Effect of transcranial direct current stimulation associated with hypocaloric diet on weight loss and metabolic profile in overweight or obesity: study protocol for a double-blind, randomized controlled clinical trial

Carina de Araujo, Raquel Crespo Fitz, Daniela Albugeri Nogara, Pedro Schestatsky, Fernando Gerchman, Carina de Araujo, Raquel Crespo Fitz, Daniela Albugeri Nogara, Pedro Schestatsky, Fernando Gerchman

Abstract

Background: Dietary interventions have limited success in promoting sustainable weight loss; new treatments allowing better compliance with hypocaloric diets should be developed. The aim of this trial is to describe the effects of a protocol combining repetitive active transcranial direct current stimulation (tDCS) with a hypocaloric diet on weight loss and food consumption in overweight or obese adults.

Methods/design: Overweight or obese adults between 20 and 50 years of age with stable weight over the last 4 months will be selected for a 4-week randomized clinical trial of fixed-dose tDCS (20 sessions; 5 consecutive weekdays/wk, 2 mA, 20 minutes) over the right dorsolateral prefrontal cortex associated with a weight loss diet. The subjects will be randomly assigned in a 1:1 ratio and stratified by sex to active tDCS + diet or sham tDCS + diet. The study will be conducted at the Endocrine and Metabolism Unit of the Hospital de Clínicas de Porto Alegre, Brazil. The primary outcome is weight loss. Energy and macronutrient consumption, as well as adherence to the diet, will be assessed using 3-day weighed dietary records. Changes in blood glucose and plasma insulin will be assessed, and participants will complete self-report questionnaires to assess changes in mood and food behavior. All analyses will be done on a per-protocol and intention-to-treat basis.

Discussion: This study explores the potential role of tDCS as an adjunctive treatment with a hypocaloric diet for obesity management.

Trial registration: ClinicalTrials.gov , NCT02683902 . Registered on 11 January 2016.

Keywords: Clinical trial; Hypocaloric diet; Neuromodulation; Obesity; Transcranial direct current stimulation; Weight loss.

Conflict of interest statement

Ethics approval and consent to participate

The protocol was approved by the internal review board of the Hospital de Clínicas de Porto Alegre, the Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, and conforms to the principles of the Helsinki declaration. All participants provided written informed consent, which was obtained by the main researchers (CdA, RCF), and approval was received from the research ethics committee of Hospital de Clínicas de Porto Alegre (GPPG-HCPA protocol nos. 150119 and 160417 and CAAE nos. 42996915.0.0000.5327 and 54832016.1.0000.5327). The present trial is registered with Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) diagram. *Time points: V1, V2, and V3 are visits 1, 2, and 3 in the respective periods (baseline or after 4 weeks of tDCS). t1 to t20 represent each tDCS/sham-tDCS session. t3mo and t6mo represent the evaluations performed 3 and 6 months after the end of the intervention period. LMTT Liquid meal tolerance test, OGTT Oral glucose tolerance test, VAS Visual analogue scale, WDR Weighed dietary records

