Gut Microbial Changes, Interactions, and Their Implications on Human Lifecycle: An Ageing Perspective

Ravichandra Vemuri, Rohit Gundamaraju, Madhur D Shastri, Shakti Dhar Shukla, Krishnakumar Kalpurath, Madeleine Ball, Stephen Tristram, Esaki M Shankar, Kiran Ahuja, Rajaraman Eri, Ravichandra Vemuri, Rohit Gundamaraju, Madhur D Shastri, Shakti Dhar Shukla, Krishnakumar Kalpurath, Madeleine Ball, Stephen Tristram, Esaki M Shankar, Kiran Ahuja, Rajaraman Eri

Abstract

Gut microbiota is established during birth and evolves with age, mostly maintaining the commensal relationship with the host. A growing body of clinical evidence suggests an intricate relationship between the gut microbiota and the immune system. With ageing, the gut microbiota develops significant imbalances in the major phyla such as the anaerobic Firmicutes and Bacteroidetes as well as a diverse range of facultative organisms, resulting in impaired immune responses. Antimicrobial therapy is commonly used for the treatment of infections; however, this may also result in the loss of normal gut flora. Advanced age, antibiotic use, underlying diseases, infections, hormonal differences, circadian rhythm, and malnutrition, either alone or in combination, contribute to the problem. This nonbeneficial gastrointestinal modulation may be reversed by judicious and controlled use of antibiotics and the appropriate use of prebiotics and probiotics. In certain persistent, recurrent settings, the option of faecal microbiota transplantation can be explored. The aim of the current review is to focus on the establishment and alteration of gut microbiota, with ageing. The review also discusses the potential role of gut microbiota in regulating the immune system, together with its function in healthy and diseased state.

Figures

Figure 1
Figure 1
Overview of development of microbiota. The gastrointestinal tract (GI) is most sterile during the in utero stage. The first colonization happens based on mode of delivery either C-section or natural (vaginal delivery). Corynebacterium sp. is thought to be early colonizers in C-section and Lactobacillus sp. in the vaginal delivery. As the time progress the commensal bacterial community grows and is influenced by the solid food intake. During the initial stages of microbiota establishment the TLR receptor actions are minimal allowing growth of commensals. Eventually the immune system also grows by demarking the commensals and pathogens. Bacteroidetes domination begins after two years of birth. The relative stability is attained at the adulthood with Bacteroidetes and Firmicutes dominating. The alteration happens with use of antibiotics, obesity, GI orders, and diet. During elderly the relative stability declines, commensal community reduces, and pathogenic species like Clostridium increases. Malnutrition, alcohol abuse, decline in metabolism, frequent hospitalization, nosocomial infections (Clostridium difficile), and other pathogenic infections leading to Polypharmacy and ultimately to various inflammatory diseases.
