Breast Milk, a Source of Beneficial Microbes and Associated Benefits for Infant Health

Katríona E Lyons, C Anthony Ryan, Eugene M Dempsey, R Paul Ross, Catherine Stanton, Katríona E Lyons, C Anthony Ryan, Eugene M Dempsey, R Paul Ross, Catherine Stanton

Abstract

Human breast milk is considered the optimum feeding regime for newborn infants due to its ability to provide complete nutrition and many bioactive health factors. Breast feeding is associated with improved infant health and immune development, less incidences of gastrointestinal disease and lower mortality rates than formula fed infants. As well as providing fundamental nutrients to the growing infant, breast milk is a source of commensal bacteria which further enhance infant health by preventing pathogen adhesion and promoting gut colonisation of beneficial microbes. While breast milk was initially considered a sterile fluid and microbes isolated were considered contaminants, it is now widely accepted that breast milk is home to its own unique microbiome. The origins of bacteria in breast milk have been subject to much debate, however, the possibility of an entero-mammary pathway allowing for transfer of microbes from maternal gut to the mammary gland is one potential pathway. Human milk derived strains can be regarded as potential probiotics; therefore, many studies have focused on isolating strains from milk for subsequent use in infant health and nutrition markets. This review aims to discuss mammary gland development in preparation for lactation as well as explore the microbial composition and origins of the human milk microbiota with a focus on probiotic development.

Keywords: breast milk; entero-mammary pathway; human milk oligosaccharides (HMOs), human milk microbiome; lactation; mammary gland; probiotic.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Figures

Figure 1
Figure 1
Breast milk composition and associated benefits. Breast milk provides essential nutrients, bioactive compounds, and commensal bacteria which aid in growth and development of the infant and the immune system. Associated benefits of breast feeding (BF) include protection against pathogens, enhanced immune development, complete nutrition, promotion of gut colonization, and less incidences of gastrointestinal disease.

References

    1. Peroni D.G., Pescollderungg L., Piacentini G.L., Rigotti E., Maselli M., Watschinger K., Piazza M., Pigozzi R., Boner A.L. Immune regulatory cytokines in the milk of lactating women from farming and urban environments. Pediatr. Allergy Immunol. 2010;21:977–982. doi: 10.1111/j.1399-3038.2010.00995.x.
    1. Hermansson H., Kumar H., Collado M.C., Salminen S., Isolauri E., Rautava S. Breast milk microbiota is shaped by mode of delivery and intrapartum antibiotic exposure. Front. Nutr. 2019;6:4. doi: 10.3389/fnut.2019.00004.
    1. Papachatzi E., Dimitriou G., Dimitropoulos K., Vantarakis A. Pre-pregnancy obesity: Maternal, neonatal and childhood outcomes. J. Neonatal-Perinat. Med. 2013;6:203–216. doi: 10.3233/NPM-1370313.
    1. Kramer M.S., Guo T., Platt R.W., Sevkovskaya Z., Dzikovich I., Collet J.-P., Shapiro S., Chalmers B., Hodnett E., Vanilovich I. Infant growth and health outcomes associated with 3 compared with 6 mo of exclusive breastfeeding. Am. J. Clin. Nutr. 2003;78:291–295. doi: 10.1093/ajcn/78.2.291.
    1. Ladomenou F., Moschandreas J., Kafatos A., Tselentis Y., Galanakis E. Protective effect of exclusive breastfeeding against infections during infancy: A prospective study. Arch. Dis. Child. 2010;95:1004–1008. doi: 10.1136/adc.2009.169912.
    1. Ahern G.J., Hennessy A., Ryan C.A., Ross R.P., Stanton C. Advances in infant formula science. Annu. Rev. Food Sci. Technol. 2019;10:75–102. doi: 10.1146/annurev-food-081318-104308.
    1. Heikkilä M.P., Saris P. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J. Appl. Microbiol. 2003;95:471–478. doi: 10.1046/j.1365-2672.2003.02002.x.
    1. Gavin A., Ostovar K. Microbiological characterization of human milk. J. Food Prot. 1977;40:614–616. doi: 10.4315/0362-028X-40.9.614.
