Liver Adiposity and Metabolic Profile in Individuals with Chronic Spinal Cord Injury

Kathleen C Rankin, Laura C O'Brien, Liron Segal, M Rehan Khan, Ashraf S Gorgey, Kathleen C Rankin, Laura C O'Brien, Liron Segal, M Rehan Khan, Ashraf S Gorgey

Abstract

Purpose: To quantify liver adiposity using magnetic resonance imaging (MRI) and to determine its association with metabolic profile in men with spinal cord injury (SCI).

Materials and methods: MRI analysis of liver adiposity by fat signal fraction (FSF) and visceral adipose tissue (VAT) was completed on twenty participants. Intravenous glucose tolerance test was conducted to measure glucose effectiveness (Sg) and insulin sensitivity (Si). Lipid panel, fasting glucose, glycated hemoglobin (HbA1c), and inflammatory cytokines were also analyzed.

Results: Average hepatic FSF was 3.7% ± 2.1. FSF was positively related to TG, non-HDL-C, fasting glucose, HbA1c, VAT, and tumor necrosis factor alpha (TNF-α). FSF was negatively related to Si and testosterone. FSF was positively related to VAT (r = 0.48, p = 0.032) and TNF-α (r = 0.51, p = 0.016) independent of age, level of injury (LOI), and time since injury (TSI). The associations between FSF and metabolic profile were independent of VAT.

Conclusions: MRI noninvasively estimated hepatic adiposity in men with chronic SCI. FSF was associated with dysfunction in metabolic profile, central adiposity, and inflammation. Importantly, liver adiposity influenced metabolic profile independently of VAT. These findings highlight the significance of quantifying liver adiposity after SCI to attenuate the development of metabolic disorders.

Figures

Figure 1
Figure 1
MRI images were used to trace the liver using the in-phase (IP) image (a) and its identical out-phase (OP) image (b) for calculation of the hepatic fat signal fraction (FSF).
Figure 2
Figure 2
Relationships between hepatic fat signal fraction (FSF) and lipid profile. TG, triglycerides and Non-HDL-C, high-density lipoprotein cholesterol.
Figure 3
Figure 3
Relationships between hepatic fat signal fraction (FSF) and metabolic profile. Fasting glucose, HbA1c, glycated hemoglobin, testosterone, and Si, insulin sensitivity.
Figure 4
Figure 4
Relationships between hepatic fat signal fraction (FSF), trunk cross-sectional area (CSA), and visceral adipose tissue (VAT; (a)) and inflammation and ectopic adipose tissue ((b); hepatic FSF or VAT). TNFα, tumor necrosis factor alpha.