Figure 2
Figure 2
Interplay between immune system and gut microbiota in homeostasis, tolerance, and inflammation. (a) Both commensals and opportunists compete for the metabolites (SCFA) and various nutrients. The intestinal epithelial cells (IEC) play a role in steady state environment by releasing interleukins IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) factors in the presence of SCFA, PSA (Bact., fragilis), lipopolysaccharide (LPS), and AMPs (defensins, cathelicidins, and C-type lectins). IL-25, IL-33, and various growth related factors help in the transformation of progenitor basophils to basophils, activation of monocytes, macrophages, and mast cells functioning. The bacteriocins released by segmented filamentous bacteria (SFB) also influence the release of TSLP. The microfolding (M) cells upon sensing the presence of the microbes act as antigen presenting cell (APC) phagocytic activity by engulfing and presenting it to mucosal dendritic cells (DCs). In turn DCs are endowed with the ability to produce cytokines and other products such as IL-6 and IL-1β, tumor growth factor (TGF-β), retinoic acid (RA), and vitamin A. DCs form a major histocompatible complex (MHC) with the T cell receptors (TCR). In the presence of TGF-β and RA, the naïve T cells (CD4+ cells) transform into regulatory T cells (Treg). Simultaneously during interaction and competition of commensals and pathogens for nutrients, macrophages after recognition microbes released proinflammatory cytokine such as IL-10, which in turn helps with expansion of Treg cells which are already released during homeostasis and inflammation. Also with the help of DCs, macrophages release certain B cell activating factors which increase the production of secretory immunoglobulin A (SIgA) to maintain tolerance and steady state. (b) ((1) & (2)): in the elderly, there are declined physiological functioning and dysbiosis (reduction in commensal bacteria), resulting in an increase in pathogens. (3) The production of IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) by IEC reduces. (4) There is decline in M cell/APC activity to present PSA or microbe to DCs (activation of inflammatory pathway). Moreover lack of PSA stimulation reduces the IL-12 levels and releases T helper 2 cells. Decline in DCs not forming MHC with TCR reduces the population of active T cells such as Treg cells. Activation of B cells to plasma secretory cells and release of SIgA decreases. (5) The activation and function of macrophages (low levels of IL-10) are reduced. (6) The steady state or the tolerance is reduced. (7) Macrophages (inflammatory) are activated in the presence of pathogens and release proinflammatory cytokines (IL-1β, IL-6, and TNF-α) which leads to production of reactive oxygen species (ROS) and causes oxidative stress. Altogether with reduced levels of Treg and T helper cells and SIgA increase the pathogen invasion leading to release of proinflammatory cytokines and reduced anti-inflammatory cytokines increases inflammation, causing various GI disorders.

References

    1. Sender R., Fuchs S., Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164(3):337–340. doi: 10.1016/j.cell.2016.01.013.
    1. Clemente J. C., Ursell L. K., Parfrey L. W., Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258–1270. doi: 10.1016/j.cell.2012.01.035.
    1. Kohl H. W., III, Craig C. L., Lambert E. V., et al. The pandemic of physical inactivity: global action for public health. The Lancet. 2012;380(9838):294–305. doi: 10.1016/S0140-6736(12)60898-8.
    1. Cherubini A., Corsonello A., Lattanzio F. Underprescription of beneficial medicines in older people. Drugs & Aging. 2012;29(6):463–475. doi: 10.2165/11631750-000000000-00000.
    1. Li H., Qi Y., Jasper H. Preventing age-related decline of gut compartmentalization limits microbiota dysbiosis and extends lifespan. Cell Host & Microbe. 2016;19(2):240–253. doi: 10.1016/j.chom.2016.01.008.
    1. Biagi E., Nylund L., Candela M., et al. Through ageing, and beyond: Gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE. 2010;5, Articale ID e10667 doi: 10.1371/journal.pone.0010667.
    1. Quinlan N., O'Neill D. ‘Older' or ‘elderly'—Are medical journals sensitive to the wishes of older people? Journal of the American Geriatrics Society. 2008;56(10):1983–1984. doi: 10.1111/j.1532-5415.2008.01913.x.
    1. Kleessen B., Sykura B., Zunft H.-J., Blaut M. Effects of inulin and lactose on fecal microflora, microbial activity, and bowel habit in elderly constipated persons. American Journal of Clinical Nutrition. 1997;65(5):1397–1402. doi: 10.1093/ajcn/65.5.1397.
    1. Franceschi C. Inflammaging as a major characteristic of old people: can it be prevented or cured? Nutrition Reviews. 2007;65(3):S173–S176. doi: 10.1111/j.1753-4887.2007.tb00358.x.
    1. Ostan R., Bucci L., Capri M., et al. Immunosenescence and immunogenetics of human longevity. Neuroimmunomodulation. 2008;15(4-6):224–240. doi: 10.1159/000156466.
    1. Magrone T., Jirillo E. The interaction between gut microbiota and age-related changes in immune function and inflammation. Immunity & Ageing. 2013;10(1, article 31) doi: 10.1186/1742-4933-10-31.
