Uric acid is associated with adiposity factors, especially with fat mass reduction during weight loss in obese children and adolescents

Yang Niu, Xue-Lin Zhao, Hui-Juan Ruan, Xiao-Meng Mao, Qing-Ya Tang, Yang Niu, Xue-Lin Zhao, Hui-Juan Ruan, Xiao-Meng Mao, Qing-Ya Tang

Abstract

Background: Current adult studies suggest that uric acid (UA) is associated with body fat, but the relationship in obese children is unclear. Thus, we aim to evaluate the association between uric acid and body composition of obese children.

Methods: A total of 79 obese children were included in this study, and 52 children (34 boys and 18 girls) underwent a 6-week weight loss camp, including 34 boys and 18 girls. Six-week weight-loss interventions were performed on all participants through aerobic exercise and appropriate dietary control. Laboratory tests and body composition were collected before and after the intervention.

Results: Before the intervention, correlation analysis demonstrated that uric acid was positively correlated with height, weight, body mass index (BMI), waist circumference, hip circumference, fat mass (FM), and free fat mass (FFM) with adjusting for age and gender (P < 0.05). After 6 weeks of intervention, the participants gained 3.12 ± 0.85 cm in height, body fat percentage decreased by 7.23 ± 1.97%, and lost 10.30 ± 2.83 kg in weight. Univariate and multivariate analysis indicated that uric acid at baseline was associated with FM reduction during weight loss (P < 0.05).

Conclusions: This study is the first report that uric acid is associated with BMI and FM, and may play an important role in the reduction of FM during weight loss in obese children and adolescents. The interaction between UA and adiposity factors and its underlying mechanisms need to be further explored.

Trial registration: This study was registered in Clinical Trials.gov (NCT03490448) and approved by the Ethics Committee of Xinhua Hospital, Shanghai Jiao Tong University School of Medicine.

Keywords: Body composition; Children; Fat mass; Obese; Uric acid.

Conflict of interest statement

Competing interestsThe all authors declare that they have no competing interests.

© The Author(s) 2020.

