Expression of insulin receptor (IR) A and B isoforms, IGF-IR, and IR/IGF-IR hybrid receptors in vascular smooth muscle cells and their role in cell migration in atherosclerosis

N Beneit, C E Fernández-García, J L Martín-Ventura, L Perdomo, Ó Escribano, J B Michel, G García-Gómez, S Fernández, S Díaz-Castroverde, J Egido, A Gómez-Hernández, M Benito, N Beneit, C E Fernández-García, J L Martín-Ventura, L Perdomo, Ó Escribano, J B Michel, G García-Gómez, S Fernández, S Díaz-Castroverde, J Egido, A Gómez-Hernández, M Benito

Abstract

Background: Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) is a major contributor to the development of atherosclerotic process. In a previous work, we demonstrated that the insulin receptor isoform A (IRA) and its association with the insulin-like growth factor-I receptor (IGF-IR) confer a proliferative advantage to VSMCs. However, the role of IR and IGF-IR in VSMC migration remains poorly understood.

Methods: Wound healing assays were performed in VSMCs bearing IR (IRLoxP+/+ VSMCs), or not (IR-/- VSMCs), expressing IRA (IRA VSMCs) or expressing IRB (IRB VSMCs). To study the role of IR isoforms and IGF-IR in experimental atherosclerosis, we used ApoE-/- mice at 8, 12, 18 and 24 weeks of age. Finally, we analyzed the mRNA expression of total IR, IRB isoform, IGF-IR and IGFs by qRT-PCR in the medial layer of human aortas.

Results: IGF-I strongly induced migration of the four cell lines through IGF-IR. In contrast, insulin and IGF-II only caused a significant increase of IRA VSMC migration which might be favored by the formation of IRA/IGF-IR receptors. Additionally, a specific IGF-IR inhibitor, picropodophyllin, completely abolished insulin- and IGF-II-induced migration in IRB, but not in IRA VSMCs. A significant increase of IRA and IGF-IR, and VSMC migration were observed in fibrous plaques from 24-week-old ApoE-/- mice. Finally, we observed a marked increase of IGF-IR, IGF-I and IGF-II in media from fatty streaks as compared with both healthy aortas and fibrolipidic lesions, favoring the ability of medial VSMCs to migrate into the intima.

Conclusions: Our data suggest that overexpression of IGF-IR or IRA isoform, as homodimers or as part of IRA/IGF-IR hybrid receptors, confers a stronger migratory capability to VSMCs as might occur in early stages of atherosclerotic process.

Keywords: Atherosclerosis; Insulin receptor; Migration; Vascular smooth muscle cells.