    1. Nagpal R., Tsuji H., Takahashi T., et al. Sensitive quantitative analysis of the meconium bacterial microbiota in healthy term infants born vaginally or by cesarean section. Frontiers in Microbiology. 2016;7, article no. 1997 doi: 10.3389/fmicb.2016.01997.
    1. Benno Y., Endo K., Mizutani T., Namba Y., Komori T., Mitsuoka T. Comparison of fecal microflora of elderly persons in rural and urban areas of Japan. Applied and Environmental Microbiology. 1989;55(5):1100–1105.
    1. Hayashi H., Sakamoto M., Benno Y. Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiology and Immunology. 2002;46(8):535–548. doi: 10.1111/j.1348-0421.2002.tb02731.x.
    1. Hayashi H., Takahashi R., Nishi T., Sakamoto M., Benno Y. Molecular analysis of jejunal, ileal, caecal and rectosigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. Journal of Medical Microbiology. 2005;54(11):1093–1101. doi: 10.1099/jmm.0.45935-0.
    1. Mueller S., Saunier K., Hanisch C., et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: A cross-sectional study. Applied and Environmental Microbiology. 2006;72(2):1027–1033. doi: 10.1128/AEM.72.2.1027-1033.2006.
    1. Collado M. C., Derrien M., Isolauri E., De Vos W. M., Salminen S. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Applied and Environmental Microbiology. 2007;73(23):7767–7770. doi: 10.1128/AEM.01477-07.
    1. Mariat D., Firmesse O., Levenez F., Guimarăes V. D., et al. The firmicutes/bacteroidetes ratio of the human microbiota changes with age. BMC Microbiology. 2009;9, article 123(1) doi: 10.1186/1471-2180-9-123.
    1. Fukushima Y., Miyaguchi S., Yamano T., et al. Improvement of nutritional status and incidence of infection in hospitalised, enterally fed elderly by feeding of fermented milk containing probiotic Lactobacillus johnsonii La1 (NCC533) British Journal of Nutrition. 2007;98(5):969–977. doi: 10.1017/S0007114507764723.
    1. Ouwehand A. C., Bergsma N., Parhiala R., et al. Bifidobacterium microbiota and parameters of immune function in elderly subjects. FEMS Immunology & Medical Microbiology. 2008;53(1):18–25. doi: 10.1111/j.1574-695X.2008.00392.x.
    1. Akatsu H., Iwabuchi N., Xiao J.-Z., et al. Clinical effects of probiotic bifidobacterium longum BB536 on immune function and intestinal microbiota in elderly patients receiving enteral tube feeding. Journal of Parenteral and Enteral Nutrition. 2013;37(5):631–640. doi: 10.1177/0148607112467819.
    1. Nyangale E. P., Farmer S., Cash H. A., Keller D., Chernoff D., Gibson G. R. Bacillus coagulans GBI-30, 6086 modulates Faecalibacterium prausnitzii in older men and women. Journal of Nutrition. 2015;145(7):1446–1452. doi: 10.3945/jn.114.199802.
    1. Palmer C., Bik E. M., DiGiulio D. B., Relman D. A., Brown P. O. Development of the human infant intestinal microbiota. PLoS Biology. 2007;5(7) doi: 10.1371/journal.pbio.0050177.
    1. Adlerberth I., Wold A. E. Establishment of the gut microbiota in Western infants. Acta Paediatrica. 2009;98(2):229–238. doi: 10.1111/j.1651-2227.2008.01060.x.
    1. Dominguez-Bello M. G., Costello E. K., Contreras M., et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Acadamy of Sciences of the United States of America. 2010;107(26):11971–11975. doi: 10.1073/pnas.1002601107.
    1. Arumugam M., Raes J., Pelletier E., et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–180. doi: 10.1038/nature09944.
    1. Favier C. F., Vaughan E. E., de Vos W. M., Akkermans A. D. L. Molecular monitoring of succession of bacterial communities in human neonates. Applied and Environmental Microbiology. 2002;68(1):219–226. doi: 10.1128/AEM.68.1.219-226.2002.