References

    1. Bauman W. A., Spungen A. M. Carbohydrate and lipid metabolism in chronic spinal cord injury. Journal of Spinal Cord Medicine. 2001;24(4):266–277. doi: 10.1080/10790268.2001.11753584.
    1. Bauman W. A., Spungen A. M. Metabolic changes in persons after spinal cord injury. Physical Medicine & Rehabilitation Clinics of North America. 2000;11(1):109–140.
    1. Spungen A. M., Adkins R. H., Stewart C. A., et al. Factors influencing body composition in persons with spinal cord injury: a cross-sectional study. Journal of Applied Physiology. 2003;95(6):2398–2407. doi: 10.1152/japplphysiol.00729.2002.
    1. Vichiansiri R., Saengsuwan J., Manimmanakorn N., et al. The prevalence of dyslipidemia in patients with spinal cord lesion in Thailand. Cholesterol. 2012;2012:6. doi: 10.1155/2012/847462.847462
    1. Bauman W. A., Spungen A. M. Disorders of carbohydrate and lipid metabolism in veterans with paraplegia or quadriplegia: a model of premature aging. Metabolism. 1994;43(6):749–756. doi: 10.1016/0026-0495(94)90126-0.
    1. Jones L. M., Legge M., Goulding A. Healthy body mass index values often underestimate body fat in men with spinal cord injury. Archives of Physical Medicine and Rehabilitation. 2003;84(7):1068–1071. doi: 10.1016/S0003-9993(03)00045-5.
    1. Weaver F. M., Collins E. G., Kurichi J., et al. Prevalence of obesity and high blood pressure in veterans with spinal cord injuries and disorders: a retrospective review. American Journal of Physical Medicine and Rehabilitation. 2007;86(1):22–29. doi: 10.1097/PHM.0b013e31802b8937.
    1. Gorgey A. S., Gater D. R. Regional and relative adiposity patterns in relation to carbohydrate and lipid metabolism in men with spinal cord injury. Applied Physiology, Nutrition and Metabolism. 2011;36(1):107–114. doi: 10.1139/H10-091.
    1. Durga A., Sepahpanah F., Regozzi M., Hastings J., Crane D. A. Prevalence of testosterone deficiency after spinal cord injury. PM & R. 2011;3(10):929–932. doi: 10.1016/j.pmrj.2011.07.008.
    1. Gorgey A. S., Mather K. J., Gater D. R. Central adiposity associations to carbohydrate and lipid metabolism in individuals with complete motor spinal cord injury. Metabolism: Clinical and Experimental. 2011;60(6):843–851. doi: 10.1016/j.metabol.2010.08.002.
    1. Boettcher M., Machann J., Stefan N., et al. Intermuscular adipose tissue (IMAT): association with other adipose tissue compartments and insulin sensitivity. Journal of Magnetic Resonance Imaging. 2009;29(6):1340–1345. doi: 10.1002/jmri.21754.
    1. Elder C. P., Apple D. F., Bickel C. S., Meyer R. A., Dudley G. A. Intramuscular fat and glucose tolerance after spinal cord injury—a cross-sectional study. Spinal Cord. 2004;42(12):711–716. doi: 10.1038/sj.sc.3101652.
    1. Emmons R. R., Garber C. E., Cirnigliaro C. M., et al. The influence of visceral fat on the postprandial lipemic response in men with paraplegia. Journal of the American College of Nutrition. 2010;29(5):476–481. doi: 10.1080/07315724.2010.10719884.
    1. Gao Y., Zong K., Gao Z., et al. Magnetic resonance imaging-measured bone marrow adipose tissue area is inversely related to cortical bone area in children and adolescents aged 5-18Years. Journal of Clinical Densitometry. 2015;18(2):203–208. doi: 10.1016/j.jocd.2015.03.002.
    1. Gorgey A. S., Wells K. M., Austin T. L. Adiposity and spinal cord injury. World Journal of Orthopaedics. 2015;6(8):567–576. doi: 10.5312/wjo.v6.i8.567.
    1. Sattar N., Forrest E., Preiss D. Non-alcoholic fatty liver disease. British Medical Journal. 2014;349 doi: 10.1136/bmj.g4596.g4596
    1. Eguchi Y., Eguchi T., Mizuta T., et al. Visceral fat accumulation and insulin resistance are important factors in nonalcoholic fatty liver disease. Journal of Gastroenterology. 2006;41(5):462–469. doi: 10.1007/s00535-006-1790-5.
    1. Samuel V. T., Petersen K. F., Shulman G. I. Lipid-induced insulin resistance: unravelling the mechanism. The Lancet. 2010;375(9733):2267–2277. doi: 10.1016/S0140-6736(10)60408-4.