Figures

Fig. 1
Fig. 1
Insulin induces migration in IRA VSMCs. a Analysis of basal migration of four VSMC lines at 6, 12 and 24 h. The experiments were performed by wound healing assays and the percentage of wound healing closure quantified (using TScratch program) at different time points. Experiments were performed 4–7 times. b Effect of insulin on wound healing closure in four VSMC lines at 6, 12 and 24 h. Photomicrographs (10x magnification) were selected the more representative. Experiments were performed at least 3 times. *p < 0.05 vs. each control; †p < 0.05 vs. IR−/− VSMCs; #p < 0.05, ##p < 0.005, ###p < 0.001 vs. IRB VSMCs
Fig. 2
Fig. 2
IGF-I strongly induces VSMC migration and IGF-II has a lesser effect on IRA VSMC migration. Effect of IGF-I (a) or IGF-II (b) on wound healing closure in four lines of VSMCs at 6, 12 and 24 h. Photomicrographs (10x magnification) were selected the more representative. Experiments were performed at least 3 times. *p < 0.05 vs. each control; †p < 0.05, ††p < 0.005 vs. IR−/− VSMCs; #p < 0.05, ##p < 0.005 vs. IRB VSMCs
Fig. 3
Fig. 3
IGF-IR contributes to basal VSMC migration. a Effect of PPP (IGF-IR inhibitor) at different doses on IGF-IR tyrosine phosphorylation of four VSMC lines. We performed the immunoprecipitation against IGF-IRβ followed by Western blot against p-tyrosine. b Effect of PPP on basal VSMC migration at 12 h by wound healing closure and the percentage of inhibition of VSMC migration induced by PPP. Experiments were performed 4–7 times. *p < 0.05, **p < 0.005, ***p < 0.001 vs. each control
Fig. 4
Fig. 4
Effect of IGF-IR inhibition on VSMC migration induced by insulin or IGFs. Quantification of PPP effect on VSMC migration stimulated with insulin (a), IGF-I (b) or IGF-II (c) at 12 h by wound healing closure. *p < 0.05 vs. each control; #p < 0.05, ##p < 0.005 vs. IRB VSMCs. d Formation of hybrid receptors (IRA/IGF-IR or IRB/IGF-IR) in IRLoxP+/+, IRA and IRB VSMCs stimulated with insulin, IGF-I or IGF-II. We performed the immunoprecipitation against IRβ followed by Western blot against IGF-IRβ. Experiments were performed at least 3 times. *p < 0.05, **p < 0.005, ***p < 0.001 vs. each control
Fig. 5
Fig. 5
IR and IGF-IR expression in aorta from an experimental model of atherosclerosis. a By qRT-PCR, we studied IRA, IRB and IGF-IR mRNA expression in aorta from ApoE−/− mice at 8, 12, 18 and 24 weeks of age and their respective controls. *p < 0.05 vs. each control. b Representative photomicrographs (10× magnification) and quantifications of OilRedO staining and immunohistochemistry of IR and IGF-IR in aortic roots from ApoE−/− at 8 and 24 weeks of age and their respective controls. *p < 0.05 vs. each control; ***p < 0.001 vs. each control. AE ApoE−/− mice, C control mice. C 8ws (n = 5); AE 8ws (n = 5); C12 ws (n = 5); AE12 ws (n = 8); C18 ws (n = 8); AE 18ws (n = 8); C 24ws (n = 8); AE 24ws (n = 8)
Fig. 6
Fig. 6
VSMCs migrated into the intima of atherosclerotic plaques express IR or IGF-IR. a Representative photomicrographs (10× magnification) and quantifications of immunofluorescence of α-SMA in aortic roots from ApoE−/− mice at 8 and 24 weeks of age and their respective controls. b Representative photomicrographs (20× magnification) of double immunofluorescence against IR or IGF-IR (green staining) and α-SMA (red staining) in aortic roots from ApoE−/− mice at 24 weeks of age. DAPI staining was performed to localize nuclei of cells presented in aortic roots (blue staining). White arrows indicate VSMCs in the intima of fibrous plaque from 24-week-old ApoE−/− mice. AE ApoE−/− mice, C control mice. C 8ws (n = 5); AE 8ws (n = 5); AE 18ws (n = 8); C 24ws (n = 8); AE 24ws (n = 8)
Fig. 7
Fig. 7
Proposed model of role of IR isoforms, IGF-IR and IR/IGF-IR hybrid receptors in VSMC migration. We propose that IGF-I mainly through IGF-IR, while insulin and IGF-II by binding IRA homodimers or IRA/IGF-IR hybrid receptors might favor VSMC migration and contribute to plaque growth in early states of atherosclerosis. ECs endothelial cells, VSMCs vascular smooth muscle cells