    1. Gill S. R., Pop M., DeBoy R. T., et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312(5778):1355–1359. doi: 10.1126/science.1124234.
    1. Kurokawa K., Itoh T., Kuwahara T., et al. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Research. 2007;14(4):169–181. doi: 10.1093/dnares/dsm018.
    1. Lakshminarayanan B., Stanton C., O'Toole P. W., Ross R. P. Compositional dynamics of the human intestinal microbiota with aging: implications for health. The Journal of Nutrition, Health & Aging. 2014;18(9):773–786. doi: 10.1007/s12603-014-0513-5.
    1. O'Hara A. M., Shanahan F. The gut flora as a forgotten organ. EMBO Reports. 2006;7(7):688–693. doi: 10.1038/sj.embor.7400731.
    1. Chow J., Lee S. M., Shen Y., Khosravi A., Mazmanian S. K. Host-bacterial symbiosis in health and disease. Advances in Immunology. 2010;107:243–274. doi: 10.1016/B978-0-12-381300-8.00008-3.
    1. Huurre A., Kalliomäki M., Rautava S., Rinne M., Salminen S., Isolauri E. Mode of delivery - Effects on gut microbiota and humoral immunity. Neonatology. 2008;93(4):236–240. doi: 10.1159/000111102.
    1. Peterson D. A., McNulty N. P., Guruge J. L., Gordon J. I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host & Microbe. 2007;2(5):328–339. doi: 10.1016/j.chom.2007.09.013.
    1. Planer J. D., Peng Y., Kau A. L., et al. Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature. 2016;534(7606):263–266. doi: 10.1038/nature17940.
    1. Saraswati S., Sitaraman R. Aging and the human gut microbiota - from correlation to causality. Frontiers in Microbiology. 2015;5 doi: 10.3389/fmicb.2014.00764.
    1. Wang Q., Garrity G. M., Tiedje J. M., Cole J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology. 2007;73(16):5261–5267. doi: 10.1128/AEM.00062-07.
    1. Breitbart M., Haynes M., Kelley S., et al. Viral diversity and dynamics in an infant gut. Research in Microbiology. 2008;159(5):367–373. doi: 10.1016/j.resmic.2008.04.006.
    1. Virgin H. W., Wherry E. J., Ahmed R. Redefining chronic viral infection. Cell. 2009;138(1):30–50. doi: 10.1016/j.cell.2009.06.036.
    1. Lynch S. V., Pedersen O. The human intestinal microbiome in health and disease. The New England Journal of Medicine. 2016;375(24):2369–2379. doi: 10.1056/NEJMra1600266.
    1. Imahori K. How i understand aging. Nutrition Reviews. 1992;50(12):351–352. doi: 10.1111/j.1753-4887.1992.tb02477.x.
    1. Singh S., Bajorek B. Defining ‘elderly’ in clinical practice guidelines for pharmacotherapy. Pharmacy Practice. 2014;12(4, article no. 489)
    1. WHO. Definition of an older orelderly person. World Health Organisation, Geneva, Switzerland, 2010, .
    1. Soenen S., Rayner C. K., Horowitz M., Jones K. L. Gastric emptying in the elderly. Clinics in Geriatric Medicine. 2015;31(3):339–353. doi: 10.1016/j.cger.2015.04.003.
    1. Claesson M. J., Cusack S., O'Sullivan O., et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Acadamy of Sciences of the United States of America. 2011;108(1):4586–4591. doi: 10.1073/pnas.1000097107.
    1. Van Tongeren S. P., Slaets J. P. J., Harmsen H. J. M., Welling G. W. Fecal microbiota composition and frailty. Applied and Environmental Microbiology. 2005;71(10):6438–6442. doi: 10.1128/AEM.71.10.6438-6442.2005.