    1. Olivares M., Díaz-Ropero M., Martín R., Rodríguez J., Xaus J. Antimicrobial potential of four Lactobacillus strains isolated from breast milk. J. Appl. Microbiol. 2006;101:72–79. doi: 10.1111/j.1365-2672.2006.02981.x.
    1. Jara S., Sánchez M., Vera R., Cofré J., Castro E. The inhibitory activity of Lactobacillus spp. isolated from breast milk on gastrointestinal pathogenic bacteria of nosocomial origin. Anaerobe. 2011;17:474–477. doi: 10.1016/j.anaerobe.2011.07.008.
    1. Rajoka M.S.R., Mehwish H.M., Siddiq M., Haobin Z., Zhu J., Yan L., Shao D., Xu X., Shi J. Identification, characterization, and probiotic potential of Lactobacillus rhamnosus isolated from human milk. LWT. 2017;84:271–280. doi: 10.1016/j.lwt.2017.05.055.
    1. Rodríguez J.M. The origin of human milk bacteria: Is there a bacterial entero-mammary pathway during late pregnancy and lactation? Adv. Nutr. 2014;5:779–784. doi: 10.3945/an.114.007229.
    1. Javed A., Lteif A. Thieme Medical Publishers; New York, NY, USA: Development of the human breast. In Seminars in Plastic Surgery; pp. 5–12.
    1. Howard B.A., Gusterson B.A. Human breast development. J. Mammary Gland Biol. Neoplasia. 2000;5:119–137. doi: 10.1023/A:1026487120779.
    1. Seltzer V. The breast: Embryology, development, and anatomy. Clin. Obstet. Gynecol. 1994;37:879–880. doi: 10.1097/00003081-199412000-00013.
    1. Macias H., Hinck L. Mammary gland development. Wiley Interdiscip. Rev. Dev. Biol. 2012;1:533–557. doi: 10.1002/wdev.35.
    1. Watson C.J., Khaled W.T. Mammary development in the embryo and adult: A journey of morphogenesis and commitment. Development. 2008;135:995–1003. doi: 10.1242/dev.005439.
    1. Gabriel A., Maxwell G. MedScape. Breast Embryology. [(accessed on 18 July 2016)]; Available online: .
    1. Moore K.L., Persaud T.V.N., Torchia M.G. The Developing Human-E-Book: Clinically Oriented Embryology. Elsevier; Amsterdam, The Netherlands: 2018.
    1. Turashvili G., Bouchal J., Burkadze G., Kolar Z. Mammary gland development and cancer. Cesk Patol. 2005;41:94–101.
    1. Jayasinghe Y., Cha R., Horn-Ommen J., O’Brien P., Simmons P.S. Establishment of normative data for the amount of breast tissue present in healthy children up to two years of age. J. Pediatr. Adolesc. Gynecol. 2010;23:305–311. doi: 10.1016/j.jpag.2010.03.002.
    1. Schmidt I.M., Chellakooty M., Haavisto A.-M., Boisen K.A., Damgaard I.N., Steendahl U., Toppari J., Skakkebaek N.E., Main K.M. Gender difference in breast tissue size in infancy: Correlation with serum estradiol. Pediatr. Res. 2002;52:682–686. doi: 10.1203/00006450-200211000-00012.
    1. McKIERNAN J.F., Hull D. Breast development in the newborn. Arch. Dis. Child. 1981;56:525–529. doi: 10.1136/adc.56.7.525.
    1. Anbazhagan R., Bartek J., Monaghan P., Gusterson B.A. Growth and development of the human infant breast. Am. J. Anat. 1991;192:407–417. doi: 10.1002/aja.1001920408.
    1. Naccarato A.G., Viacava P., Vignati S., Fanelli G., Bonadio A.G., Montruccoli G., Bevilacqua G. Bio-morphological events in the development of the human female mammary gland from fetal age to puberty. Virchows Arch. 2000;436:431–438. doi: 10.1007/s004280050470.
    1. McNally S., Martin F. Molecular regulators of pubertal mammary gland development. Ann. Med. 2011;43:212–234. doi: 10.3109/07853890.2011.554425.
    1. Marshall W.A., Tanner J.M. Variations in pattern of pubertal changes in girls. Arch. Dis. Child. 1969;44:291. doi: 10.1136/adc.44.235.291.
    1. Fu N.Y., Nolan E., Lindeman G.J., Visvader J.E. Stem Cells and the Differentiation Hierarchy in Mammary Gland Development. Physiol. Rev. 2020 doi: 10.1152/physrev.00040.2018.
    1. Brisken C., Park S., Vass T., Lydon J.P., O’Malley B.W., Weinberg R.A. A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc. Natl. Acad. Sci. USA. 1998;95:5076–5081. doi: 10.1073/pnas.95.9.5076.
    1. Wiseman B.S., Werb Z. Stromal effects on mammary gland development and breast cancer. Science. 2002;296:1046–1049. doi: 10.1126/science.1067431.
    1. Richert M.M., Schwertfeger K.L., Ryder J.W., Anderson S.M. An atlas of mouse mammary gland development. J. Mammary Gland Biol. Neoplasia. 2000;5:227–241. doi: 10.1023/A:1026499523505.
    1. Taylor-Papadimitriou J., Lane E., Neville M. The Mammary Gland: Development, Regulation and Function. Plenum; New York, NY, USA: 1987.
    1. Hoover K., Wilson-Clay B. The Breastfeeding Atlas. LactNews Press; Austin, TX, USA: 2002.
    1. Pang W.W., Hartmann P.E. Initiation of human lactation: Secretory differentiation and secretory activation. J. Mammary Gland Biol. Neoplasia. 2007;12:211–221. doi: 10.1007/s10911-007-9054-4.
    1. Kent J.C. How breastfeeding works. J. Midwifery Women’s Health. 2007;52:564–570. doi: 10.1016/j.jmwh.2007.04.007.
    1. Truchet S., Honvo-Houéto E. Physiology of milk secretion. Best Pract. Res. Clin. Endocrinol. Metab. 2017;31:367–384. doi: 10.1016/j.beem.2017.10.008.
    1. Kon S.K., Cowie A.T. Milk: The Mammary Gland and Its Secretion. Elsevier; Amsterdam, The Netherlands: 2016.
    1. Pillay J., Davis T.J. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2019. Physiology, lactation.
    1. Neville M.C., Morton J., Umemura S. Lactogenesis: The transition from pregnancy to lactation. Pediatr. Clin. North Am. 2001;48:35–52. doi: 10.1016/S0031-3955(05)70284-4.
    1. Neville M.C., Morton J. Physiology and Endocrine Changes Underlying Human Lactogenesis II. J. Nutr. 2001;131:3005S–3008S. doi: 10.1093/jn/131.11.3005S.
    1. Kent J.C., Mitoulas L.R., Cregan M.D., Ramsay D.T., Doherty D.A., Hartmann P.E. Volume and frequency of breastfeedings and fat content of breast milk throughout the day. Pediatrics. 2006;117:e387–e395. doi: 10.1542/peds.2005-1417.
    1. Hurst N.M. Recognizing and treating delayed or failed lactogenesis II. J. Midwifery Women’s Health. 2007;52:588–594. doi: 10.1016/j.jmwh.2007.05.005.
    1. Howie P., Houston M., Cook A., Smart L., McArdle T., McNeilly A. How long should a breast feed last? Early Hum. Dev. 1981;5:71–77. doi: 10.1016/0378-3782(81)90072-4.
    1. Wilde C., Prentice A., Peaker M. Breast-feeding: Matching supply with demand in human lactation. Proc. Nutr. Soc. 1995;54:401–406. doi: 10.1079/PNS19950009.
    1. Kent J.C., Prime D.K., Garbin C.P. Principles for maintaining or increasing breast milk production. J. Obstet. Gynecol. Neonatal Nurs. 2012;41:114–121. doi: 10.1111/j.1552-6909.2011.01313.x.
    1. Hartmann P.E., Owens R.A., Cox D.B., Kent J.C. Breast development and control of milk synthesis. Food Nutr. Bull. 1996;17:1–12. doi: 10.1177/156482659601700404.
    1. Tritos N.A., Klibanski A. Yen and Jaffe’s Reproductive Endocrinology. Elsevier; Amsterdam, The Netherlands: 2019. Prolactin and its role in human reproduction; pp. 58–74.
    1. Truchet S., Ollivier-Bousquet M. Mammary gland secretion: Hormonal coordination of endocytosis and exocytosis. Animal. 2009;3:1733–1742. doi: 10.1017/S1751731109990589.
    1. Mather I.H., Keenan T.W. Origin and secretion of milk lipids. J. Mammary Gland Biol. Neoplasia. 1998;3:259–273. doi: 10.1023/A:1018711410270.
    1. Mobasheri A., Barrett-Jolley R. Aquaporin water channels in the mammary gland: From physiology to pathophysiology and neoplasia. J. Mammary Gland Biol. Neoplasia. 2014;19:91–102. doi: 10.1007/s10911-013-9312-6.
    1. Shennan D., Peaker M. Transport of milk constituents by the mammary gland. Physiol. Rev. 2000;80:925–951. doi: 10.1152/physrev.2000.80.3.925.
    1. Cho J.-Y., Leéveilleé R.E., Kao R., Rousset B., Parlow A., Burak W.E., Jr., Mazzaferri E.L., Jhiang S.M. Hormonal regulation of radioiodide uptake activity and Na+/I−symporter expression in mammary glands. J. Clin. Endocrinol. Metab. 2000;85:2936–2943. doi: 10.1210/jc.85.8.2936.
    1. Montalbetti N., Dalghi M.G., Albrecht C., Hediger M.A. Nutrient transport in the mammary gland: Calcium, trace minerals and water soluble vitamins. J. Mammary Gland Biol. Neoplasia. 2014;19:73–90. doi: 10.1007/s10911-014-9317-9.
    1. Zhao F.-Q. Biology of glucose transport in the mammary gland. J. Mammary Gland Biol. Neoplasia. 2014;19:3–17. doi: 10.1007/s10911-013-9310-8.
    1. Viña J., Puertes I.R., Saez G.T., Viña J.R. Role of prolactin in amino acid uptake by the lactating mammary gland of the rat. FEBS Lett. 1981;126:250–252. doi: 10.1016/0014-5793(81)80253-0.
    1. McManaman J.L., Neville M.C. Mammary physiology and milk secretion. Adv. Drug Deliv. Rev. 2003;55:629–641. doi: 10.1016/S0169-409X(03)00033-4.
    1. Kulski J., Hartmann P. Changes in human milk composition during the initiation of lactation. Aust. J. Exp. Biol. Med Sci. 1981;59:101–114. doi: 10.1038/icb.1981.6.
    1. Kramer M.S., Kakuma R. Optimal duration of exclusive breastfeeding. Cochrane Database Syst. Rev. 2012 doi: 10.1002/14651858.CD003517.pub2.
    1. Casey C.E., Neifert M.R., Seacat J.M., Neville M.C. Nutrient intake by breast-fed infants during the first five days after birth. Am. J. Dis. Child. 1986;140:933–936. doi: 10.1001/archpedi.1986.02140230103044.
    1. Castellote C., Casillas R., Ramírez-Santana C., Pérez-Cano F.J., Castell M., Moretones M.G., López-Sabater M.C., Franch À. Premature delivery influences the immunological composition of colostrum and transitional and mature human milk. J. Nutr. 2011;141:1181–1187. doi: 10.3945/jn.110.133652.
    1. Brown J.E. Nutrition Through the Life Cycle. Cengage Learning; Boston, MA, USA: 2016.
    1. Pons S.M., Bargalló A.C., Folgoso C.C., Sabater M.L. Triacylglycerol composition in colostrum, transitional and mature human milk. Eur. J. Clin. Nutr. 2000;54:878–882. doi: 10.1038/sj.ejcn.1601096.
    1. Sundekilde U.K., Downey E., O’Mahony J.A., O’Shea C.-A., Ryan C.A., Kelly A.L., Bertram H.C. The effect of gestational and lactational age on the human milk metabolome. Nutrients. 2016;8:304. doi: 10.3390/nu8050304.
    1. Jenness R. Seminars in Perinatology. Elsevier; Amsterdam, The Netherlands: 1979. The composition of human milk; pp. 225–239.
    1. Gao X., McMahon R.J., Woo J.G., Davidson B.S., Morrow A.L., Zhang Q. Temporal changes in milk proteomes reveal developing milk functions. J. Proteome Res. 2012;11:3897–3907. doi: 10.1021/pr3004002.
    1. D’Alessandro A., Scaloni A., Zolla L. Human milk proteins: An interactomics and updated functional overview. J. Proteome Res. 2010;9:3339–3373. doi: 10.1021/pr100123f.
    1. Saarela T., Kokkonen J., Koivisto M. Macronutrient and energy contents of human milk fractions during the first six months of lactation. Acta Paediatr. 2005;94:1176–1181. doi: 10.1111/j.1651-2227.2005.tb02070.x.
    1. Mitoulas L.R., Kent J.C., Cox D.B., Owens R.A., Sherriff J.L., Hartmann P.E. Variation in fat, lactose and protein in human milk over 24h and throughout the first year of lactation. Br. J. Nutr. 2002;88:29–37. doi: 10.1079/BJN2002579.
    1. Nasser R., Stephen A.M., Goh Y.K., Clandinin M.T. The effect of a controlled manipulation of maternal dietary fat intake on medium and long chain fatty acids in human breast milk in Saskatoon, Canada. Int. Breastfeed. J. 2010;5:3. doi: 10.1186/1746-4358-5-3.
    1. Prentice A., Jarjou L., Drury P.J., Dewit O., Crawford M.A. Breast-milk fatty acids of rural Gambian mothers: Effects of diet and maternal parity. J. Pediatr. Gastroenterol. Nutr. 1989;8:486–490. doi: 10.1097/00005176-198905000-00011.
    1. Thurl S., Munzert M., Henker J., Boehm G., Müller-Werner B., Jelinek J., Stahl B. Variation of human milk oligosaccharides in relation to milk groups and lactational periods. Br. J. Nutr. 2010;104:1261–1271. doi: 10.1017/S0007114510002072.
    1. Lemas D.J., Yee S., Cacho N., Miller D., Cardel M., Gurka M., Janicke D., Shenkman E. Seminars in Fetal and Neonatal Medicine. WB Saunders; Philadelphia, PA, USA: 2016. Exploring the contribution of maternal antibiotics and breastfeeding to development of the infant microbiome and pediatric obesity; pp. 406–409.
    1. Grapov D., Lemay D.G., Weber D., Phinney B.S., Azulay Chertok I.R., Gho D.S., German J.B., Smilowitz J.T. The human colostrum whey proteome is altered in gestational diabetes mellitus. J. Proteome Res. 2015;14:512–520. doi: 10.1021/pr500818d.
    1. Boix-Amorós A., Collado M.C., Mira A. Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Front. Microbiol. 2016;7:492. doi: 10.3389/fmicb.2016.00492.
    1. Zambruni M., Villalobos A., Somasunderam A., Westergaard S., Nigalye M., Turin C.G., Zegarra J., Bellomo S., Mercado E., Ochoa T.J. Maternal and pregnancy-related factors affecting human milk cytokines among Peruvian mothers bearing low-birth-weight neonates. J. Reprod. Immunol. 2017;120:20–26. doi: 10.1016/j.jri.2017.04.001.
    1. Vass R.A., Kemeny A., Dergez T., Ertl T., Reglodi D., Jungling A., Tamas A. Distribution of bioactive factors in human milk samples. Int. Breastfeed. J. 2019;14:9. doi: 10.1186/s13006-019-0203-3.
    1. Ballard O., Morrow A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. 2013;60:49–74.
    1. Smilowitz J.T., O’sullivan A., Barile D., German J.B., Lönnerdal B., Slupsky C.M. The human milk metabolome reveals diverse oligosaccharide profiles. J. Nutr. 2013;143:1709–1718. doi: 10.3945/jn.113.178772.
    1. German J.B., Freeman S.L., Lebrilla C.B., Mills D.A. Personalized Nutrition for the Diverse Needs of Infants and Children. Volume 62. Karger Publishers; Basel, Switzerland: 2008. Human milk oligosaccharides: Evolution, structures and bioselectivity as substrates for intestinal bacteria; pp. 205–222.
    1. Coppa G.V., Gabrielli O., Pierani P., Catassi C., Carlucci A., Giorgi P.L. Changes in carbohydrate composition in human milk over 4 months of lactation. Pediatrics. 1993;91:637–641.
    1. Weichert S., Koromyslova A., Singh B.K., Hansman S., Jennewein S., Schroten H., Hansman G.S. Structural basis for norovirus inhibition by human milk oligosaccharides. J. Virol. 2016;90:4843–4848. doi: 10.1128/JVI.03223-15.
    1. Zhang X.-F., Tan M., Chhabra M., Dai Y.-C., Meller J., Jiang X. Inhibition of histo-blood group antigen binding as a novel strategy to block norovirus infections. PLoS ONE. 2013;8:e69379. doi: 10.1371/journal.pone.0069379.
    1. Morozov V., Hansman G., Hanisch F.G., Schroten H., Kunz C. Human milk oligosaccharides as promising antivirals. Mol. Nutr. Food Res. 2018;62:1700679. doi: 10.1002/mnfr.201700679.
    1. Morrow A., Ruiz-Palacios G., Altaye M., Jiang X., Guerrero M., Meinzen-Derr J., Farkas T., Chaturvedi P., Pickering L., Newburg D. Protecting Infants through Human Milk. Springer; Berlin/Heidelberg, Germany: 2004. Human milk oligosaccharide blood group epitopes and innate immune protection against campylobacter and calicivirus diarrhea in breastfed infants; pp. 443–446.
    1. Newburg D.S., Walker W.A. Protection of the neonate by the innate immune system of developing gut and of human milk. Pediatr. Res. 2007;61:2–8. doi: 10.1203/01.pdr.0000250274.68571.18.
    1. Ward R.E., Ninonuevo M., Mills D.A., Lebrilla C.B., German J.B. In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri. Appl. Environ. Microbiol. 2006;72:4497–4499. doi: 10.1128/AEM.02515-05.
    1. Bidart G.N., Rodríguez-Díaz J., Monedero V., Yebra M.J. A unique gene cluster for the utilization of the mucosal and human milk-associated glycans galacto-N-biose and lacto-N-biose in L actobacillus casei. Mol. Microbiol. 2014;93:521–538. doi: 10.1111/mmi.12678.
    1. Triantis V., Bode L., Van Neerven R. Immunological effects of human milk oligosaccharides. Front. Pediatr. 2018;6:190. doi: 10.3389/fped.2018.00190.
    1. Marcobal A., Sonnenburg J. Human milk oligosaccharide consumption by intestinal microbiota. Clin. Microbiol. Infect. 2012;18:12–15. doi: 10.1111/j.1469-0691.2012.03863.x.
    1. Collado M.C., Cernada M., Baüerl C., Vento M., Pérez-Martínez G. Microbial ecology and host-microbiota interactions during early life stages. Gut Microbes. 2012;3:352–365. doi: 10.4161/gmic.21215.
    1. Lee S.A., Lim J.Y., Kim B.-S., Cho S.J., Kim N.Y., Kim O.B., Kim Y. Comparison of the gut microbiota profile in breast-fed and formula-fed Korean infants using pyrosequencing. Nutr. Res. Pract. 2015;9:242–248. doi: 10.4162/nrp.2015.9.3.242.
    1. Vandenplas Y., Zakharova I., Dmitrieva Y. Oligosaccharides in infant formula: More evidence to validate the role of prebiotics. Br. J. Nutr. 2015;113:1339–1344. doi: 10.1017/S0007114515000823.
    1. Torres D.P., Gonçalves M.D.P.F., Teixeira J.A., Rodrigues L.R. Galacto-oligosaccharides: Production, properties, applications, and significance as prebiotics. Compr. Rev. Food Sci. Food Saf. 2010;9:438–454. doi: 10.1111/j.1541-4337.2010.00119.x.
    1. Davis L.M., Martínez I., Walter J., Goin C., Hutkins R.W. Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLoS ONE. 2011;6:e25200. doi: 10.1371/journal.pone.0025200.
    1. Oozeer R., van Limpt K., Ludwig T., Ben Amor K., Martin R., Wind R.D., Boehm G., Knol J. Intestinal microbiology in early life: Specific prebiotics can have similar functionalities as human-milk oligosaccharides. Am. J. Clin. Nutr. 2013;98:561S–571S. doi: 10.3945/ajcn.112.038893.
    1. Asakuma S., Hatakeyama E., Urashima T., Yoshida E., Katayama T., Yamamoto K., Kumagai H., Ashida H., Hirose J., