Tele-Medicine Based and Self-Administered Interactive Exercise Program (Tele-Exergame) to Improve Cognition in Older Adults with Mild Cognitive Impairment or Dementia: A Feasibility, Acceptability, and Proof-of-Concept Study

Catherine Park, Ram Kinker Mishra, Michele K York, Ana Enriquez, Abigail Lindsay, Gregory Barchard, Ashkan Vaziri, Bijan Najafi, Catherine Park, Ram Kinker Mishra, Michele K York, Ana Enriquez, Abigail Lindsay, Gregory Barchard, Ashkan Vaziri, Bijan Najafi

Abstract

Improved life expectancy is increasing the number of older adults who suffer from motor-cognitive decline. Unfortunately, conventional balance exercise programs are not tailored to patients with cognitive impairments, and exercise adherence is often poor due to unsupervised settings. This study describes the acceptability and feasibility of a sensor-based in-home interactive exercise system, called tele-Exergame, used by older adults with mild cognitive impairment (MCI) or dementia. Our tele-Exergame is specifically designed to improve balance and cognition during distractive conditioning while a telemedicine interface remotely supervises the exercise, and its exercises are gamified balance tasks with explicit augmented visual feedback. Fourteen adults with MCI or dementia (Age = 68.1 ± 5.4 years, 12 females) participated and completed exergame twice weekly for six weeks at their homes. Before and after 6 weeks, participants' acceptance was assessed by Technology Acceptance Model (TAM) questionnaire, and participants' cognition and anxiety level were evaluated by the Montreal Cognitive Assessment (MoCA) and Beck Anxiety Inventory (BAI), respectively. Results support acceptability, perceived benefits, and positive attitudes toward the use of the system. The findings of this study support the feasibility, acceptability, and potential benefit of tele-Exergame to preserve cognitive function among older adults with MCI and dementia.

Keywords: Alzheimer’s disease; cognitive impairment; dementia; exercise; exergame; gamification; telehealth.

Conflict of interest statement

B.N., Co-Author, is serving as a consultant for BioSensics LLC, manufacturers of some of the tools used in this study. However, he was also not involved in recruitment and data analysis from this study. R.k.M. is now with BioSensics LLC; however, his contribution to this study was limited to when he was a postdoc associate with Baylor College of Medicine. A.E, A.L., G.B. and A.V. are with BioSensics LLC. However, their contribution was limited to technology design, technical support, and interpretation of sensor data. The other authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Tele-Exergame system. (A) Tablet and wearable sensor. (B) Leg raising exercise with the tele-Exergame system. (C) Foot flexion exercise with the tele-Exergame system.