    1. Bartosch S., Fite A., Macfarlane G. T., McMurdo M. E. T. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Applied and Environmental Microbiology. 2004;70(6):3575–3581. doi: 10.1128/aem.70.6.3575-3581.2004.
    1. Zwielehner J., Liszt K., Handschur M., Lassl C., Lapin A., Haslberger A. G. Combined PCR-DGGE fingerprinting and quantitative-PCR indicates shifts in fecal population sizes and diversity of Bacteroides, bifidobacteria and Clostridium cluster IV in institutionalized elderly. Experimental Gerontology. 2009;44(6-7):440–446. doi: 10.1016/j.exger.2009.04.002.
    1. Dominianni C., Sinha R., Goedert J. J., et al. Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLoS ONE. 2015;10(4) doi: 10.1371/journal.pone.0124599.e0124599
    1. Haro C., Rangel-Zúñiga O. A., Alcalá-Díaz J. F., et al. Intestinal microbiota is influenced by gender and body mass index. PLoS ONE. 2016;11, article e0154090(5) doi: 10.1371/journal.pone.0154090.
    1. Ley R. E., Bäckhed F., Turnbaugh P., Lozupone C. A., Knight R. D., Gordon J. I. Obesity alters gut microbial ecology. Proceedings of the National Acadamy of Sciences of the United States of America. 2005;102(31):11070–11075. doi: 10.1073/pnas.0504978102.
    1. Cani P. D., Bibiloni R., Knauf C., et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–1481. doi: 10.2337/db07-1403.
    1. Le Chatelier E., Nielsen T., Qin J., Prifti E., Hildebrand F., et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–546. doi: 10.1038/nature12506.
    1. Ussar S., Griffin N. W., Bezy O., et al. Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metabolism. 2015;22(3):516–530.
    1. Burcelin R. Gut microbiota and immune crosstalk in metabolic disease. Molecular Metabolism. 2016;5(9):771–781. doi: 10.1016/j.molmet.2016.05.016.
    1. Van Cauter E., Polonsky K. S., Scheen A. J. Roles of circadian rhythmicity and sleep in human glucose regulation. Endocrine Reviews. 1997;18(5):716–738. doi: 10.1210/er.18.5.716. doi: 10.1210/edrv.18.5.0317.
    1. Bass J., Turek F. W. Sleepless in America: A pathway to obesity and the metabolic syndrome? JAMA Internal Medicine. 2005;165(1):15–16. doi: 10.1001/archinte.165.1.15.
    1. Dibner C., Schibler U., Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annual Review of Physiology. 2010;72:517–549. doi: 10.1146/annurev-physiol-021909-135821.
    1. Huang W., Ramsey K. M., Marcheva B., Bass J. Circadian rhythms, sleep, and metabolism. The Journal of Clinical Investigation. 2011;121(6):2133–2141. doi: 10.1172/JCI46043.
    1. Kohsaka A., Laposky A. D., Ramsey K. M., et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metabolism. 2007;6(5):414–421. doi: 10.1016/j.cmet.2007.09.006.
    1. Leone V., Gibbons S. M., Martinez K., et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host & Microbe. 2015;17(5):681–689.
    1. Turnbaugh P. J., Ley R. E., Mahowald M. A., Magrini V., Mardis E. R., Gordon J. I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–1031. doi: 10.1038/nature05414.
    1. Burcelin R., Serino M., Chabo C., et al. Metagenome and metabolism: The tissue microbiota hypothesis. Diabetes, Obesity and Metabolism. 2013;15(s3):61–70. doi: 10.1111/dom.12157.
    1. Weiner H. L., da Cunha A. P., Quintana F., Wu H. Oral tolerance. Immunological Reviews. 2011;241(1):241–259. doi: 10.1111/j.1600-065X.2011.01017.x.
    1. Magrone T., Jirillo E. The interplay between the gut immune system and microbiota in health and disease: nutraceutical intervention for restoring intestinal homeostasis. Current Pharmaceutical Design. 2013;19(7):1329–1342.
