A comprehensive assessment of the precision and agreement of anterior corneal power measurements obtained using 8 different devices

Qinmei Wang, Giacomo Savini, Kenneth J Hoffer, Zhen Xu, Yifan Feng, Daizong Wen, Yanjun Hua, Feng Yang, Chao Pan, Jinhai Huang, Qinmei Wang, Giacomo Savini, Kenneth J Hoffer, Zhen Xu, Yifan Feng, Daizong Wen, Yanjun Hua, Feng Yang, Chao Pan, Jinhai Huang

Abstract

Purpose: To comprehensively assess the precision and agreement of anterior corneal power measurements using 8 different devices.

Methods: Thirty-five eyes from 35 healthy subjects were included in the prospective study. In the first session, a single examiner performed on each subject randomly measurements with the RC-5000 (Tomey Corp., Japan), KR-8000 (Topcon, Japan), IOLMaster (Carl Zeiss Meditec, Germany), E300 (Medmont International, Australia), Allegro Topolyzer (Wavelight AG, Germany), Vista (EyeSys, TX), Pentacam (Oculus, Germany) and Sirius (CSO, Italy). Measurements were repeated in the second session (1 to 2 weeks later). Repeatability and reproducibility of corneal power measurements were assessed based on the intrasession and intersession within-subject standard deviation (Sw), repeatability (2.77Sw), coefficient of variation (COV), and intraclass correlation coefficient (ICC). Agreement was evaluated by 95% limits of agreement (LoA).

Results: All devices demonstrated high repeatability and reproducibility of the keratometric values (2.77Sw<0.36D, COV<0.3%, ICC>0.98). Repeated-measures analysis of variance with Bonferroni post test showed statistically significant differences (P<0.01) among mean keratometric values of most instruments; the largest differences were observed between the EyeSys Vista and Medmont E300. Good agreement (i.e., 95%LoA within ± 0.5D) was found between most instruments for flat, steep and mean keratometry, except for EyeSys and Medmont. Repeatability and reproducibility of vectors J(0) and J(45) was good, as the ICCs were higher than 0.9, except J(45) of Medmont and Pentacam. For the 95% LoAs of J(0) and J(45), they were all ≤ ± 0.31 among any two paired devices.

Conclusions: The 8 devices showed excellent repeatability and reproducibility. The results obtained using the RC-5000, KR-8000, IOLMaster, Allegro Topolyzer, Pentacam and Sirius were comparable, suggesting that they could be used interchangeably in most clinical settings. Caution is warranted with the measurements of the EyeSys Vista and Medmont E300, which should not be used interchangeably with other devices due to lower agreement.

Trial registration: ClinicalTrials.gov NCT01587287.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