References

    1. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–325. doi: 10.1038/nature10146.
    1. Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res. 2016;118:692–702. doi: 10.1161/CIRCRESAHA.115.306361.
    1. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993;362:801–809. doi: 10.1038/362801a0.
    1. Bornfeldt KE, Raines EW, Nakano T, Graves LM, Krebs EG, Ross R. Insulin-like growth factor-I and platelet-derived growth factor-BB induce directed migration of human arterial smooth muscle cells via signaling pathways that are distinct from those of proliferation. J Clin Invest. 1994;93:1266–1274. doi: 10.1172/JCI117081.
    1. Bayes-Genis A, Conover CA, Schwartz RS. The insulin-like growth factor axis: a review of atherosclerosis and restenosis. Circ Res. 2000;86:125–130. doi: 10.1161/01.RES.86.2.125.
    1. Ebina Y, Edery M, Ellis L, Standring D, Beaudoin J, Roth RA, Rutter WJ. Expression of a functional human insulin receptor from a cloned cDNA in Chinese hamster ovary cells. Proc Natl Acad Sci USA. 1985;82:8014–8018. doi: 10.1073/pnas.82.23.8014.
    1. Ullrich A, Gray A, Tam AW, Yang-Feng T, Tsubokawa M, Collins C, Henzel W, Le Bon T, Kathuria S, Chen E, Jacobs S, Francke U, Ramachandran J, Fujita-Yamaguchi Y. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 1986;5:2503–2512.
    1. Malaguarnera R, Belfiore A. The insulin receptor: a new target for cancer therapy. Front Endocrinol (Lausanne). 2011;2:93.
    1. Moxham CP, Duronio V, Jacobs S. Insulin-like growth factor I receptor β-subunit heterogeneity. Evidence for hybrid tetramers composed of insulin-like growth factor I and insulin receptor heterodimers. J Biol Chem. 1989;264:13238–13244.
    1. Soos MA, Whittaker J, Lammers R, Ullrich A, Siddle K. Receptors for insulin and insulin-like growth factor-I can form hybrid dimers. Characterisation of hybrid receptors in transfected cells. Biochem J. 1990;270:383–390. doi: 10.1042/bj2700383.
    1. Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev. 2009;30:586–623. doi: 10.1210/er.2008-0047.
    1. Seino S, Bell GI. Alternative splicing of human insulin receptor messenger RNA. Biochem Biophys Res Commun. 1989;159:312–316. doi: 10.1016/0006-291X(89)92439-X.
    1. Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R, Costantino A, Goldfine ID, Belfiore A, Vigneri R. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol. 1999;19:3278–3288. doi: 10.1128/MCB.19.5.3278.
    1. Vogt B, Carrascosa JM, Ermel B, Ullrich A, Häring HU. The two isotypes of the human insulin receptor (HIR-A and HIR-B) follow different internalization kinetics. Biochem Biophys Res Commun. 1991;177:1013–1018. doi: 10.1016/0006-291X(91)90639-O.
    1. Sciacca L, Prisco M, Wu A, Belfiore A, Vigneri R, Baserga R. Signaling differences from the A and B isoforms of the insulin receptor (IR) in 32D cells in the presence or absence of IR substrate-1. Endocrinology. 2003;144:2650–2658. doi: 10.1210/en.2002-0136.
    1. Escribano O, Gómez-Hernández A, Díaz-Castroverde S, Nevado C, García G, Otero YF, Perdomo L, Beneit N, Benito M. Insulin receptor isoform A confers a higher proliferative capability to pancreatic beta cells enabling glucose availability and IGF-I signaling. Mol Cell Endocrinol. 2015;409:82–91. doi: 10.1016/j.mce.2015.03.008.
    1. Escribano O, Guillén C, Nevado C, Gómez-Hernández A, Kahn CR, Benito M. Beta-cell hyperplasia induced by hepatic insulin resistance: role of a liver-pancreas endocrine axis through insulin receptor A isoform. Diabetes. 2009;58:820–828. doi: 10.2337/db08-0551.
    1. Diaz-Castroverde S, Gómez-Hernández A, Fernández S, García-Gómez G, Di Scala M, González-Aseguinolaza G, Fernández-Millán E, González-Rodríguez Á, García-Bravo M, Chambon P, Álvarez C, Perdomo L, Beneit N, Escribano O, Benito M. Insulin receptor isoform A ameliorates long term glucose intolerance in diabetic mice. Dis Model Mech. 2016;9:1271–1281. doi: 10.1242/dmm.025288.