    1. Johansson M. E. V., Phillipson M., Petersson J., Velcich A., Holm L., Hansson G. C. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proceedings of the National Acadamy of Sciences of the United States of America. 2008;105(39):15064–15069. doi: 10.1073/pnas.0803124105.
    1. Randall-Demllo S., Chieppa M., Eri R. Intestinal epithelium and autophagy: Partners in gut homeostasis. Frontiers in Immunology. 2013;4 doi: 10.3389/fimmu.2013.00301.
    1. Nair M. G., Guild K. J., Du Y., et al. Goblet cell-derived resistin-like molecule β augments CD4+ T cell production of IFN-γ and infection-induced intestinal inflammation. The Journal of Immunology. 2008;181(7):4709–4715. doi: 10.4049/jimmunol.181.7.4709.
    1. Bevins C. L., Salzman N. H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nature Reviews Microbiology. 2011;9(5):356–368. doi: 10.1038/nrmicro2546.
    1. Williams A., Flavell R. A., Eisenbarth S. C. The role of NOD-like receptors in shaping adaptive immunity. Current Opinion in Immunology. 2010;22(1):34–40. doi: 10.1016/j.coi.2010.01.004.
    1. Kanai T., Mikami Y., Sujino T., Hisamatsu T., Hibi T. RORγt-dependent IL-17A-producing cells in the pathogenesis of intestinal inflammation. Mucosal Immunology. 2012;5(3):240–247. doi: 10.1038/mi.2012.6.
    1. DiCarlo A. L., Fuldner R., Kaminski J., Hodes R. Aging in the context of immunological architecture, function and disease outcomes. Trends in Immunology. 2009;30(7):293–294. doi: 10.1016/j.it.2009.05.003.
    1. Hooper L. V., MacPherson A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nature Reviews Immunology. 2010;10(3):159–169. doi: 10.1038/nri2710.
    1. Mantis N. J., Rol N., Corthésy B. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunology. 2011;4(6):603–611. doi: 10.1038/mi.2011.41.
    1. Macfarlane S., Cleary S., Bahrami B., Reynolds N., Macfarlane G. T. Synbiotic consumption changes the metabolism and composition of the gut microbiota in older people and modifies inflammatory processes: A randomised, double-blind, placebo-controlled crossover study. Alimentary Pharmacology & Therapeutics. 2013;38(7):804–816. doi: 10.1111/apt.12453.
    1. Wong C. P., Magnusson K. R., Ho E. Increased inflammatory response in aged mice is associated with age-related zinc deficiency and zinc transporter dysregulation. The Journal of Nutritional Biochemistry. 2013;24(1):353–359. doi: 10.1016/j.jnutbio.2012.07.005.
    1. Maynard C. L., Weaver C. T. Intestinal effector T cells in health and disease. Immunity. 2009;31(3):389–400. doi: 10.1016/j.immuni.2009.08.012.
    1. Round J. L., Mazmanian S. K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proceedings of the National Acadamy of Sciences of the United States of America. 2010;107(27):12204–12209. doi: 10.1073/pnas.0909122107.
    1. Stefka A. T., Feehley T., Tripathi P., Qiu J., et al. Commensal bacteria protect against food allergen sensitization. Proceedings of the National Acadamy of Sciences of the United States of America. 2014;111(36):13145–13150. doi: 10.1073/pnas.1412008111.
    1. Feng T., Wang L., Schoeb T. R., Elson C. O., Cong Y. Microbiota innate stimulation is a prerequisite for T cell spontaneous proliferation and induction of experimental colitis. Journal of Experimental Medicine. 2010;207(6):1321–1332. doi: 10.1084/jem.2009225320100618c.20092253
    1. De Vuyst L., Leroy F. Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifdobacterial competitiveness, butyrate production, and gas production. International Journal of Food Microbiology. 2011;149(1):73–80. doi: 10.1016/j.ijfoodmicro.2011.03.003.