References

    1. Lee AC, Qazi MA, Pepose JS (2008) Biometry and intraocular lens power calculation. Curr Opin Ophthalmol 19: 13–17.
    1. Tomidokoro A, Oshika T, Amano S, Higaki S, Maeda N, et al. (2000) Changes in anterior and posterior corneal curvatures in keratoconus. Ophthalmology 107: 1328–1332.
    1. Jinabhai A, Radhakrishnan H, O'Donnell C (2011) Pellucid corneal marginal degeneration: A review. Cont Lens Anterior Eye 34: 56–63.
    1. Chui WS, Cho P (2005) A comparative study of the performance of different corneal topographers on children with respect to orthokeratology practice. Optom Vis Sci 82: 420–427.
    1. Read SA, Collins MJ, Iskander DR, Davis BA (2009) Corneal topography with Scheimpflug imaging and videokeratography: comparative study of normal eyes. J Cataract Refract Surg 35: 1072–1081.
    1. Savini G, Barboni P, Carbonelli M, Hoffer KJ (2011) Repeatability of automatic measurements by a new Scheimpflug camera combined with Placido topography. J Cataract Refract Surg 37: 1809–1816.
    1. Shirayama M, Wang L, Weikert MP, Koch DD (2009) Comparison of corneal powers obtained from 4 different devices. Am J Ophthalmol 148: 528–535 e521.
    1. Wang L, Shirayama M, Koch DD (2010) Repeatability of corneal power and wavefront aberration measurements with a dual-Scheimpflug Placido corneal topographer. J Cataract Refract Surg 36: 425–430.
    1. Chen D, Lam AK (2009) Reliability and repeatability of the Pentacam on corneal curvatures. Clin Exp Optom 92: 110–118.
    1. Vogel A, Dick HB, Krummenauer F (2001) Reproducibility of optical biometry using partial coherence interferometry : intraobserver and interobserver reliability. J Cataract Refract Surg 27: 1961–1968.
    1. Huynh SC, Mai TQ, Kifley A, Wang JJ, Rose KA, et al. (2006) An evaluation of keratometry in 6-year-old children. Cornea 25: 383–387.
    1. Huang J, Pesudovs K, Wen D, Chen S, Wright T, et al. (2011) Comparison of anterior segment measurements with rotating Scheimpflug photography and partial coherence reflectometry. J Cataract Refract Surg 37: 341–348.
    1. Gonzalez-Meijome JM, Jorge J, Queiros A, Almeida JB, Parafita MA (2004) A comparison of the ARK-700A autokeratometer and Medmont E300 corneal topographer when measuring peripheral corneal curvature. Ophthalmic Physiol Opt 24: 391–398.
    1. Gonzalez Perez J, Cervino A, Giraldez MJ, Parafita M, Yebra-Pimentel E (2004) Accuracy and precision of EyeSys and Orbscan systems on calibrated spherical test surfaces. Eye Contact Lens 30: 74–78.
    1. Jeandervin M, Barr J (1998) Comparison of repeat videokeratography: repeatability and accuracy. Optom Vis Sci 75: 663–669.
    1. Varssano D, Rapuano CJ, Luchs JI (1997) Comparison of keratometric values of healthy and diseased eyes measured by Javal keratometer, EyeSys, and PAR. J Cataract Refract Surg 23: 419–422.
    1. Dave T, Ruston D, Fowler C (1998) Evaluation of the EyeSys model II computerized videokeratoscope. Part I: Clinical assessment. Optom Vis Sci 75: 647–655.
    1. Savini G, Carbonelli M, Sbreglia A, Barboni P, Deluigi G, et al. (2011) Comparison of anterior segment measurements by 3 Scheimpflug tomographers and 1 Placido corneal topographer. J Cataract Refract Surg 37: 1679–1685.
    1. McAlinden C, Khadka J, Pesudovs K (2011) A Comprehensive Evaluation of the Precision (Repeatability and Reproducibility) of the Oculus Pentacam HR. Invest Ophthalmol Vis Sci 52: 7731–7737.
    1. Shankar H, Taranath D, Santhirathelagan CT, Pesudovs K (2008) Anterior segment biometry with the Pentacam: comprehensive assessment of repeatability of automated measurements. J Cataract Refract Surg 34: 103–113.
    1. Tang M, Chen A, Li Y, Huang D (2010) Corneal power measurement with Fourier-domain optical coherence tomography. J Cataract Refract Surg 36: 2115–2122.
    1. Cho P, Lam AK, Mountford J, Ng L (2002) The performance of four different corneal topographers on normal human corneas and its impact on orthokeratology lens fitting. Optom Vis Sci 79: 175–183.
    1. British Standards Institution (1994) Accuracy (Trueness and Precision) of Measurement Methods and Results: General Principles and Definitions. London: HMO BS ISO 5725 part 1.
    1. British Standards Institution (1994) Accuracy (Trueness and Precision) of Measurement Methods and Results: Basic Methods for the Determination of Repeatability and Reproducibility of a Standard Measurement Method. London: HMO BS ISO 5725 part 2.
    1. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 8: 307–310.
    1. Collins MJ, Buehren T, Bece A, Voetz SC (2006) Corneal optics after reading, microscopy and computer work. Acta Ophthalmol Scand 84: 216–224.
    1. Thibos LN, Wheeler W, Horner D (1997) Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error. Optom Vis Sci 74: 367–375.
    1. Bland JM, Altman DG (1996) Measurement error. BMJ 313: 744.
    1. Shammas HJ, Chan S (2010) Precision of biometry, keratometry, and refractive measurements with a partial coherence interferometry-keratometry device. J Cataract Refract Surg 36: 1474–1478.
    1. Savini G, Barboni P, Carbonelli M, Hoffer KJ (2009) Accuracy of Scheimpflug corneal power measurements for intraocular lens power calculation. J Cataract Refract Surg 35: 1193–1197.
    1. Pardhan S, Douthwaite WA (1998) Comparison of videokeratoscope and autokeratometer measurements on ellipsoid surfaces and human corneas. J Refract Surg 14: 414–419.
    1. Stefano VS, Melo Junior LA, Mallmann F, Schor P (2010) Interchangeability between Placido disc and Scheimpflug system: quantitative and qualitative analysis. Arq Bras Oftalmol 73: 363–366.
    1. Tsilimbaris MK, Vlachonikolis IG, Siganos D, Makridakis G, Pallikaris IG (1991) Comparison of keratometric readings as obtained by Javal Ophthalmometer and Corneal Analysis System (EyeSys). Refract Corneal Surg 7: 368–373.
    1. Cummings AB, Mascharka N (2010) Outcomes after topography-based LASIK and LASEK with the wavelight oculyzer and topolyzer platforms. J Refract Surg 26: 478–485.
    1. Falavarjani KG, Hashemi M, Modarres M, Sanjari MS, Darvish N, et al. (2011) Topography-guided vs wavefront-optimized surface ablation for myopia using the WaveLight platform: a contralateral eye study. J Refract Surg 27: 13–17.
    1. Iseli HP, Jankov M, Bueeler M, Wimmersberger Y, Seiler T, et al. (2006) Corneal and total wavefront aberrations in phakic and pseudophakic eyes after implantation of monofocal foldable intraocular lenses. J Cataract Refract Surg 32: 762–771.
    1. Savini G, Barboni P, Carbonelli M, Hoffer KJ (2009) Agreement between Pentacam and videokeratography in corneal power assessment. J Refract Surg 25: 534–538.

Source: PubMed

3
Prenumerera