetes (DM-1) and a reference group of 20 healthy regularly cycling women were included, from whom blood was drawn in the early follicular phase of the menstrual cycle. The main outcome was the correlation between circulating progenitor cells (CPCs), markers for early vascular damage, and AMH, a marker for ovarian reserve. Secondary endpoints for early vascular impairment were circulating angiogenic cells and additional biomarkers. Median AMH levels were 2.2 µg/L [1.2-3.5] in the DM-1 group and 2.1 µg/L [0.85-3.8] in the reference group. CPCs were significantly decreased in women with DM-1; 1204 ± 537 CD34+/CD45dim cells were counted in the DM-1 group, compared to 2264 ± 1124 in the reference group. CPCs and other markers of early vascular damage were not correlated with AMH levels in a multivariable analysis. These results underscore previous findings of early vascular damage in DM-1 and suggest that there may not be a relationship between vascular function and ovarian reserve. Trial Registration. This trial is registered with Clinicaltrials.gov NCT01665716.

Figures

Figure 1
Figure 1
Correlation between AMH and number of CD34+/CD45dim cells. Number of CD34+/CD45dim cells was not correlated with AMH levels (crude R = 0.025, p = 0.79).
Figure 2
Figure 2
Boxplot of number of CD34+/CD45dim cells for both study groups. CD34+/CD45dim cells were significantly reduced in patients with DM-1 (p = 8 · 10−4). OC use was associated with increased numbers of CD34+/CD45dim cells, regardless of study group (p = 6 · 10−4).
Figure 3
Figure 3
Boxplot of AMH levels for both study groups. AMH levels did not differ between patients and controls (p = 0.72) nor was there an effect of OC use (p = 0.70).