    1. Schiffrin E. J., Morley J. E., Donnet-Hughes A., Guigoz Y. The inflammatory status of the elderly: The intestinal contribution. Molecular Mechanisms of Mutagenesis. 2010;690(1-2):50–56. doi: 10.1016/j.mrfmmm.2009.07.011.
    1. Manichanh C., Borruel N., Casellas F., Guarner F. The gut microbiota in IBD. Nature Reviews Gastroenterology & Hepatology. 2012;9(10):599–608. doi: 10.1038/nrgastro.2012.152.
    1. Guigoz Y., Doré J., Schiffrin E. J. The inflammatory status of old age can be nurtured from the intestinal environment. Current Opinion in Clinical Nutrition & Metabolic Care. 2008;11(1):13–20. doi: 10.1097/MCO.0b013e3282f2bfdf.
    1. Marttila S., Jylhävä J., Nevalainen T., et al. Transcriptional analysis reveals gender-specific changes in the aging of the human immune system. PLoS ONE. 2013;8(6) doi: 10.1371/journal.pone.0066229.e66229
    1. Hirokawa K., Utsuyama M., Hayashi Y., Kitagawa M., Makinodan T., Fulop T. Slower immune system aging in women versus men in the Japanese population. Immunity & Ageing. 2013;10(1):p. 19. doi: 10.1186/1742-4933-10-19.
    1. Fransen F., van Beek A. A., Borghuis T., et al. The impact of gut microbiota on gender-specific differences in immunity. Frontiers in Immunology. 2017;8, article no. 754 doi: 10.3389/fimmu.2017.00754.
    1. Klein S. L., Flanagan K. L. Sex differences in immune responses. Nature Reviews Immunology. 2016;16(10):626–638. doi: 10.1038/nri.2016.90.
    1. Lefevre M., Racedo S. M., Ripert G., et al. Probiotic strain Bacillus subtilis CU1 stimulates immune system of elderly during common infectious disease period: A randomized, double-blind placebo-controlled study. Immunity & Ageing. 2015;12(1, article no. 24) doi: 10.1186/s12979-015-0051-y.
    1. Dong H., Rowland I., Thomas L. V., Yaqoob P. Immunomodulatory effects of a probiotic drink containing Lactobacillus casei Shirota in healthy older volunteers. European Journal of Nutrition. 2013;52(8):1853–1863. doi: 10.1007/s00394-012-0487-1.
    1. Carasi P., Racedo S. M., Jacquot C., Romanin D. E., Serradell M. A., Urdaci M. C. Impact of kefir derived lactobacillus kefiri on the mucosal immune response and gut microbiota. Journal of Immunology Research. 2015;2015:12. doi: 10.1155/2015/361604.361604
    1. Nagafuchi S., Yamaji T., Kawashima A., et al. Effects of a formula containing two types of prebiotics, bifidogenic growth stimulator and galacto-oligosaccharide, and fermented milk products on intestinal microbiota and antibody response to influenza vaccine in elderly patients: A randomized controlled trial. Pharmaceuticals. 2015;8(2):351–365. doi: 10.3390/ph8020351.
    1. D'Aimmo M. R., Mattarelli P., Biavati B., Carlsson N. G., Andlid T. The potential of bifidobacteria as a source of natural folate. Journal of Applied Microbiology. 2012;112(5):975–984. doi: 10.1111/j.1365-2672.2012.05261.x.
    1. Chung W. S. F., Walker A. W., Louis P., et al. Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biology. 2016;14(1, article no. 3):224–227. doi: 10.1186/s12915-015-0224-3.
    1. Brown K., DeCoffe D., Molcan E., Gibson D. L. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients. 2012;4(8):1095–1119. doi: 10.3390/nu4081095.
    1. Khoruts A., Weingarden A. R. Emergence of fecal microbiota transplantation as an approach to repair disrupted microbial gut ecology. Immunology Letters. 2014;162(2):77–81. doi: 10.1016/j.imlet.2014.07.016.

Source: PubMed

3
Prenumerera