References

    1. Verghese J., Annweiler C., Ayers E., Barzilai N., Beauchet O., Bennett D.A., Bridenbaugh S.A., Buchman A.S., Callisaya M.L., Camicioli R., et al. Motoric cognitive risk syndrome: Multicountry prevalence and dementia risk. Neurology. 2014;83:718–726. doi: 10.1212/WNL.0000000000000717.
    1. Panza F., Solfrizzi V., Barulli M.R., Santamato A., Seripa D., Pilotto A., Logroscino G. Cognitive frailty: A systematic review of epidemiological and neurobiological evidence of an age-related clinical condition. Rejuvenation Res. 2015;18:389–412. doi: 10.1089/rej.2014.1637.
    1. HHS Dramatic Changes in U.S. [(accessed on 22 August 2022)];Aging Highlighted in New Census, NIH Report. Available online: .
    1. Fried L.P., Ferrucci L., Darer J., Williamson J.D., Anderson G. Untangling the concepts of disability, frailty, and comorbidity: Implications for improved targeting and care. J. Gerontol. A Biol. Sci. Med. Sci. 2004;59:255–263. doi: 10.1093/gerona/59.3.M255.
    1. Prince M., Bryce R., Albanese E., Wimo A., Ribeiro W., Ferri C.P. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2013;9:63–75.e62. doi: 10.1016/j.jalz.2012.11.007.
    1. Bahureksa L., Najafi B., Saleh A., Sabbagh M., Coon D., Mohler M.J., Schwenk M. The impact of mild cognitive impairment on gait and balance: A systematic review and meta-analysis of studies using instrumented assessment. Gerontology. 2017;63:67–83. doi: 10.1159/000445831.
    1. Callahan K.E., Lovato J.F., Miller M.E., Easterling D., Snitz B., Williamson J.D. Associations between mild cognitive impairment and hospitalization and readmission. J. Am. Geriatr. Soc. 2015;63:1880–1885. doi: 10.1111/jgs.13593.
    1. Muir S.W., Gopaul K., Montero Odasso M.M. The role of cognitive impairment in fall risk among older adults: A systematic review and meta-analysis. Age Ageing. 2012;41:299–308. doi: 10.1093/ageing/afs012.
    1. Plassman B.L., Langa K.M., Fisher G.G., Heeringa S.G., Weir D.R., Ofstedal M.B., Burke J.R., Hurd M.D., Potter G.G., Rodgers W.L., et al. Prevalence of cognitive impairment without dementia in the United States. Ann. Intern. Med. 2008;148:427–434. doi: 10.7326/0003-4819-148-6-200803180-00005.
    1. van Gelder B.M., Tijhuis M.A., Kalmijn S., Giampaoli S., Nissinen A., Kromhout D. Physical activity in relation to cognitive decline in elderly men: The FINE Study. Neurology. 2004;63:2316–2321. doi: 10.1212/01.WNL.0000147474.29994.35.
    1. Gallardo-Gómez D., Del Pozo-Cruz J., Noetel M., Álvarez-Barbosa F., Alfonso-Rosa R.M., Del Pozo Cruz B. Optimal dose and type of exercise to improve cognitive function in older adults: A systematic review and bayesian model-based network meta-analysis of RCTs. Ageing Res. Rev. 2022;76:101591. doi: 10.1016/j.arr.2022.101591.
    1. Levin O., Netz Y., Ziv G. The beneficial effects of different types of exercise interventions on motor and cognitive functions in older age: A systematic review. Eur. Rev. Aging Phys. Act. Off. J. Eur. Group Res. Into Elder. Phys. Act. 2017;14:20. doi: 10.1186/s11556-017-0189-z.
    1. Teraz K., Šlosar L., Paravlić A.H., de Bruin E.D., Marusic U. Impact of motor-cognitive interventions on selected gait and balance outcomes in older adults: A systematic review and meta-analysis of randomized controlled trials. Front. Psychol. 2022;13:837710. doi: 10.3389/fpsyg.2022.837710.
    1. Wollesen B., Wildbredt A., van Schooten K.S., Lim M.L., Delbaere K. The effects of cognitive-motor training interventions on executive functions in older people: A systematic review and meta-analysis. Eur. Rev. Aging Phys. Act. Off. J. Eur. Group Res. Elder. Phys. Act. 2020;17:9. doi: 10.1186/s11556-020-00240-y.
    1. Kiper P., Richard M., Stefanutti F., Pierson-Poinsignon R., Cacciante L., Perin C., Mazzucchelli M., Viganò B., Meroni R. Combined Motor and Cognitive Rehabilitation: The Impact on Motor Performance in Patients with Mild Cognitive Impairment. Systematic Review and Meta-Analysis. J. Pers. Med. 2022;12:276. doi: 10.3390/jpm12020276.
    1. Bamidis P.D., Vivas A.B., Styliadis C., Frantzidis C., Klados M., Schlee W., Siountas A., Papageorgiou S.G. A review of physical and cognitive interventions in aging. Neurosci. Biobehav. Rev. 2014;44:206–220. doi: 10.1016/j.neubiorev.2014.03.019.
    1. Zhu S., Sui Y., Shen Y., Zhu Y., Ali N., Guo C., Wang T. Effects of virtual reality intervention on cognition and motor function in older adults with mild cognitive impairment or dementia: A systematic review and meta-analysis. Front. Aging Neurosci. 2021;13:586999. doi: 10.3389/fnagi.2021.586999.
    1. Brennan D.M., Tindall L., Theodoros D., Brown J., Campbell M., Christiana D., Smith D., Cason J., Lee A., American Telemedicine A. A blueprint for telerehabilitation guidelines—October 2010. Telemed. J. eHealth. 2011;17:662–665. doi: 10.1089/tmj.2011.0036.
    1. Mishra R.K., Park C., Momin A.S., Rafaei N.E., Kunik M., York M.K., Najafi B. Care4AD: A Technology-Driven Platform for Care Coordination and Management: Acceptability Study in Dementia. Gerontology. 2022 doi: 10.1159/000526219.
    1. Dai B., Larnyo E., Tetteh E.A., Aboagye A.K., Musah A.-A.I. Factors Affecting Caregivers’ Acceptance of the Use of Wearable Devices by Patients With Dementia: An Extension of the Unified Theory of Acceptance and Use of Technology Model. Am. J. Alzheimer’s Dis. Other Dement. 2020;35:1533317519883493. doi: 10.1177/1533317519883493.
    1. Czarnuch S., Ricciardelli R., Mihailidis A. Predicting the role of assistive technologies in the lives of people with dementia using objective care recipient factors. BMC Geriatr. 2016;16:143. doi: 10.1186/s12877-016-0314-2.
    1. Miguel Cruz A., Lopez Portillo H.P., Daum C., Rutledge E., King S., Liu L. Technology Acceptance and Usability of a Mobile App to Support the Workflow of Health Care Aides Who Provide Services to Older Adults: Pilot Mixed Methods Study. JMIR Aging. 2022;5:e37521. doi: 10.2196/37521.
    1. Rahemi H., Chung J., Hinko V., Hoeglinger S., Martinek W.A., Montero-Baker M., Mills J.L., Najafi B. Pilot study evaluating the efficacy of exergaming for the prevention of deep venous thrombosis. J. Vasc. Surg. Venous Lymphat. Disord. 2018;6:146–153. doi: 10.1016/j.jvsv.2017.08.019.
    1. Zhou H., Al-Ali F., Kang G.E., Hamad A.I., Ibrahim R.A., Talal T.K., Najafi B. Application of wearables to facilitate virtually supervised intradialytic exercise for reducing depression symptoms. Sensors. 2020;20:1571. doi: 10.3390/s20061571.
    1. Mishra R.K., Park C., Zhou H., Najafi B., Thrasher T.A. Evaluation of motor and cognitive performance in people with Parkinson’s disease using instrumented trail-making test. Gerontology. 2022;68:234–240. doi: 10.1159/000515940.
    1. Billis E., Strimpakos N., Kapreli E., Sakellari V., Skelton D.A., Dontas I., Ioannou F., Filon G., Gioftsos G. Cross-cultural validation of the Falls Efficacy Scale International (FES-I) in Greek community-dwelling older adults. Disabil. Rehabil. 2011;33:1776–1784. doi: 10.3109/09638288.2010.546937.