References

    1. WHO. Research on the menopause in the 1990s. Report of a WHO Scientific Group. 1996;(866)
    1. Broekmans F. J., Soules M. R., Fauser B. C. Ovarian aging: mechanisms and clinical consequences. Endocrine Reviews. 2009;30(5):465–493. doi: 10.1210/er.2009-0006.
    1. Thomas F., Renaud F., Benefice E., de Meeüs T., Guegan J.-F. International variability of ages at menarche and menopause: patterns and main determinants. Human Biology. 2001;73(2):271–290. doi: 10.1353/hub.2001.0029.
    1. Gordon T., Kannel W. B., Hjortland M. C., McNamara P. M. Menopause and coronary heart disease. The Framingham study. Annals of Internal Medicine. 1978;89(2):157–161. doi: 10.7326/0003-4819-89-2-157.
    1. van der Schouw Y. T., van der Graaf Y., Steyerberg E. W., Eijkemans M. J. C., Banga J. D. Age at menopause as a risk factor for cardiovascular mortality. The Lancet. 1996;347(9003):714–718. doi: 10.1016/s0140-6736(96)90075-6.
    1. Kallen A. N., Pal L. Cardiovascular disease and ovarian function. Current Opinion in Obstetrics and Gynecology. 2011;23(4):258–267. doi: 10.1097/GCO.0b013e3283488a21.
    1. Broer S. L., Eijkemans M. J. C., Scheffer G. J., et al. Anti-Müllerian hormone predicts menopause: a long-term follow-up study in normoovulatory women. Journal of Clinical Endocrinology and Metabolism. 2011;96(8):2532–2539. doi: 10.1210/jc.2010-2776.
    1. Nelson S. M., Anderson R. A., Broekmans F. J., Raine-Fenning N., Fleming R., La Marca A. Anti-Müllerian hormone: clairvoyance or crystal clear? Human Reproduction. 2012;27(3):631–636. doi: 10.1093/humrep/der446.
    1. Appt S. E., Chen H., Clarkson T. B., Kaplan J. R. Premenopausal antimüllerian hormone concentration is associated with subsequent atherosclerosis. Menopause. 2012;19(12):1353–1359. doi: 10.1097/gme.0b013e31825b4fe2.
    1. Kok H. S., van Asselt K. M., van der Schouw Y. T., et al. Heart disease risk determines menopausal age rather than the reverse. Journal of the American College of Cardiology. 2006;47(10):1976–1983. doi: 10.1016/j.jacc.2005.12.066.
    1. Appt S. E., Chen H., Goode A. K., et al. The effect of diet and cardiovascular risk on ovarian aging in cynomolgus monkeys (Macaca fascicularis) Menopause. 2010;17(4):741–748. doi: 10.1097/gme.0b013e3181d20cd2.
    1. Sena C. M., Pereira A. M., Seiça R. Endothelial dysfunction—a major mediator of diabetic vascular disease. Biochimica et Biophysica Acta—Molecular Basis of Disease. 2013;1832(12):2216–2231. doi: 10.1016/j.bbadis.2013.08.006.
    1. Vita J. A., Keaney J. F., Jr. Endothelial function: a barometer for cardiovascular risk? Circulation. 2002;106(6):640–642. doi: 10.1161/01.cir.0000028581.07992.56.
    1. Snell-Bergeon J. K., Dabelea D., Ogden L. G., et al. Reproductive history and hormonal birth control use are associated with coronary calcium progression in women with type 1 diabetes mellitus. Journal of Clinical Endocrinology and Metabolism. 2008;93(6):2142–2148. doi: 10.1210/jc.2007-2025.
    1. Soto N., Iñiguez G., López P., et al. Anti-Müllerian hormone and inhibin B levels as markers of premature ovarian aging and transition to menopause in type 1 diabetes mellitus. Human Reproduction. 2009;24(11):2838–2844. doi: 10.1093/humrep/dep276.
    1. Wiebe J. C., Santana A., Medina-Rodríguez N., et al. Fertility is reduced in women and in men with type 1 diabetes: results from the Type 1 Diabetes Genetics Consortium (T1DGC) Diabetologia. 2014;57(12):2501–2504. doi: 10.1007/s00125-014-3376-8.
    1. Sjöberg L., Pitkäniemi J., Haapala L., Kaaja R., Tuomilehto J. Fertility in people with childhood-onset type 1 diabetes. Diabetologia. 2013;56(1):78–81. doi: 10.1007/s00125-012-2731-x.
    1. Strotmeyer E. S., Steenkiste A. R., Foley T. P., Jr., Berga S. L., Dorman J. S. Menstrual cycle differences between women with type 1 diabetes and women without diabetes. Diabetes Care. 2003;26(4):1016–1021. doi: 10.2337/diacare.26.4.1016.
    1. Yarde F., van der Schouw Y. T., de Valk H. W., et al. Age at menopause in women with type 1 diabetes mellitus: the OVADIA study. Human Reproduction. 2015;30(2):441–446. doi: 10.1093/humrep/deu327.
    1. Yarde F., Spiering W., Franx A., et al. Association between vascular health and ovarian ageing in type 1 diabetes mellitus. Human Reproduction. 2016;31(6):1354–1362. doi: 10.1093/humrep/dew063.
    1. Urbich C., Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circulation Research. 2004;95(4):343–353. doi: 10.1161/01.res.0000137877.89448.78.
    1. Gremmels H., Fledderus J. O., van Balkom B. W. M., Verhaar M. C. Transcriptome analysis in endothelial progenitor cell biology. Antioxidants & Redox Signaling. 2011;15(4):1029–1042. doi: 10.1089/ars.2010.3594.
    1. Schmidt-Lucke C., Rössig L., Fichtlscherer S., et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation. 2005;111(22):2981–2987. doi: 10.1161/circulationaha.104.504340.
    1. Teraa M., Sprengers R. W., Westerweel P. E., et al. Bone marrow alterations and lower endothelial progenitor cell numbers in critical limb ischemia patients. PLoS ONE. 2013;8(1) doi: 10.1371/journal.pone.0055592.e55592
    1. Vasa M., Fichtlscherer S., Aicher A., et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circulation Research. 2001;89(1):e1–e7. doi: 10.1161/hh1301.093953.
    1. Loomans C. J. M., De Koning E. J. P., Staal F. J. T., et al. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes. 2004;53(1):195–199. doi: 10.2337/diabetes.53.1.195.
    1. Dimeglio L. A., Tosh A., Saha C., et al. Endothelial abnormalities in adolescents with type 1 diabetes: a biomarker for vascular sequelae? Journal of Pediatrics. 2010;157(4):540–546. doi: 10.1016/j.jpeds.2010.04.050.
    1. Zerbini G., Maestroni A., Palini A., et al. Endothelial progenitor cells carrying monocyte markers are selectively abnormal in type 1 diabetic patients with early retinopathy. Diabetes. 2012;61(4):908–914. doi: 10.2337/db11-1197.
    1. Mund J. A., Estes M. L., Yoder M. C., Ingram D. A., Case J. Flow cytometric identification and functional characterization of immature and mature circulating endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012;32(4):1045–1053. doi: 10.1161/atvbaha.111.244210.
    1. Nayki U., Onk D., Balci G., Nayki C., Onk A., Gunay M. The effects of diabetes mellitus on ovarian injury and reserve: an experimental study. Gynecologic and Obstetric Investigation. 2015 doi: 10.1159/000442287.
    1. Diamanti-Kandarakis E., Piperi C., Korkolopoulou P., et al. Accumulation of dietary glycotoxins in the reproductive system of normal female rats. Journal of Molecular Medicine. 2007;85(12):1413–1420. doi: 10.1007/s00109-007-0246-6.
    1. Arbo E., Vetori D. V., Jimenez M. F., Freitas F. M., Lemos N., Cunha-Filho J. S. Serum anti-müllerian hormone levels and follicular cohort characteristics after pituitary suppression in the late luteal phase with oral contraceptive pills. Human Reproduction. 2007;22(12):3192–3196. doi: 10.1093/humrep/dem258.
    1. Bentzen J. G., Forman J. L., Pinborg A., et al. Ovarian reserve parameters: a comparison between users and non-users of hormonal contraception. Reproductive BioMedicine Online. 2012;25(6):612–619. doi: 10.1016/j.rbmo.2012.09.001.
    1. Dólleman M., Verschuren W. M. M., Eijkemans M. J. C., et al. Reproductive and lifestyle determinants of anti-müllerian hormone in a large population-based study. Journal of Clinical Endocrinology and Metabolism. 2013;98(5):2106–2115. doi: 10.1210/jc.2012-3995.
    1. Fadini G. P., De Kreutzenberg S., Albiero M., et al. Gender differences in endothelial progenitor cells and cardiovascular risk profile: the role of female estrogens. Arteriosclerosis, Thrombosis, and Vascular Biology. 2008;28(5):997–1004. doi: 10.1161/atvbaha.107.159558.
    1. Bulut D., Albrecht N., Imöhl M., et al. Hormonal status modulates circulating endothelial progenitor cells. Clinical Research in Cardiology. 2007;96(5):258–263. doi: 10.1007/s00392-007-0494-z.
    1. Lemieux C., Cloutier I., Tanguay J.-F. Menstrual cycle influences endothelial progenitor cell regulation: a link to gender differences in vascular protection? International Journal of Cardiology. 2009;136(2):200–210. doi: 10.1016/j.ijcard.2008.04.054.
    1. Nakamura J., Lu Q., Aberdeen G., Albrecht E., Brodie A. The effect of estrogen on aromatase and vascular endothelial growth factor messenger ribonucleic acid in the normal nonhuman primate mammary gland. Journal of Clinical Endocrinology and Metabolism. 1999;84(4):1432–1437.
    1. Iwakura A., Luedemann C., Shastry S., et al. Estrogen-mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury. Circulation. 2003;108(25):3115–3121. doi: 10.1161/01.cir.0000106906.56972.83.
    1. Yarde F., Maas A. H. E. M., Franx A., et al. Serum AMH levels in women with a history of preeclampsia suggest a role for vascular factors in ovarian aging. Journal of Clinical Endocrinology and Metabolism. 2014;99(2):579–586. doi: 10.1210/jc.2013-2902.

Source: PubMed

3
Prenumerera