A Biological Age Model Designed for Health Promotion Interventions: Protocol for an Interdisciplinary Study for Model Development

Karina Louise Skov Husted, Mathilde Fogelstrøm, Pernille Hulst, Andreas Brink-Kjær, Kaj-Åge Henneberg, Helge Bjarup Dissing Sorensen, Flemming Dela, Jørn Wulff Helge, Karina Louise Skov Husted, Mathilde Fogelstrøm, Pernille Hulst, Andreas Brink-Kjær, Kaj-Åge Henneberg, Helge Bjarup Dissing Sorensen, Flemming Dela, Jørn Wulff Helge

Abstract

Background: Actions to improve healthy aging and delay morbidity are crucial, given the global aging population. We believe that biological age estimation can help promote the health of the general population. Biological age reflects the heterogeneity in functional status and vulnerability to disease that chronological age cannot. Thus, biological age assessment is a tool that provides an intuitively meaningful outcome for the general population, and as such, facilitates our understanding of the extent to which lifestyle can increase health span.

Objective: This interdisciplinary study intends to develop a biological age model and explore its usefulness.

Methods: The model development comprised three consecutive phases: (1) conducting a cross-sectional study to gather candidate biomarkers from 100 individuals representing normal healthy aging people (the derivation cohort); (2) estimating the biological age using principal component analysis; and (3) testing the clinical use of the model in a validation cohort of overweight adults attending a lifestyle intervention course.

Results: We completed the data collection and analysis of the cross-sectional study, and the initial results of the principal component analysis are ready. Interpretation and refinement of the model is ongoing. Recruitment to the validation cohort is forthcoming. We expect the results to be published by December 2021.

Conclusions: We expect the biological age model to be a useful indicator of disease risk and metabolic risk, and further research should focus on validating the model on a larger scale.

Trial registration: ClinicalTrials.gov NCT03680768, https://ichgcp.net/clinical-trials-registry/NCT03680768 (Phase 1 study); NCT04279366 https://ichgcp.net/clinical-trials-registry/NCT04279366 (Phase 3 study).

International registered report identifier (irrid): DERR1-10.2196/19209.

Keywords: biological age; health promotion; healthy aging; principal component analysis; protocol.

Conflict of interest statement

Conflicts of Interest: None declared.

©Karina Louise Skov Husted, Mathilde Fogelstrøm, Pernille Hulst, Andreas Brink-Kjær, Kaj-Åge Henneberg, Helge Bjarup Dissing Sorensen, Flemming Dela, Jørn Wulff Helge. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 26.10.2020.

Figures

Figure 1
Figure 1
Candidate biomarkers proposed for the BA model. Each square represents 1 of the 6 following domains: (1) Body composition, (2) metabolic health, (3) cell blood count, (4) cardiorespiratory function, (5) physical capacity, and (6) immune function. The candidate biomarkers for the BA model are listed within each domain. AGE: advanced glycation end products; CHOL: Total cholesterol; CHOL/HDL: HDL to CHOL ratio; DBP: Diastolic blood pressure; FEV1: Forced expiratory volume within 1 second; FEV1/FVC: FEV1-FVC ratio; FFA: Free fatty acids; FVC: Forced vital capacity; HbA1c: Glycated hemoglobin; HC: Hip circumference; HDL: High-density lipoprotein; hsCRP: High-sensitive C-reactive protein; LDL: Low-density lipoprotein; SBP: Systolic blood pressure; TG: Triglycerides; suPAR: soluble urokinase Plasminogen Activator Receptor; VO2max: Maximal oxygen uptake; WC: Waist circumference; W/H: waist to hip ratio.
Figure 2
Figure 2
Health profile in relation to metabolic syndrome variables. The triangles represent women, and the circles represent men. Three women (yellow, orange, and purple triangles) and two men (red and blue circles) fulfilled the criteria for metabolic syndrome. The solid lines represent the mean (SD) for each group. The dashed lines represent the cut-off criteria (values mentioned in the brackets that follow) for each variable in accordance with the definition provided by the International Diabetes Federation. A: Waist circumference in females (≥80 cm) and males (≥94 cm); B: Systolic blood pressure (≥130 mm Hg); C: Diastolic blood pressure (≥85 mm Hg); D: Fasting plasma glucose (≥5.6 mmol/L); E: High-density lipoprotein (HDL) for females (˂1.29 mmol/L) and males (˂1.03 mmol/L); F: Triglycerides (≥1.7 mmol/L).