    1. Diaz-Castroverde S, Baos S, Luque M, Di Scala M, González-Aseguinolaza G, Gómez-Hernández A, Beneit N, Escribano O, Benito M. Prevalent role of the insulin receptor isoform A in the regulation of hepatic glycogen metabolism in hepatocytes and in mice. Diabetologia. 2016;59:2702–2710. doi: 10.1007/s00125-016-4088-z.
    1. Sciacca L, Costantino A, Pandini G, Mineo R, Frasca F, Scalia P, Sbraccia P, Goldfine ID, Vigneri R, Belfiore A. Insulin receptor activation by IGF-II in breast cancers: evidence for a new autocrine/paracrine mechanism. Oncogene. 1999;18:2471–2479. doi: 10.1038/sj.onc.1202600.
    1. Gómez-Hernández A, Escribano Ó, Perdomo L, Otero YF, García-Gómez G, Fernández S, Beneit N, Benito M. Implication of insulin receptor A isoform and IRA/IGF-IR hybrid receptors in the aortic vascular smooth muscle cell proliferation: role of TNF-α and IGF-II. Endocrinology. 2013;154:2352–2364. doi: 10.1210/en.2012-2161.
    1. Kuzuya M, Kanda S, Sasaki T, Tamaya-Mori N, Cheng XW, Itoh T, Itohara S, Iguchi A. Deficiency of gelatinase A suppresses smooth muscle cell invasion and development of experimental intimal hyperplasia. Circulation. 2003;108:1375–1381. doi: 10.1161/01.CIR.0000086463.15540.3C.
    1. Cho A, Reidy MA. Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury. Circ Res. 2002;91:845–851. doi: 10.1161/01.RES.0000040420.17366.2E.
    1. Johnson C, Galis ZS. Matrix metalloproteinase-2 and -9 differentially regulate smooth muscle cell migration and cell-mediated collagen organization. Arterioscler Thromb Vasc Biol. 2004;24:54–60. doi: 10.1161/01.ATV.0000100402.69997.C3.
    1. Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb. 1994;14:133–140. doi: 10.1161/01.ATV.14.1.133.
    1. Johnson JL. Emerging regulators of vascular smooth muscle cell function in the development and progression of atherosclerosis. Cardiovasc Res. 2014;103:452–460. doi: 10.1093/cvr/cvu171.
    1. Siddle K. Signaling by insulin and IGF receptor: supporting acts and new player. J Mol Endocrinol. 2011;47:R1–R10. doi: 10.1530/JME-11-0022.
    1. Bartolomé A, Guillén C, Benito M. Role of the TSC1-TSC2 complex in the integration of insulin and glucose signaling involved in pancreatic beta-cell proliferation. Endocrinology. 2010;151:3084–3094. doi: 10.1210/en.2010-0048.
    1. Sacco A, Morcavallo A, Pandini G, Vigneri R, Belfiore A. Differential signaling activation by insulin and insulin-like growth factors I and II upon binding to insulin receptor isoform A. Endocrinology. 2009;150:3594–3602. doi: 10.1210/en.2009-0377.
    1. Stout RW. Insulin as a mitogenic factor: role in the pathogenesis of cardiovascular disease. Am J Med. 1991;90:62S–65S. doi: 10.1016/0002-9343(91)90041-U.
    1. Nigro J, Osman N, Dart AM, Little PJ. Insulin resistance and atherosclerosis. Endocr Rev. 2006;27:242–259. doi: 10.1210/er.2005-0007.
    1. Faries PL, Rohan DI, Takahara H, Wyers MC, Contreras MA, Quist WC, King GL, Logerfo FW. Human vascular smooth muscle cells of diabetic origin exhibit increased proliferation, adhesion, and migration. J Vasc Surg. 2001;33:601–607. doi: 10.1067/mva.2001.111806.
    1. Yang M, Kahn AM. Insulin-inhibited and stimulated cultured vascular smooth muscle cell migration are related to divergent effects on protein phosphatase-2A and autonomous calcium/calmodulin-dependent protein kinase II. Atherosclerosis. 2008;196:227–233. doi: 10.1016/j.atherosclerosis.2007.04.050.
    1. Wang CC, Gurevich I, Draznin B. Insulin affects vascular smooth muscle cell phenotype and migration via distinct signaling pathways. Diabetes. 2003;52:2562–2569. doi: 10.2337/diabetes.52.10.2562.
    1. Abhijit S, Bhaskaran R, Narayanasamy A, Chakroborty A, Manickam N, Dixit M, Mohan V, Balasubramanyam M. Hyperinsulinemia-induced vascular smooth muscle cell (VSMC) migration and proliferation is mediated by converging mechanisms of mitochondrial dysfunction and oxidative stress. Mol Cell Biochem. 2013;373:95–105. doi: 10.1007/s11010-012-1478-5.
    1. Yu C, Wang Z, Han Y, Liu Y, Wang WE, Chen C, Wang H, Jose PA, Zeng C. Dopamine D4 receptors inhibit proliferation and migration of vascular smooth muscle cells induced by insulin via down-regulation of insulin receptor expression. Cardiovasc Diabetol. 2014;13:97. doi: 10.1186/1475-2840-13-97.
    1. Gockerman A, Prevette T, Jones JI, Clemmons DR. Insulin-like growth factor (IGF)-binding proteins inhibit the smooth muscle cell migration responses to IGF-I and IGF-II. Endocrinology. 1995;136:4168–4173.
    1. Duan C, Bauchat JR, Hsieh T. Phosphatidylinositol 3-kinase is required for insulin-like growth factor-I-induced vascular smooth muscle cell proliferation and migration. Circ Res. 2000;86:15–23. doi: 10.1161/01.RES.86.1.15.
    1. Girnita A, Girnita L, del Prete F, Bartolazzi A, Larsson O, Axelson M. Cyclolignans as inhibitors of the insulin-like growth factor-1 receptor and malignant cell growth. Cancer Res. 2004;64:236–242. doi: 10.1158/0008-5472.CAN-03-2522.
    1. Vasilcanu D, Girnita A, Girnita L, Vasilcanu R, Axelson M, Larsson O. The cyclolignan PPP induces activation loop-specific inhibition of tyrosine phosphorylation of the insulin-like growth factor-1 receptor. Link to the phosphatidyl inositol-3 kinase/Akt apoptotic pathway. Oncogene. 2004;23:7854–7862. doi: 10.1038/sj.onc.1208065.
    1. Frattali AL, Pessin JE. Relationship between alpha subunit ligand occupancy and beta subunit autophosphorylation in insulin/insulin-like growth factor-1 hybrid receptors. J Biol Chem. 1993;268:7393–7400.
    1. Chisalita SI, Arnqvist HJ. Expression and function of receptors for insulin-like growth factor-I and insulin in human coronary artery smooth muscle cells. Diabetologia. 2005;48:2155–2161. doi: 10.1007/s00125-005-1890-4.
    1. Johansson GS, Arnqvist HJ. Insulin and IGF-I action on insulin receptors, IGF-I receptors, and hybrid insulin/IGF-I receptors in vascular smooth muscle cells. Am J Physiol Endocrinol Metab. 2006;291:E1124–E1130. doi: 10.1152/ajpendo.00565.2005.
    1. Pandini G, Frasca F, Mineo R, Sciacca L, Vigneri R, Belfiore A. Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J Biol Chem. 2002;277:39684–39695. doi: 10.1074/jbc.M202766200.
    1. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. Circulation. 1995;92:1355–1374. doi: 10.1161/01.CIR.92.5.1355.
    1. Polanco JI, Albajar M, Pocoví M, Rodríguez Rey JC. Induction of insulin-like growth factor receptor (IGF IR) mRNA levels by low density lipoproteins. Biochem Biophys Res Commun. 1996;226:917–922. doi: 10.1006/bbrc.1996.1450.
    1. Jia G, Cheng G, Soundararajan K, Agrawal DK. Insulin-like growth factor-I receptors in atherosclerotic plaques of symptomatic and asymptomatic patients with carotid stenosis: effect of IL-12 and IFN-gamma. Am J Physiol Heart Circ Physiol. 2007;292:H1051–H1057. doi: 10.1152/ajpheart.00801.2006.
    1. von der Thüsen JH, Borensztajn KS, Moimas S, van Heiningen S, Teeling P, van Berkel TJ, Biessen EA. IGF-1 has plaque-stabilizing effects in atherosclerosis by altering vascular smooth muscle cell phenotype. Am J Pathol. 2011;178:924–934. doi: 10.1016/j.ajpath.2010.10.007.
    1. Okura Y, Brink M, Zahid AA, Anwar A, Delafontaine P. Decreased expression of insulin-like growth factor-1 and apoptosis of vascular smooth muscle cells in human atherosclerotic plaque. J Mol Cell Cardiol. 2001;33:1777–1789. doi: 10.1006/jmcc.2001.1441.
    1. Higashi Y, Sukhanov S, Shai SY, Danchuk S, Tang R, Snarski P, Li Z, Lobelle-Rich P, Wang M, Wang D, Yu H, Korthuis R, Delafontaine P. Insulin-like growth factor 1 receptor deficiency in macrophages accelerates atherosclerosis and induces an unstable plaque phenotype in Apolipoprotein E deficient mice. Circulation. 2016;133:2263–2278. doi: 10.1161/CIRCULATIONAHA.116.021805.
    1. Zaina S, Pettersson L, Ahrén B, Brånén L, Hassan AB, Lindholm M, Mattsson R, Thyberg J, Nilsson J. Insulin-like growth factor II plays a central role in atherosclerosis in a mouse model. J Biol Chem. 2002;277:4505–4511. doi: 10.1074/jbc.M108061200.

Source: PubMed

3
Prenumerera