    1. Schaffner F., Thaler H. Nonalcoholic fatty liver disease. Progress in Liver Diseases. 1986;8:283–298.
    1. Nalbantoglu I., Brunt E. M. Role of liver biopsy in nonalcoholic fatty liver disease. World Journal of Gastroenterology. 2014;20(27):9026–9037. doi: 10.3748/wjg.v20.i27.9026.
    1. Wree A., Broderick L., Canbay A., Hoffman H. M., Feldstein A. E. From NAFLD to NASH to cirrhosis-new insights into disease mechanisms. Nature Reviews Gastroenterology & Hepatology. 2013;10(11):627–636. doi: 10.1038/nrgastro.2013.149.
    1. Loomba R., Sanyal A. J. The global NAFLD epidemic. Nature Reviews Gastroenterology and Hepatology. 2013;10(11):686–690. doi: 10.1038/nrgastro.2013.171.
    1. Firneisz G. Non-alcoholic fatty liver disease and type 2 diabetes mellitus: the liver disease of our age? World Journal of Gastroenterology. 2014;20(27):9072–9089. doi: 10.3748/wjg.v20.i27.9072.
    1. Adams L. A., Waters O. R., Knuiman M. W., Elliott R. R., Olynyk J. K. NAFLD as a risk factor for the development of diabetes and the metabolic syndrome: an eleven-year follow-up study. The American Journal of Gastroenterology. 2009;104(4):861–867. doi: 10.1038/ajg.2009.67.
    1. Kotronen A., Yki-Järvinen H. Fatty liver: a novel component of the metabolic syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology. 2008;28(1):27–38. doi: 10.1161/atvbaha.107.147538.
    1. Ekstedt M., Franzén L. E., Mathiesen U. L., et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology. 2006;44(4):865–873. doi: 10.1002/hep.21327.
    1. Brunt E. M., Kleiner D. E., Wilson L. A., et al. Portal chronic inflammation in nonalcoholic fatty liver disease (NAFLD): a histologic marker of advanced NAFLD - clinicopathologic correlations from the nonalcoholic steatohepatitis clinical research network. Hepatology. 2009;49(3):809–820. doi: 10.1002/hep.22724.
    1. Mann J. P., De Vito R., Mosca A., et al. Portal inflammation is independently associated with fibrosis and metabolic syndrome in pediatric nonalcoholic fatty liver disease. Hepatology. 2016;63(3):745–753. doi: 10.1002/hep.28374.
    1. Sipski M. L., Estores I. M., Alexander C. J., Guo X., Chandralapaty S. Lack of justification for routine abdominal ultrasonography in patients with chronic spinal cord injury. The Journal of Rehabilitation Research and Development. 2004;41(1):101–108. doi: 10.1682/JRRD.2004.01.0101.
    1. Barbonetti A., Caterina Vassallo M. R., Cotugno M., Felzani G., Francavilla S., Francavilla F. Low testosterone and non-alcoholic fatty liver disease: Evidence for their independent association in men with chronic spinal cord injury. Journal of Spinal Cord Medicine. 2016;39(4):443–449. doi: 10.1179/2045772314Y.0000000288.
    1. Sauerbeck A. D., Laws J. L., Bandaru V. V. R., Popovich P. G., Haughey N. J., McTigue D. M. Spinal cord injury causes chronic liver pathology in rats. Journal of Neurotrauma. 2015;32(3):159–169. doi: 10.1089/neu.2014.3497.
    1. Fleming J. C., Bailey C. S., Hundt H., et al. Remote inflammatory response in liver is dependent on the segmental level of spinal cord injury. Journal of Trauma and Acute Care Surgery. 2012;72(5):1194–1202. doi: 10.1097/TA.0b013e31824d68bd.
    1. Petaja E. M., Yki-Jarvinen H. Definitions of normal liver fat and the association of insulin sensitivity with acquired and genetic NAFLD—a systematic review. International Journal of Molecular Sciences. 2016;17(5):p. 633. doi: 10.3390/ijms17050633.
    1. Merkle E. M., Nelson R. C. Dual gradient-echo in-phase and opposed-phase hepatic MR imaging: a useful tool for evaluating more than fatty infiltration or fatty sparing. Radiographics. 2006;26(5):1409–1418. doi: 10.1148/rg.265055711.
    1. Fishbein M. H., Ross Stevens W. Rapid MRI using a modified Dixon technique: a non-invasive and effective method for detection and monitoring of fatty metamorphosis of the liver. Pediatric Radiology. 2001;31(11):806–809. doi: 10.1007/s002470100547.