References

    1. Harper S. Economic and social implications of aging societies. Science. 2014 Oct 31;346(6209):587–91. doi: 10.1126/science.1254405.
    1. Petsko GA. A seat at the table. Genome Biol. 2008;9(12):113. doi: 10.1186/gb-2008-9-12-113.
    1. Fuchs J, Scheidt-Nave C, Hinrichs T, Mergenthaler A, Stein J, Riedel-Heller S, Grill E. Indicators for healthy ageing--a debate. Int J Environ Res Public Health. 2013 Dec 02;10(12):6630–44. doi: 10.3390/ijerph10126630.
    1. Lara J, Godfrey A, Evans E, Heaven B, Brown LJ, Barron E, Rochester L, Meyer TD, Mathers JC. Towards measurement of the Healthy Ageing Phenotype in lifestyle-based intervention studies. Maturitas. 2013 Oct;76(2):189–99. doi: 10.1016/j.maturitas.2013.07.007.
    1. Blair S, Sallis R, Hutber A, Archer E. Exercise therapy - the public health message. Scand J Med Sci Sports. 2012 Aug;22(4):e24–8. doi: 10.1111/j.1600-0838.2012.01462.x.
    1. Loef M, Walach H. The combined effects of healthy lifestyle behaviors on all cause mortality: a systematic review and meta-analysis. Prev Med. 2012 Sep;55(3):163–70. doi: 10.1016/j.ypmed.2012.06.017.
    1. Kohl HW, Craig CL, Lambert EV, Inoue S, Alkandari JR, Leetongin G, Kahlmeier S, Lancet Physical Activity Series Working Group The pandemic of physical inactivity: global action for public health. Lancet. 2012 Jul 21;380(9838):294–305. doi: 10.1016/S0140-6736(12)60898-8.
    1. Sallis JF, Bull F, Guthold R, Heath GW, Inoue S, Kelly P, Oyeyemi AL, Perez LG, Richards J, Hallal PC, Lancet Physical Activity Series 2 Executive Committee Progress in physical activity over the Olympic quadrennium. Lancet. 2016 Sep 24;388(10051):1325–36. doi: 10.1016/S0140-6736(16)30581-5.
    1. GBD 2015 Obesity Collaborators T, Afshin Ashkan, Forouzanfar Mohammad H, Reitsma Marissa B, Sur Patrick, Estep Kara, Lee Alex, Marczak Laurie, Mokdad Ali H, Moradi-Lakeh Maziar, Naghavi Mohsen, Salama Joseph S, Vos Theo, Abate Kalkidan H, Abbafati Cristiana, Ahmed Muktar B, Al-Aly Ziyad, Alkerwi Ala’a, Al-Raddadi Rajaa, Amare Azmeraw T, Amberbir Alemayehu, Amegah Adeladza K, Amini Erfan, Amrock Stephen M, Anjana Ranjit M, Ärnlöv Johan, Asayesh Hamid, Banerjee Amitava, Barac Aleksandra, Baye Estifanos, Bennett Derrick A, Beyene Addisu S, Biadgilign Sibhatu, Biryukov Stan, Bjertness Espen, Boneya Dube J, Campos-Nonato Ismael, Carrero Juan J, Cecilio Pedro, Cercy Kelly, Ciobanu Liliana G, Cornaby Leslie, Damtew Solomon A, Dandona Lalit, Dandona Rakhi, Dharmaratne Samath D, Duncan Bruce B, Eshrati Babak, Esteghamati Alireza, Feigin Valery L, Fernandes João C, Fürst Thomas, Gebrehiwot Tsegaye T, Gold Audra, Gona Philimon N, Goto Atsushi, Habtewold Tesfa D, Hadush Kokeb T, Hafezi-Nejad Nima, Hay Simon I, Horino Masako, Islami Farhad, Kamal Ritul, Kasaeian Amir, Katikireddi Srinivasa V, Kengne Andre P, Kesavachandran Chandrasekharan N, Khader Yousef S, Khang Young-Ho, Khubchandani Jagdish, Kim Daniel, Kim Yun J, Kinfu Yohannes, Kosen Soewarta, Ku Tiffany, Defo Barthelemy Kuate, Kumar G Anil, Larson Heidi J, Leinsalu Mall, Liang Xiaofeng, Lim Stephen S, Liu Patrick, Lopez Alan D, Lozano Rafael, Majeed Azeem, Malekzadeh Reza, Malta Deborah C, Mazidi Mohsen, McAlinden Colm, McGarvey Stephen T, Mengistu Desalegn T, Mensah George A, Mensink Gert B M, Mezgebe Haftay B, Mirrakhimov Erkin M, Mueller Ulrich O, Noubiap Jean J, Obermeyer Carla M, Ogbo Felix A, Owolabi Mayowa O, Patton George C, Pourmalek Farshad, Qorbani Mostafa, Rafay Anwar, Rai Rajesh K, Ranabhat Chhabi L, Reinig Nikolas, Safiri Saeid, Salomon Joshua A, Sanabria Juan R, Santos Itamar S, Sartorius Benn, Sawhney Monika, Schmidhuber Josef, Schutte Aletta E, Schmidt Maria I, Sepanlou Sadaf G, Shamsizadeh Moretza, Sheikhbahaei Sara, Shin Min-Jeong, Shiri Rahman, Shiue Ivy, Roba Hirbo S, Silva Diego A S, Silverberg Jonathan I, Singh Jasvinder A, Stranges Saverio, Swaminathan Soumya, Tabarés-Seisdedos Rafael, Tadese Fentaw, Tedla Bemnet A, Tegegne Balewgizie S, Terkawi Abdullah S, Thakur J S, Tonelli Marcello, Topor-Madry Roman, Tyrovolas Stefanos, Ukwaja Kingsley N, Uthman Olalekan A, Vaezghasemi Masoud, Vasankari Tommi, Vlassov Vasiliy V, Vollset Stein E, Weiderpass Elisabete, Werdecker Andrea, Wesana Joshua, Westerman Ronny, Yano Yuichiro, Yonemoto Naohiro, Yonga Gerald, Zaidi Zoubida, Zenebe Zerihun M, Zipkin Ben, Murray Christopher J L. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017 Jul 06;377(1):13–27. doi: 10.1056/NEJMoa1614362.
    1. What is Health Promotion? World Health Organization. [2020-10-05].
    1. Lowsky D, Olshansky S, Bhattacharya J, Goldman D. Heterogeneity in healthy aging. J Gerontol A Biol Sci Med Sci. 2014 Jun;69(6):640–9. doi: 10.1093/gerona/glt162.
    1. Goffaux J, Friesinger GC, Lambert W, Shroyer LW, Moritz TE, McCarthy M, Henderson WG, Hammermeister KE. Biological age--a concept whose time has come: a preliminary study. South Med J. 2005 Oct;98(10):985–93. doi: 10.1097/01.smj.0000182178.22607.47.
    1. Comfort A. Test-battery to measure ageing-rate in man. The Lancet. 1969 Dec;294(7635):1411–1415. doi: 10.1016/s0140-6736(69)90950-7.
    1. Hollingsworth JW, Hashizume A, Jablon S. Correlations between tests of aging in Hiroshima subjects--an attempt to define "physiologic age". Yale J Biol Med. 1965 Aug;38(1):11–26.
    1. Crimmins E, Vasunilashorn S, Kim JK, Alley D. Biomarkers related to aging in human populations. Adv Clin Chem. 2008;46:161–216. doi: 10.1016/s0065-2423(08)00405-8.
    1. López-Otín Carlos, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013 Jun 06;153(6):1194–217. doi: 10.1016/j.cell.2013.05.039.
    1. Jee H, Park J. Selection of an optimal set of biomarkers and comparative analyses of biological age estimation models in Korean females. Arch Gerontol Geriatr. 2017;70:84–91. doi: 10.1016/j.archger.2017.01.005.
    1. Levine ME. Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? J Gerontol A Biol Sci Med Sci. 2013 Jun;68(6):667–74. doi: 10.1093/gerona/gls233.
    1. Kang YG, Suh E, Lee J, Kim DW, Cho KH, Bae C. Biological age as a health index for mortality and major age-related disease incidence in Koreans: National Health Insurance Service - Health screening 11-year follow-up study. Clin Interv Aging. 2018;13:429–436. doi: 10.2147/CIA.S157014. doi: 10.2147/CIA.S157014.
    1. Lara J, Cooper R, Nissan J, Ginty AT, Khaw K, Deary IJ, Lord JM, Kuh D, Mathers JC. A proposed panel of biomarkers of healthy ageing. BMC Med. 2015 Sep 15;13:222. doi: 10.1186/s12916-015-0470-9.
    1. Blehar MC, Spong C, Grady C, Goldkind SF, Sahin L, Clayton JA. Enrolling pregnant women: issues in clinical research. Womens Health Issues. 2013 Jan;23(1):e39–45. doi: 10.1016/j.whi.2012.10.003.
    1. Silva AM, Shen W, Heo M, Gallagher D, Wang Z, Sardinha LB, Heymsfield SB. Ethnicity-related skeletal muscle differences across the lifespan. Am J Hum Biol. 2010;22(1):76–82. doi: 10.1002/ajhb.20956.
    1. Narici MV, Maganaris CN, Reeves ND, Capodaglio P. Effect of aging on human muscle architecture. J Appl Physiol (1985) 2003 Dec;95(6):2229–34. doi: 10.1152/japplphysiol.00433.2003.
    1. Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol. 2012;3:260. doi: 10.3389/fphys.2012.00260. doi: 10.3389/fphys.2012.00260.
    1. Delmonico MJ, Beck DT. The current understanding of sarcopenia: Emerging tools and interventional possibilities. Am J Lifestyle Med. 2017;11(2):167–181. doi: 10.1177/1559827615594343.
    1. Wei M, Gaskill S, Haffner S, Stern M. Waist circumference as the best predictor of noninsulin dependent diabetes mellitus (NIDDM) compared to body mass index, waist/hip ratio and other anthropometric measurements in Mexican Americans--a 7-year prospective study. Obes Res. 1997 Jan;5(1):16–23. doi: 10.1002/j.1550-8528.1997.tb00278.x.
    1. Huxley R, Mendis S, Zheleznyakov E, Reddy S, Chan J. Body mass index, waist circumference and waist:hip ratio as predictors of cardiovascular risk--a review of the literature. Eur J Clin Nutr. 2010 Jan;64(1):16–22. doi: 10.1038/ejcn.2009.68. doi: 10.1038/ejcn.2009.68.
    1. Brewer RA, Gibbs VK, Smith DL. Targeting glucose metabolism for healthy aging. Nutr Healthy Aging. 2016 Oct 27;4(1):31–46. doi: 10.3233/NHA-160007.
    1. Hildrum B, Mykletun A, Hole T, Midthjell K, Dahl AA. Age-specific prevalence of the metabolic syndrome defined by the International Diabetes Federation and the National Cholesterol Education Program: the Norwegian HUNT 2 study. BMC Public Health. 2007 Aug 29;7:220. doi: 10.1186/1471-2458-7-220.
    1. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA. 2002 Jan 16;287(3):356–9. doi: 10.1001/jama.287.3.356.
    1. Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome--a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med. 2006 May;23(5):469–80. doi: 10.1111/j.1464-5491.2006.01858.x.
    1. Matsuzawa Yuji. Establishment of a concept of visceral fat syndrome and discovery of adiponectin. Proc Jpn Acad Ser B Phys Biol Sci. 2010;86(2):131–41. doi: 10.2183/pjab.86.131.
    1. Yadav A, Kataria MA, Saini V, Yadav A. Role of leptin and adiponectin in insulin resistance. Clin Chim Acta. 2013 Feb 18;417:80–4. doi: 10.1016/j.cca.2012.12.007.
    1. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996 Feb 01;334(5):292–5. doi: 10.1056/NEJM199602013340503.
    1. Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008 May;9(5):367–77. doi: 10.1038/nrm2391.
    1. Isami F, West BJ, Nakajima S, Yamagishi S. Association of advanced glycation end products, evaluated by skin autofluorescence, with lifestyle habits in a general Japanese population. J Int Med Res. 2018 Mar;46(3):1043–1051. doi: 10.1177/0300060517736914.
    1. Ulrich P, Cerami A. Protein glycation, diabetes, and aging. Recent Prog Horm Res. 2001;56:1–21. doi: 10.1210/rp.56.1.1.
    1. Mulder DJ, Water TVD, Lutgers HL, Graaff R, Gans RO, Zijlstra F, Smit AJ. Skin autofluorescence, a novel marker for glycemic and oxidative stress-derived advanced glycation endproducts: an overview of current clinical studies, evidence, and limitations. Diabetes Technol Ther. 2006 Oct;8(5):523–35. doi: 10.1089/dia.2006.8.523.
    1. Nowotny K, Jung T, Höhn Annika, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules. 2015 Mar 16;5(1):194–222. doi: 10.3390/biom5010194.
    1. Monnier V, Sell D, Genuth S. Glycation products as markers and predictors of the progression of diabetic complications. Ann N Y Acad Sci. 2005 Jun;1043:567–81. doi: 10.1196/annals.1333.065.
    1. Fokkens B, van Waateringe R, Mulder D, Wolffenbuttel B, Smit A. Skin autofluorescence improves the Finnish Diabetes Risk Score in the detection of diabetes in a large population-based cohort: The LifeLines Cohort Study. Diabetes Metab. 2018 Nov;44(5):424–430. doi: 10.1016/j.diabet.2017.09.002.
    1. Zakai NA, Katz R, Hirsch C, Shlipak MG, Chaves PHM, Newman AB, Cushman M. A prospective study of anemia status, hemoglobin concentration, and mortality in an elderly cohort: the Cardiovascular Health Study. Arch Intern Med. 2005 Oct 24;165(19):2214–20. doi: 10.1001/archinte.165.19.2214.
    1. Mahlknecht U, Kaiser S. Age-related changes in peripheral blood counts in humans. Exp Ther Med. 2010 Nov;1(6):1019–1025. doi: 10.3892/etm.2010.150.
    1. Nakamura E, Miyao K. A method for identifying biomarkers of aging and constructing an index of biological age in humans. J Gerontol A Biol Sci Med Sci. 2007 Oct;62(10):1096–105. doi: 10.1093/gerona/62.10.1096.
    1. Röhrig G, Gütgemann I, Kolb G, Leischker A. Anemia in the aged is not ageing related: position paper on anemia in the aged by the “working group anemia” of the German Geriatric Society (DGG) Eur Geriatr Med. 2018 Apr 9;9(3):395–397. doi: 10.1007/s41999-018-0048-0.
    1. Lewington Sarah, Clarke Robert, Qizilbash Nawab, Peto Richard, Collins Rory, Prospective Studies Collaboration Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002 Dec 14;360(9349):1903–13. doi: 10.1016/s0140-6736(02)11911-8.
    1. Egan BM, Zhao Yumin, Axon R Neal. US trends in prevalence, awareness, treatment, and control of hypertension, 1988-2008. JAMA. 2010 May 26;303(20):2043–50. doi: 10.1001/jama.2010.650.
    1. Beilin L J, Puddey I B, Burke V. Lifestyle and hypertension. Am J Hypertens. 1999 Sep;12(9 Pt 1):934–45. doi: 10.1016/s0895-7061(99)00057-6.
    1. Sharma G, Goodwin J. Effect of aging on respiratory system physiology and immunology. Clin Interv Aging. 2006;1(3):253–60. doi: 10.2147/ciia.2006.1.3.253. doi: 10.2147/ciia.2006.1.3.253.
    1. Shephard RJ. Maximal oxygen intake and independence in old age. Br J Sports Med. 2009 May;43(5):342–6. doi: 10.1136/bjsm.2007.044800.
    1. Aspenes Stian Thoresen, Nilsen Tom Ivar Lund, Skaug Eli-Anne, Bertheussen Gro F, Ellingsen Øyvind, Vatten Lars, Wisløff Ulrik. Peak oxygen uptake and cardiovascular risk factors in 4631 healthy women and men. Med Sci Sports Exerc. 2011 Aug;43(8):1465–73. doi: 10.1249/MSS.0b013e31820ca81c.
    1. Stratton JR, Levy WC, Cerqueira MD, Schwartz RS, Abrass IB. Cardiovascular responses to exercise. Effects of aging and exercise training in healthy men. Circulation. 1994 Apr;89(4):1648–55. doi: 10.1161/01.cir.89.4.1648.
    1. Hossack KF, Bruce RA. Maximal cardiac function in sedentary normal men and women: comparison of age-related changes. J Appl Physiol Respir Environ Exerc Physiol. 1982 Oct;53(4):799–804. doi: 10.1152/jappl.1982.53.4.799.
    1. Ogawa T, Spina RJ, Martin WH, Kohrt WM, Schechtman KB, Holloszy JO, Ehsani AA. Effects of aging, sex, and physical training on cardiovascular responses to exercise. Circulation. 1992 Aug;86(2):494–503. doi: 10.1161/01.cir.86.2.494.
    1. Booth FW, Laye MJ, Roberts MD. Lifetime sedentary living accelerates some aspects of secondary aging. J Appl Physiol (1985) 2011 Nov;111(5):1497–504. doi: 10.1152/japplphysiol.00420.2011.
    1. Hansen Bjørge Herman, Kolle Elin, Dyrstad Sindre Mikal, Holme Ingar, Anderssen Sigmund Alfred. Accelerometer-determined physical activity in adults and older people. Med Sci Sports Exerc. 2012 Feb;44(2):266–72. doi: 10.1249/MSS.0b013e31822cb354.
    1. Frederiksen Henrik, Hjelmborg Jacob, Mortensen Jakob, McGue Matt, Vaupel James W, Christensen Kaare. Age trajectories of grip strength: cross-sectional and longitudinal data among 8,342 Danes aged 46 to 102. Ann Epidemiol. 2006 Jul;16(7):554–62. doi: 10.1016/j.annepidem.2005.10.006.
    1. Sillanpää Elina, Laakkonen EK, Vaara E, Rantanen T, Kovanen V, Sipilä Sarianna, Kaprio J, Ollikainen M. Biological clocks and physical functioning in monozygotic female twins. BMC Geriatr. 2018 Apr 04;18(1):83. doi: 10.1186/s12877-018-0775-6.
    1. Eriksen L, Grønbæk Morten, Helge JW, Tolstrup JS, Curtis T. The Danish Health Examination Survey 2007-2008 (DANHES 2007-2008) Scand J Public Health. 2011 Mar;39(2):203–11. doi: 10.1177/1403494810393557.
    1. Arnold CM, Warkentin KD, Chilibeck PD, Magnus CRA. The reliability and validity of handheld dynamometry for the measurement of lower-extremity muscle strength in older adults. J Strength Cond Res. 2010 Mar;24(3):815–24. doi: 10.1519/JSC.0b013e3181aa36b8.
    1. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, Scherr PA, Wallace RB. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994 Mar;49(2):M85–94. doi: 10.1093/geronj/49.2.m85.
    1. Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N Engl J Med. 1995 Mar 02;332(9):556–61. doi: 10.1056/NEJM199503023320902.
    1. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004 Jun;89(6):2548–56. doi: 10.1210/jc.2004-0395.
    1. Aronson D, Bartha P, Zinder O, Kerner A, Markiewicz W, Avizohar O, Brook GJ, Levy Y. Obesity is the major determinant of elevated C-reactive protein in subjects with the metabolic syndrome. Int J Obes Relat Metab Disord. 2004 May;28(5):674–9. doi: 10.1038/sj.ijo.0802609.
    1. Heinrich P, Castell J, Andus T. Interleukin-6 and the acute phase response. Biochem J. 1990 Feb 01;265(3):621–36. doi: 10.1042/bj2650621.
    1. Starr ME, Evers B Mark, Saito Hiroshi. Age-associated increase in cytokine production during systemic inflammation: adipose tissue as a major source of IL-6. J Gerontol A Biol Sci Med Sci. 2009 Jul;64(7):723–30. doi: 10.1093/gerona/glp046.
    1. Shoelson SE, Lee Jongsoon, Goldfine Allison B. Inflammation and insulin resistance. J Clin Invest. 2006 Jul;116(7):1793–801. doi: 10.1172/JCI29069. doi: 10.1172/JCI29069.
    1. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005 Apr 21;352(16):1685–95. doi: 10.1056/NEJMra043430.
    1. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001 Feb 17;357(9255):539–45. doi: 10.1016/S0140-6736(00)04046-0.
    1. Heneka Michael T, O'Banion M Kerry. Inflammatory processes in Alzheimer's disease. J Neuroimmunol. 2007 Mar;184(1-2):69–91. doi: 10.1016/j.jneuroim.2006.11.017.
    1. Eugen-Olsen J, Andersen O, Linneberg A, Ladelund S, Hansen T, Langkilde A, Petersen J, Pielak T, Møller L N, Jeppesen J, Lyngbaek S, Fenger M, Olsen M H, Hildebrandt P R, Borch-Johnsen K, Jørgensen T, Haugaard S B. Circulating soluble urokinase plasminogen activator receptor predicts cancer, cardiovascular disease, diabetes and mortality in the general population. J Intern Med. 2010 Sep;268(3):296–308. doi: 10.1111/j.1365-2796.2010.02252.x.
    1. Haupt TH, Kallemose T, Ladelund S, Rasmussen LJH, Thorball CW, Andersen O, Pisinger C, Eugen-Olsen J. Risk Factors Associated with Serum Levels of the Inflammatory Biomarker Soluble Urokinase Plasminogen Activator Receptor in a General Population. Biomark Insights. 2014 Dec 16;9:BMI.S19876. doi: 10.4137/bmi.s19876.
    1. Hansen E, McCartney C, Sweeney R, Palimenio M, Grindstaff T. Hand-held dynamometer positioning impacts discomfort during quadriceps strength testing: A validity and reliability study. Int J Sports Phys Ther. 2015 Feb;10(1):62–8.
    1. Aadahl Mette, Jørgensen Torben. Validation of a new self-report instrument for measuring physical activity. Med Sci Sports Exerc. 2003 Jul;35(7):1196–202. doi: 10.1249/01.MSS.0000074446.02192.14.
    1. Dubina T, Mints AYa. Zhuk E. Biological age and its estimation. III. Introduction of a correction to the multiple regression model of biological age in cross-sectional and longitudinal studies. Exp Gerontol. 1984;19(2):133–43. doi: 10.1016/0531-5565(84)90016-0.
    1. Dubina T, Dyundikova V, Zhuk E. Biological age and its estimation. II. Assessment of biological age of albino rats by multiple regression analysis. Exp Gerontol. 1983;18(1):5–18. doi: 10.1016/0531-5565(83)90046-3.
    1. Bae C, Kang YG, Kim S, Cho C, Kang HC, Yu BY, Lee S, Cho KH, Lee DC, Lee K, Kim JS, Shin KK. Development of models for predicting biological age (BA) with physical, biochemical, and hormonal parameters. Arch Gerontol Geriatr. 2008;47(2):253–65. doi: 10.1016/j.archger.2007.08.009.
    1. Bae C, Kang YG, Piao M, Cho B, Cho KH, Park YK, Yu BY, Lee S, Kim MJ, Lee SH, Kim Y, Kim D, Kim JS, Oh JE. Models for estimating the biological age of five organs using clinical biomarkers that are commonly measured in clinical practice settings. Maturitas. 2013 Jul;75(3):253–60. doi: 10.1016/j.maturitas.2013.04.008.
    1. Nakamura E, Miyao K, Ozeki T. Assessment of biological age by principal component analysis. Mech Ageing Dev. 1988 Dec;46(1-3):1–18. doi: 10.1016/0047-6374(88)90109-1.
    1. Zhang W-, Bai X-, Sun X-, Cai G-, Bai X-, Zhu S-, Zhang M, Chen X. Construction of an integral formula of biological age for a healthy Chinese population using principle component analysis. J Nutr Health Aging. 2014;18(2):137–42. doi: 10.1007/s12603-013-0345-8.
    1. Zhang W, Jia L, Cai G, Shao F, Lin H, Liu Z, Liu F, Zhao D, Li Z, Bai X, Feng Z, Sun X, Chen X. Model construction for biological age based on a cross-sectional study of a healthy Chinese Han population. J Nutr Health Aging. 2017;21(10):1233–1239. doi: 10.1007/s12603-017-0874-7.
    1. Park J, Cho B, Kwon H, Lee C. Developing a biological age assessment equation using principal component analysis and clinical biomarkers of aging in Korean men. Arch Gerontol Geriatr. 2009;49(1):7–12. doi: 10.1016/j.archger.2008.04.003.
    1. Klemera P, Doubal S. A new approach to the concept and computation of biological age. Mech Ageing Dev. 2006 Mar;127(3):240–8. doi: 10.1016/j.mad.2005.10.004.
    1. Mitnitski A, Howlett SE, Rockwood K. Heterogeneity of human aging and its assessment. J Gerontol A Biol Sci Med Sci. 2017 Jul 01;72(7):877–884. doi: 10.1093/gerona/glw089.
    1. Cho IH, Park KS, Lim CJ. An empirical comparative study on biological age estimation algorithms with an application of Work Ability Index (WAI) Mech Ageing Dev. 2010 Feb;131(2):69–78. doi: 10.1016/j.mad.2009.12.001.
    1. Jia L, Zhang W, Chen X. Common methods of biological age estimation. Clin Interv Aging. 2017;12:759–772. doi: 10.2147/CIA.S134921. doi: 10.2147/CIA.S134921.
    1. Knowler William C, Barrett-Connor Elizabeth, Fowler Sarah E, Hamman Richard F, Lachin John M, Walker Elizabeth A, Nathan David M, Diabetes Prevention Program Research Group Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002 Feb 07;346(6):393–403. doi: 10.1056/NEJMoa012512.
    1. Pasanisi F, Contaldo F, de Simone G, Mancini M. Benefits of sustained moderate weight loss in obesity. Nutr Metab Cardiovasc Dis. 2001 Dec;11(6):401–6.
    1. Dandanell S, Skovborg C, Præst Charlotte Boslev, Kristensen K, Nielsen M, Lionett S, Jørgensen Sofie Drevsholt, Vigelsø Andreas, Dela Flemming, Helge Jørn Wulff. Maintaining a clinical weight loss after intensive lifestyle intervention is the key to cardiometabolic health. Obes Res Clin Pract. 2017;11(4):489–498. doi: 10.1016/j.orcp.2016.09.009.
    1. Wolf PA, D'Agostino RB, Belanger AJ, Kannel WB. Probability of stroke: a risk profile from the Framingham Study. Stroke. 1991 Mar;22(3):312–8. doi: 10.1161/01.str.22.3.312.
    1. Reaven GM. Role of insulin resistance in human disease (syndrome X): an expanded definition. Annu Rev Med. 1993;44:121–31. doi: 10.1146/annurev.me.44.020193.001005.
    1. Sundström Johan, Risérus Ulf, Byberg L, Zethelius B, Lithell H, Lind L. Clinical value of the metabolic syndrome for long term prediction of total and cardiovascular mortality: prospective, population based cohort study. BMJ. 2006 Apr 15;332(7546):878–82. doi: 10.1136/bmj.38766.624097.1F.
    1. Jahangiry L, Farhangi MA, Rezaei F. Framingham risk score for estimation of 10-years of cardiovascular diseases risk in patients with metabolic syndrome. J Health Popul Nutr. 2017 Nov 13;36(1):36. doi: 10.1186/s41043-017-0114-0.
    1. World Health Organization Physical Activity and Adults Fact Sheet. Global Strategy on Diet, Physical Activity and Health. [2020-10-05].
    1. Baker GT, Sprott RL. Biomarkers of aging. Exp Gerontol. 1988;23(4-5):223–39. doi: 10.1016/0531-5565(88)90025-3.
    1. Jylhävä Juulia, Pedersen NL, Hägg Sara. Biological age predictors. EBioMedicine. 2017 Jul;21:29–36. doi: 10.1016/j.ebiom.2017.03.046.

Source: PubMed

3
Prenumerera