References

    1. Tremmel M, Gerdtham UG, Nilsson P, Saha S. Economic burden of obesity: a systematic literature review. Int J Environ Res Public Health. 2017;14:435. doi: 10.3390/ijerph14040435.
    1. Smith KB, Smith MS. Obesity statistics. Prim Care. 2016;43:121–135. doi: 10.1016/j.pop.2015.10.001.
    1. Mozaffarian D, Hao T, Rimm EB, Willett WC, Hu FB. Changes in diet and lifestyle and long-term weight gain in women and men. N Engl J Med. 2011;364:2392–404. 10.1056/NEJMoa1014296.
    1. Garvey WT, Mechanick JI, Brett EM, Garber AJ, Hurley DL, Jastreboff AM, et al. American Association of Clinical Endocrinologists and American College of Endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr Pract. 2016;22 Suppl 3:1–203. .
    1. Rebello CJ, Greenway FL. Reward-induced eating: therapeutic approaches to addressing food cravings. Adv Ther. 2016;33:1853–1866. doi: 10.1007/s12325-016-0414-6.
    1. Zheng H, Lenard NR, Shin AC, Berthoud HR. Appetite control and energy balance regulation in the modern world: reward-driven brain overrides repletion signals. Int J Obes. 2009;33(Suppl 2):S8–13. doi: 10.1038/ijo.2009.65.
    1. Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 2016;9:641–661. doi: 10.1016/j.brs.2016.06.004.
    1. Zhao H, Qiao L, Fan D, Zhang S, Turel O, Li Y, et al. Modulation of brain activity with noninvasive transcranial direct current stimulation (tDCS): clinical applications and safety concerns. Front Psychol. 2017;8:685. doi: 10.3389/fpsyg.2017.00685.
    1. Val-Laillet D, Aarts E, Weber B, Ferrari M, Quaresima V, Stoeckel LE, et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. Neuroimage Clin. 2015;8:1–31. doi: 10.1016/j.nicl.2015.03.016.
    1. Goldman RL, Borckardt JJ, Frohman HA, O’Neil PM, Madan A, Campbell LK, et al. Prefrontal cortex transcranial direct current stimulation (tDCS) temporarily reduces food cravings and increases the self-reported ability to resist food in adults with frequent food craving. Appetite. 2011;56:741–746. doi: 10.1016/j.appet.2011.02.013.
    1. Fregni F, Orsati F, Pedrosa W, Fecteau S, Tome FA, Nitsche MA, et al. Transcranial direct current stimulation of the prefrontal cortex modulates the desire for specific foods. Appetite. 2008;51:34–41. doi: 10.1016/j.appet.2007.09.016.
    1. Lapenta OM, Sierve KD, de Macedo EC, Fregni F, Boggio PS. Transcranial direct current stimulation modulates ERP-indexed inhibitory control and reduces food consumption. Appetite. 2014;83:42–48. doi: 10.1016/j.appet.2014.08.005.
    1. Jauch-Chara K, Kistenmacher A, Herzog N, Schwarz M, Schweiger U, Oltmanns KM. Repetitive electric brain stimulation reduces food intake in humans. Am J Clin Nutr. 2014;100:1003–1009. doi: 10.3945/ajcn.113.075481.
    1. Boggio PS, Sultani N, Fecteau S, Merabet L, Mecca T, Pascual-Leone A, et al. Prefrontal cortex modulation using transcranial DC stimulation reduces alcohol craving: a double-blind, sham-controlled study. Drug Alcohol Depend. 2008;92:55–60. doi: 10.1016/j.drugalcdep.2007.06.011.
    1. Fregni F, Liguori P, Fecteau S, Nitsche MA, Pascual-Leone A, Boggio PS. Cortical stimulation of the prefrontal cortex with transcranial direct current stimulation reduces cue-provoked smoking craving: a randomized, sham-controlled study. J Clin Psychiatry. 2008;69:32–40. doi: 10.4088/JCP.v69n0105.
    1. Rachid F. Neurostimulation techniques in the treatment of nicotine dependence: a review. Am J Addict. 2016;25:436–451. doi: 10.1111/ajad.12405.
    1. Ray MK, Sylvester MD, Osborn L, Helms J, Turan B, Burgess EE, et al. The critical role of cognitive-based trait differences in transcranial direct current stimulation (tDCS) suppression of food craving and eating in frank obesity. Appetite. 2017;116:568–574. doi: 10.1016/j.appet.2017.05.046.
    1. Ljubisavljevic M, Maxood K, Bjekic J, Oommen J, Nagelkerke N. Long-term effects of repeated prefrontal cortex transcranial direct current stimulation (tDCS) on food craving in normal and overweight young adults. Brain Stimul. 2016;9:826–833. doi: 10.1016/j.brs.2016.07.002.