    1. Fischer M. A., Nanz D., Reiner C. S. Diagnostic performance and accuracy of 3-D spoiled gradient-dual-echo mri with water-and fat-signal separation in liver-fat quantification: comparison to liver biopsy. Investigative Radiology. 2010;45(8):465–470. doi: 10.1097/RLI.0b013e3181da1343.
    1. Cowin G. J., Jonsson J. R., Bauer J. D., et al. Magnetic resonance imaging and spectroscopy for monitoring liver steatosis. Journal of Magnetic Resonance Imaging. 2008;28(4):937–945. doi: 10.1002/jmri.21542.
    1. Ulbrich E. J., Fischer M. A., Manoliu A., et al. Age-and gender dependent liver fat content in a healthy normal BMI population as quantified by fat-water separating DIXON MR imaging. PLoS ONE. 2015;10(11) doi: 10.1371/journal.pone.0141691.e0141691
    1. Fishbein M. H., Gardner K. G., Potter C. J., Schmalbrock P., Smith M. A. Introduction of fast MR imaging in the assessment of hepatic steatosis. Magnetic Resonance Imaging. 1997;15(3):287–293. doi: 10.1016/S0730-725X(96)00224-X.
    1. d'Assignies G., Ruel M., Khiat A., et al. Noninvasive quantitation of human liver steatosis using magnetic resonance and bioassay methods. European Radiology. 2009;19(8):2033–2040. doi: 10.1007/s00330-009-1351-4.
    1. Gorgey A. S., Khalil R. E., Gill R., et al. Effects of testosterone and evoked resistance exercise after spinal cord injury (TEREX-SCI): Study protocol for a randomised controlled trial. BMJ Open. 2017;7(4) doi: 10.1136/bmjopen-2016-014125.014125
    1. Gorgey A. S., Mather K. J., Cupp H. R., Gater D. R. Effects of resistance training on adiposity and metabolism after spinal cord injury. Medicine and Science in Sports and Exercise. 2012;44(1):165–174. doi: 10.1249/MSS.0b013e31822672aa.
    1. Boston R. C., Stefanovski D., Moate P. J., Sumner A. E., Watanabe R. M., Bergman R. N. MINMOD millennium: a computer program to calculate glucose effectiveness and insulin sensitivity from the frequently sampled intravenous glucose tolerance test. Diabetes Technology and Therapeutics. 2003;5(6):1003–1015. doi: 10.1089/152091503322641060.
    1. Reeder S. B., Sirlin C. B. Quantification of liver fat with magnetic resonance imaging. Magnetic Resonance Imaging Clinics of North America. 2010;18(3):337–357. doi: 10.1016/j.mric.2010.08.013.
    1. Rui L. Energy metabolism in the liver. Comprehensive Physiology. 2011;4(1):177–197.
    1. Samuel V. T., Shulman G. I. Mechanisms for insulin resistance: common threads and missing links. Cell. 2012;148(5):852–871. doi: 10.1016/j.cell.2012.02.017.
    1. Liu J., Fox C. S., Hickson D., Bidulescu A., Carr J. J., Taylor H. A. Fatty liver, abdominal visceral fat, and cardiometabolic risk factors: the jackson heart study. Arteriosclerosis, Thrombosis, and Vascular Biology. 2011;31(11):2715–2722. doi: 10.1161/ATVBAHA.111.234062.
    1. Seppälä-Lindroos A., Vehkavaara S., Häkkinen A.-M., et al. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. Journal of Clinical Endocrinology and Metabolism. 2002;87(7):3023–3028. doi: 10.1210/jcem.87.7.8638.
    1. Fountaine M. F. L., Cirnigliaro C. M., Kirshblum S. C., McKenna C., Bauman W. A. Effect of functional sympathetic nervous system impairment of the liver and abdominal visceral adipose tissue on circulating triglyceride-rich lipoproteins. PLoS ONE. 2017;12(3) doi: 10.1371/journal.pone.0173934.e0173934
    1. Zhang J., Zhao Y., Xu C., et al. Association between serum free fatty acid levels and nonalcoholic fatty liver disease: a cross-sectional study. Scientific Reports. 2014;4, article no. 5832 doi: 10.1038/srep05832.
    1. Westerbacka J., Cornér A., Tiikkainen M., et al. Women and men have similar amounts of liver and intra-abdominal fat, despite more subcutaneous fat in women: implications for sex differences in markers of cardiovascular risk. Diabetologia. 2004;47(8):1360–1369. doi: 10.1007/s00125-004-1460-1.
    1. Yki-Järvinen H. Fat in the liver and insulin resistance. Annals of Medicine. 2005;37(5):347–356. doi: 10.1080/07853890510037383.