    1. Park C., Atique M.M.U., Mishra R., Najafi B. Association between fall history and gait, balance, physical activity, depression, fear of falling, and motor capacity: A 6-month follow-up study. Int. J. Environ. Res. Public Health. 2022;19:10785. doi: 10.3390/ijerph191710785.
    1. Radloff L.S. A self-report depression scale for research in the general population. Appl. Psychol Meas. 1977;1:385–401. doi: 10.1177/014662167700100306.
    1. Masrom M. Technology acceptance model and e-learning. Technology. 2007;21:81.
    1. Ciesielska N., Sokołowski R., Mazur E., Podhorecka M., Polak-Szabela A., Kędziora-Kornatowska K. Is the Montreal Cognitive Assessment (MoCA) test better suited than the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) detection among people aged over 60? Meta-analysis. Psychiatr. Pol. 2016;50:1039–1052. doi: 10.12740/PP/45368.
    1. Rector N.A., Arnold P.D. Chapter 7—Assessment of patients with anxiety disorders. In: Goldbloom D.S., editor. Psychiatric Clinical Skills. Mosby; Philadelphia, PA, USA: 2006. pp. 71–89.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Taylor & Francis; Abingdon, UK: 2013.
    1. Thakur A., Sharma R., Sharma S.K., Thakur K., Jelly P. Effect of buerger allen exercise on foot perfusion among patient with diabetes mellitus: A systematic review & meta-analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 2022;16:102393. doi: 10.1016/j.dsx.2022.102393.
    1. Horak F., King L., Mancini M. Role of body-worn movement monitor technology for balance and gait rehabilitation. Phys. Ther. 2015;95:461–470. doi: 10.2522/ptj.20140253.
    1. Najafi B., Grewal G., Lee-Eng J., Talal T.K., Menzies R.A., Armstrong D.G. DIABETES. American Diabetes Association; Arlington, VA, USA: 2014. Game-based Guided Exercise: Using an Avatar with Real-Time Feed back to Improve Postural Stability in Diabetic Peripheral Neuropathy; p. A186.
    1. Zijlstra A., Mancini M., Chiari L., Zijlstra W. Biofeedback for training balance and mobility tasks in older populations: A systematic review. J. Neuroeng. Rehabil. 2010;7:58. doi: 10.1186/1743-0003-7-58.
    1. Gordt K., Gerhardy T., Najafi B., Schwenk M. Effects of Wearable Sensor-Based Balance and Gait Training on Balance, Gait, and Functional Performance in Healthy and Patient Populations: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Gerontology. 2018;64:74–89. doi: 10.1159/000481454.
    1. Wulf G. Attentional focus and motor learning: A review of 10 years of research. e-J. Beweg. Und Train. 2007;1:1–11.
    1. van Diest M., Lamoth C.J., Stegenga J., Verkerke G.J., Postema K. Exergaming for balance training of elderly: State of the art and future developments. J. Neuroeng. Rehabil. 2013;10:101. doi: 10.1186/1743-0003-10-101.
    1. Baram Y. Virtual sensory feedback for gait improvement in neurological patients. Front. Neurol. 2013;4:138. doi: 10.3389/fneur.2013.00138.
    1. Ma C.Z., Wong D.W., Lam W.K., Wan A.H., Lee W.C. Balance Improvement Effects of Biofeedback Systems with State-of-the-Art Wearable Sensors: A Systematic Review. Sensors. 2016;16:434. doi: 10.3390/s16040434.
    1. Poynter L., Kwan J., Sayer A.A., Vassallo M. Does cognitive impairment affect rehabilitation outcome? J. Am. Geriatr. Soc. 2011;59:2108–2111. doi: 10.1111/j.1532-5415.2011.03658.x.
    1. Shah D.C., Evans M., King D. Prevalence of mental illness in a rehabilitation unit for older adults. Postgrad. Med. J. 2000;76:153–156. doi: 10.1136/pmj.76.893.153.
    1. Forkan R., Pumper B., Smyth N., Wirkkala H., Ciol M.A., Shumway-Cook A. Exercise adherence following physical therapy intervention in older adults with impaired balance. Phys. Ther. 2006;86:401–410. doi: 10.1093/ptj/86.3.401.
    1. Hill K.D., LoGiudice D., Lautenschlager N.T., Said C.M., Dodd K.J., Suttanon P. Effectiveness of balance training exercise in people with mild to moderate severity Alzheimer’s disease: Protocol for a randomised trial. BMC Geriatr. 2009;9:29. doi: 10.1186/1471-2318-9-29.
    1. Tak E., van Uffelen J., Paw M., van Mechelen W., Hopman-Rock M. Adherence to exercise programs and determinants of maintenance in older adults with mild cognitive impairment. J. Aging Phys. Act. 2012;20:32–46. doi: 10.1123/japa.20.1.32.
    1. Schwenk M., Dutzi I., Englert S., Micol W., Najafi B., Mohler J., Hauer K. An intensive exercise program improves motor performances in patients with dementia: Translational model of geriatric rehabilitation. J. Alzheimers Dis. 2014;39:487–498. doi: 10.3233/JAD-130470.
    1. Lei H., Toosizadeh N., Schwenk M., Sherman S., Karp S., Sternberg E., Najafi B. A Pilot Clinical Trial to Objectively Assess the Efficacy of Electroacupuncture on Gait in Patients with Parkinson’s Disease Using Body Worn Sensors. PLoS ONE. 2016;11:e0155613. doi: 10.1371/journal.pone.0155613.
    1. van der Wardt V., Hancox J., Gondek D., Logan P., Nair R.D., Pollock K., Harwood R. Adherence support strategies for exercise interventions in people with mild cognitive impairment and dementia: A systematic review. Prev. Med. Rep. 2017;7:38–45. doi: 10.1016/j.pmedr.2017.05.007.
    1. Kairy D., Lehoux P., Vincent C., Visintin M. A systematic review of clinical outcomes, clinical process, healthcare utilization and costs associated with telerehabilitation. Disabil. Rehabil. 2009;31:427–447. doi: 10.1080/09638280802062553.
    1. Cotelli M., Manenti R., Brambilla M., Gobbi E., Ferrari C., Binetti G., Cappa S.F. Cognitive telerehabilitation in mild cognitive impairment, Alzheimer’s disease and frontotemporal dementia: A systematic review. J. Telemed. Telecare. 2017;25:67–79. doi: 10.1177/1357633X17740390.
    1. McCue M., Fairman A., Pramuka M. Enhancing quality of life through telerehabilitation. Phys. Med. Rehabil. Clin. N. Am. 2010;21:195–205. doi: 10.1016/j.pmr.2009.07.005.
    1. Evertson L.C., Jennings L.A., Reuben D.B., Zaila K.E., Akram N., Romero T., Tan Z.S. Caregiver outcomes of a dementia care program. Geriatr. Nurs. 2021;42:447–459. doi: 10.1016/j.gerinurse.2021.02.003.
    1. Hill N.T., Mowszowski L., Naismith S.L., Chadwick V.L., Valenzuela M., Lampit A. Computerized cognitive training in older adults with mild cognitive impairment or dementia: A systematic review and meta-analysis. Am. J. Psychiatry. 2017;174:329–340. doi: 10.1176/appi.ajp.2016.16030360.
    1. Ordonez T.N., Borges F., Kanashiro C.S., Santos C., Hora S.S., Lima-Silva T.B. Actively station: Effects on global cognition of mature adults and healthy elderly program using eletronic games. Dement. Neuropsychol. 2017;11:186–197. doi: 10.1590/1980-57642016dn11-020011.
    1. Bechly K.E., Carender W.J., Myles J.D., Sienko K.H. Determining the preferred modality for real-time biofeedback during balance training. Gait Posture. 2013;37:391–396. doi: 10.1016/j.gaitpost.2012.08.007.
    1. PRC Mobile Fact Sheet. [(accessed on 26 August 2022)]. Available online:
    1. Ginis P., Nieuwboer A., Dorfman M., Ferrari A., Gazit E., Canning C.G., Rocchi L., Chiari L., Hausdorff J.M., Mirelman A. Feasibility and effects of home-based smartphone-delivered automated feedback training for gait in people with Parkinson’s disease: A pilot randomized controlled trial. Parkinsonism Relat. Disord. 2016;22:28–34. doi: 10.1016/j.parkreldis.2015.11.004.

Source: PubMed

3
Prenumerera