    1. Wang GJ, Volkow ND, Telang F, Jayne M, Ma J, Rao M, et al. Exposure to appetitive food stimuli markedly activates the human brain. Neuroimage. 2004;21:1790–1797. doi: 10.1016/j.neuroimage.2003.11.026.
    1. Chan AW, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158:200–7. .
    1. Instituto Brasileiro de Geografia e Estatística (IBGE). Características Étnico-Raciais da População - um estudo das categorias de classificação de cor ou raça 2008. . Accessed 5 Oct 2017.
    1. Masur J, Monteiro MG. Validation of the “CAGE” alcoholism screening test in a Brazilian psychiatric inpatient hospital setting. Braz J Med Biol Res. 1983;16:215–218.
    1. Associação Brasileira de Empresas de Pesquisa (ABEP). Critério Brasil 2015 e atualização da distribuição de classes para 2016. .
    1. Matsudo S, Araujo T, Matsudo V, Andrade D, Andrade E, Oliveira LC, et al. Questionario Internacional De Ativi Dade Fisica (I PAQ). Rev Bras Ativ Saude. 2001;6:5–18. . Accessed 2 Oct 2017.
    1. International Physical Activity Questionnaire (IPAQ) scoring protocol. . Accessed 23 May 2018.
    1. Tudor-Locke C, Craig CL, Brown WJ, Clemes SA, De Cocker K, Giles-Corti B, et al. How many steps/day are enough? For adults. Int J Behav Nutr Phys Act. 2011;8:79. doi: 10.1186/1479-5868-8-79.
    1. Ciconelli R, Ferraz M, Santos W, Meinão I, Quaresma M. Brazilian-Portuguese version of the SF-36: a reliable and valid quality of life outcome measure [in Portuguese]. Rev Bras Reumatol 1999;39:143–50.
    1. Ware JE, Kosinski M, Gandek B. The SF-36 Health Survey: manual and interpretation guide. 2. Lincoln: QualityMetric; 2000.
    1. Bertolazi AN, Fagondes SC, Hoff LS, Pedro VD, Menna Barreto SS, Johns MW. Portuguese-language version of the Epworth Sleepiness Scale: validation for use in Brazil. J Bras Pneumol. 2009;35:877–883. doi: 10.1590/S1806-37132009000900009.
    1. Moulin CC, Tiskievicz F, Zelmanovitz T, de Oliveira J, Azevedo MJ, Gross JL. Use of weighed diet records in the evaluation of diets with different protein contents in patients with type 2 diabetes. Am J Clin Nutr. 1998;67:853–857. doi: 10.1093/ajcn/67.5.853.
    1. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry. 1961;4:561–571. doi: 10.1001/archpsyc.1961.01710120031004.
    1. Gomes-Oliveira MH, Gorenstein C, Neto FL, Andrade LH, Wang YP. Validation of the Brazilian Portuguese version of the Beck Depression Inventory-II in a community sample. Rev Bras Psiquiatr. 2012;34:389–94. .
    1. Gorenstein C, Andrade L. Validation of a Portuguese version of the Beck Depression Inventory and the State-Trait Anxiety Inventory in Brazilian subjects. Braz J Med Biol Res. 1996;29:453–7. .
    1. Haber GB, Heaton KW, Murphy D, Burroughs LF. Depletion and disruption of dietary fibre: effects on satiety, plasma-glucose, and serum-insulin. Lancet. 1977;2:679–82.
    1. Holt SH, Miller JB. Increased insulin responses to ingested foods are associated with lessened satiety. Appetite. 1995;24:43–54.
    1. Flint A, Raben A, Blundell JE, Astrup A. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int J Obes Relat Metab Disord. 2000;24:38–48. doi: 10.1038/sj.ijo.0801083.
    1. Silva FM, Kramer CK, Crispim D, Azevedo MJ. A high-glycemic index, low-fiber breakfast affects the postprandial plasma glucose, insulin, and ghrelin responses of patients with type 2 diabetes in a randomized clinical trial. J Nutr. 2015;145:736–741. doi: 10.3945/jn.114.195339.
    1. Queiroz de Medeiros AC, de Fatima Campos Pedrosa L, Yamamoto ME. Food cravings among Brazilian population. Appetite. 2017;108:212–218. doi: 10.1016/j.appet.2016.10.009.
    1. White MA, Whisenhunt BL, Williamson DA, Greenway FL, Netemeyer RG. Development and validation of the Food-Craving Inventory. Obes Res. 2002;10:107–114. doi: 10.1038/oby.2002.17.
    1. Kaiyala KJ, Schwartz MW. Toward a more complete (and less controversial) understanding of energy expenditure and its role in obesity pathogenesis. Diabetes. 2011;60:17–23. doi: 10.2337/db10-0909.
    1. Tai MM. A mathematical model for the determination of total area under glucose tolerance and other metabolic curves. Diabetes Care. 1994;17:152–4. .