    1. Abdul-Ghani M. A., Defronzo R. A. Pathogenesis of insulin resistance in skeletal muscle. Journal of Biomedicine and Biotechnology. 2010;2010:19. doi: 10.1155/2010/476279.476279
    1. Jorge-Galarza E., Medina-Urrutia A., Posadas-Sánchez R., et al. Adipose tissue dysfunction increases fatty liver association with pre diabetes and newly diagnosed type 2 diabetes mellitus. Diabetology and Metabolic Syndrome. 2016;8(1):1–8. doi: 10.1186/s13098-016-0189-6.
    1. Fabbrini E., Mohammed B. S., Magkos F., Korenblat K. M., Patterson B. W., Klein S. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology. 2008;134(2):424–431. doi: 10.1053/j.gastro.2007.11.038.
    1. Safarinejad M. R. Level of injury and hormone profiles in spinal cord-injured men. Urology. 2001;58(5):671–676. doi: 10.1016/S0090-4295(01)01353-X.
    1. Haffner S. M., Laakso M., Miettinen H., Mykkänen L., Karhapää P., Rainwater D. L. Low levels of sex hormone-binding globulin and testosterone are associated with smaller, denser low density lipoprotein in normoglycemic men. Journal of Clinical Endocrinology and Metabolism. 1996;81(10):3697–3701. doi: 10.1210/jc.81.10.3697.
    1. Stellato R. K., Feldman H. A., Hamdy O., Horton E. S., Mckinlay J. B. Testosterone, sex hormone-binding globulin, and the development of type 2 diabetes in middle-aged men: prospective results from the massachusetts male aging study. Diabetes Care. 2000;23(4):490–494. doi: 10.2337/diacare.23.4.490.
    1. Oh J.-Y., Barrett-Connor E., Wedick N. M., Wingard D. L. Endogenous sex hormones and the development of type 2 diabetes in older men and women: the Rancho Bernardo Study. Diabetes Care. 2002;25(1):55–60. doi: 10.2337/diacare.25.1.55.
    1. Kupelian V., Page S. T., Araujo A. B., Travison T. G., Bremner W. J., McKinlay J. B. Low sex hormone-binding globulin, total testosterone, and symptomatic androgen deficiency are associated with development of the metabolic syndrome in nonobese men. The Journal of Clinical Endocrinology & Metabolism. 2006;91(3):843–850.
    1. Welle S., Jozefowicz R., Forbes G., Griggs R. C. Effect of testosterone on metabolic rate and body composition in normal men and men with muscular dystrophy. Journal of Clinical Endocrinology & Metabolism. 1992;74(2):332–335. doi: 10.1210/jc.74.2.332.
    1. Wang C., Eyre D. R., Clark R., et al. Sublingual testosterone replacement improves muscle mass and strength, decreases bone resorption, and increases bone formation markers in hypogonadal men - a clinical research center study. Journal of Clinical Endocrinology and Metabolism. 1996;81(10):3654–3662. doi: 10.1210/jc.81.10.3654.
    1. Pelletier C. A., Miyatani M., Giangregorio L., Craven B. C. Sarcopenic obesity in adults with spinal cord injury: a cross-sectional study. Archives of Physical Medicine and Rehabilitation. 2016;97(11):1931–1937. doi: 10.1016/j.apmr.2016.04.026.
    1. Nguyen-Duy T., Nichaman M. Z., Church T. S., Blair S. N., Ross R. Visceral fat and liver fat are independent predictors of metabolic risk factors in men. American Journal of Physiology - Endocrinology And Metabolism. 2003;284(6):E1065–E1071. doi: 10.1152/ajpendo.00442.2002.
    1. Gregor M. F., Hotamisligil G. S. Inflammatory mechanisms in obesity. Annual Review of Immunology. 2011;29:415–445. doi: 10.1146/annurev-immunol-031210-101322.
    1. de Luca C., Olefsky J. M. Inflammation and insulin resistance. FEBS Letters. 2008;582(1):97–105. doi: 10.1016/j.febslet.2007.11.057.
    1. Mikula M., Majewska A., Ledwon J. K., Dzwonek A., Ostrowski J. Obesity increases histone H3 lysine 9 and 18 acetylation at Tnfa and Ccl2 genes in mouse liver. International Journal of Molecular Medicine. 2014;34(6):1647–1654. doi: 10.3892/ijmm.2014.1958.
    1. Park E. J., Lee J. H., Yu G.-Y., et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell. 2010;140(2):197–208. doi: 10.1016/j.cell.2009.12.052.
    1. Spinal cord injury (sci) 2016 facts and figures at a glance. The Journal of Spinal Cord Medicine. 2016;39(4):493–494. doi: 10.1080/10790268.2016.1210925.

Source: PubMed

3
Prenumerera