References

    1. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:766–781. doi: 10.1016/S0140-6736(14)60460-8.
    1. World Health Organization. World Health Statistics 2015. World Health Organization. 2015.
    1. Muntner P, Srinivasan S, Menke A, et al. Impact of childhood metabolic syndrome components on the risk of elevlated uric acid in adulthood: The Bogalusa Heart Study. Am J Med Sci. 2008;335(5):332–337. doi: 10.1097/MAJ.0b013e31815574a4.
    1. Maliavskaia SI, Lebedev AV, Temovskaia VA. Chronic asymptomatic hyperuricemia as a marker of atherogenic risk in children. Kardiologiia. 2007;47(3):62–66.
    1. Alper AB, Jr, Chen W, Yau L, et al. Childhood uric acid predicts adult blood pressure: The Bogalusa Heart Study. Hypertension. 2005;45(1):34–38. doi: 10.1161/.
    1. Zhang ZQ, Deng J, He LP, Ling WH, Su YX, Chen YM. Comparison of various anthropometric and body fat indices in identifying cardiometabolic disturbances in Chinese men and women. PLoS ONE. 2013;8:e70893. doi: 10.1371/journal.pone.0070893.
    1. Palmer TM, Nordestgaard BG, Benn M, Tybjaerg-Hansen A, Davey Smith G, Lawlor DA, et al. Association of plasma uric acid with ischaemic heart disease and blood pressure: mendelian randomisation analysis of two large cohorts. BMJ. 2013;347:f4262. doi: 10.1136/bmj.f4262.
    1. Ferrara LA, Wang H, Umans JG, et al. Does serum uric acid predict incident metabolic syndrome in a population with high prevalence of obesity? Nutr Metab Cardiovasc Dis. 2014;24(12):1360–1364. doi: 10.1016/j.numecd.2014.06.002.
    1. Yu TY, Jee JH, Bae JC, et al. Serum uric acid: a strong and independent predictor of metabolic syndrome after adjusting for body composition. Metabolism. 2016;65:432–440. doi: 10.1016/j.metabol.2015.11.003.
    1. Cole TJ, Bellizzi MC, Flegal KM, et al. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320:1240–1243. doi: 10.1136/bmj.320.7244.1240.
    1. Wilcox WD. Abnormal serum uric acid levels in children. J. Pediatr. 1996;128(6):731–741. doi: 10.1016/S0022-3476(96)70322-0.
    1. Kubota M, Nagai A, Tang L, Tokuda M. Investigation on hyperuricemia in children with obesity or various pediatric disorders. Nucleosides Nucleotides Nucleic Acids. 2011;30(12):1051–1059. doi: 10.1080/15257770.2011.597370.
    1. Kubota M. Hyperuricemia in children and adolescents: present knowledge and future directions. J Nutr Metab. 2019;2019:3480718. doi: 10.1155/2019/3480718.
    1. Lopes AL, Ap TF, De Souza Campos LG, et al. The effects of diet- and diet plus exercise-induced weight loss on basal metabolic rate and acylated ghrelin in grade 1 obese subjects. Diabetes Metab Syndr Obes. 2013;6:469–475. doi: 10.2147/DMSO.S53501.
    1. Ebenegger V, Marques-Vidal P, Kriemler S, et al. Differences in aerobic fitness and lifestyle characteristics in pre-schoolers according to their weight status and sports club participation. Obes Facts. 2012;5(1):23–33. doi: 10.1159/000336603.
    1. Winkler S, HebestreitA AW. Physical activity and obesity. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2012;55(1):24–34. doi: 10.1007/s00103-011-1386-y.
    1. Goodyear LJ, Kahn BB. Exercise, glucose transport, and insulin sensitivity. Annu Rev Med. 1998;49:235–261. doi: 10.1146/annurev.med.49.1.235.
    1. Seip RL, Angelopoulos TJ, Semenkoveih CF. Exercises induce human lipoprotein lipase gene expression in skeletal muscle but not adipose tissue. Am J Physiol. 1995;268:E229–E236.
    1. Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: The National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 2011;63:3136–3141. doi: 10.1002/art.30520.
    1. You L, Liu A, Wuyun G, Wu H, Wang P. Prevalence of hyperuricemia and the relationship between serum uric acid and metabolic syndrome in the Asian Mongolian area. J Atheroscler Thromb. 2014;21:355–365. doi: 10.5551/jat.20529.
    1. Nan H, Qiao Q, Dong Y, Gao W, Tang B, Qian R, Tuomilehto J. The prevalence of hyperuricemia in a population of the coastal city of Qingdao, China. J Rheumatol. 2006;33:1346–1350.
    1. Meneses-Leon J, Denova-Gutiérrez E, Castañón-Robles S, Granados-García V, Talavera JO, Rivera-Paredez B, Huitrón-Bravo GG, et al. Sweetened beverage consumption and the risk of hyperuricemia in Mexican adults: a cross-sectional study. BMC Public Health. 2014;14:445. doi: 10.1186/1471-2458-14-445.
    1. Lakshman R, Elks CE, Ong KK, et al. Childhood obesity. Circulation. 2012;126:1770–1779. doi: 10.1161/CIRCULATIONAHA.111.047738.
    1. Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008;359:1811–1821. doi: 10.1056/NEJMra0800885.
    1. Ford ES, Li C, Cook S, Choi HK. Serum concentrations of uric acid and the metabolic syndrome among US children and adolescents. Circulation. 2007;115:2526–2532. doi: 10.1161/CIRCULATIONAHA.106.657627.
    1. Matsuura F, Yamashita S, Nakamura T, Nishida M, Nozaki S, Funahashi T, Matsuzawa Y. Effect of visceral fat accumulation on uric acid metabolism in male obese subjects: Visceral fat obesity is linked more closely to overproduction of uric acid than subcutaneous fat obesity. Metabolism. 1998;47:929–933. doi: 10.1016/S0026-0495(98)90346-8.
    1. Bedir A, Topbas M, Tanyeri F, et al. Leptin might be a regulator of serum uric acid concentration in human. Jpn Heart J. 2003;44(4):527–536. doi: 10.1536/jhj.44.527.

Source: PubMed

3
Prenumerera