    1. Freitas PAC, Ehlert LR, Camargo JL. Glycated albumin: a potential biomarker in diabetes. Arch Endocrinol Metab. 2017;61:296–304. .
    1. Hoss U, Budiman ES. Factory-calibrated continuous glucose sensors: the science behind the technology. Diabetes Technol Ther. 2017;19(Suppl 2):S44–S50. doi: 10.1089/dia.2017.0025.
    1. Rodbard D. Interpretation of continuous glucose monitoring data: glycemic variability and quality of glycemic control. Diabetes Technol Ther. 2009;11 Suppl 1:S55–S67. . A published erratum appears in . 2018;20(4):320.
    1. Rohatgi A. WebPlotDigitizer [Internet]. Austin, TX, USA; 2018. . Accessed 2018 May 27.
    1. Hanas R, John G. 2010 Consensus statement on the worldwide standardization of the hemoglobin A(1c) measurement. Diabetes Res Clin Pract. 2010;90:228–230. doi: 10.1016/j.diabres.2010.05.011.
    1. Sumithran P, Prendergast LA, Delbridge E, Purcell K, Shulkes A, Kriketos A, et al. Long-term persistence of hormonal adaptations to weight loss. N Engl J Med. 2011;365:1597–1604. doi: 10.1056/NEJMoa1105816.
    1. Freitas PAC, Ehlert LR, Camargo JL. Comparison between two enzymatic methods for glycated albumin. Anal Methods. 2016;8:8173–8178. doi: 10.1039/C6AY02350A.
    1. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419. doi: 10.1007/BF00280883.
    1. Diabetes Trials Unit (DTU), University of Oxford. Software from the DTU [Internet]. . Accessed 27 May 2018.
    1. Maki KC, Kelley KM, Lawless AL, Hubacher RL, Schild AL, Dicklin MR, et al. Validation of insulin sensitivity and secretion indices derived from the liquid meal tolerance test. Diabetes Technol Ther. 2011;13:661–666. doi: 10.1089/dia.2010.0240.
    1. Hall KD, Sacks G, Chandramohan D, Chow CC, Wang YC, Gortmaker SL, et al. Quantification of the effect of energy imbalance on bodyweight. Lancet. 2011;378:826–837. doi: 10.1016/S0140-6736(11)60812-X.
    1. American Diabetes Association. Standards of medical care in diabetes—2014. Diabetes Care. 2014;37 Suppl 1:S14–S80. .
    1. U.S. Department of Agriculture (USDA), Agricultural Research Service . USDA National Nutrient Database for Standard Reference. Release 28 (slightly revised) Washington, DC: Agricultural Research Service Nutrient Data Laboratory; 2016.
    1. Beam W, Borckardt JJ, Reeves ST, George MS. An efficient and accurate new method for locating the F3 position for prefrontal TMS applications. Brain Stimul. 2009;2:50–54. doi: 10.1016/j.brs.2008.09.006.
    1. . Clinical Research Solutions [Internet]. . Accessed 4 Nov 2017.
    1. Kekic M, McClelland J, Campbell I, Nestler S, Rubia K, David AS, et al. The effects of prefrontal cortex transcranial direct current stimulation (tDCS) on food craving and temporal discounting in women with frequent food cravings. Appetite. 2014;78:55–62. doi: 10.1016/j.appet.2014.03.010.
    1. Montenegro RA, Okano AH, Cunha FA, Gurgel JL, Fontes EB, Farinatti PT. Prefrontal cortex transcranial direct current stimulation associated with aerobic exercise change aspects of appetite sensation in overweight adults. Appetite. 2012;58:333–338. doi: 10.1016/j.appet.2011.11.008.
    1. Georgii C, Goldhofer P, Meule A, Richard A, Blechert J. Food craving, food choice and consumption: the role of impulsivity and sham-controlled tDCS stimulation of the right dlPFC. Physiol Behav. 2017;177:20–26. doi: 10.1016/j.physbeh.2017.04.004.
    1. Grundeis F, Brand C, Kumar S, Rullmann M, Mehnert J, Pleger B. Non-invasive prefrontal/frontal brain stimulation is not effective in modulating food reappraisal abilities or calorie consumption in obese females. Front Neurosci. 2017;11:334. doi: 10.3389/fnins.2017.00334.
    1. Lefaucheur JP, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS) Clin Neurophysiol. 2017;128:56–92. doi: 10.1016/j.clinph.2016.10.087.
    1. Boggio PS, Nunes A, Rigonatti SP, Nitsche MA, Pascual-Leone A, Fregni F. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci. 2007;25:123–129.
    1. Lowe CJ, Vincent C, Hall PA. Effects of noninvasive brain stimulation on food cravings and consumption: a meta-analytic review. Psychosom Med. 2017;79:2–13. .

Source: PubMed

3
Prenumerera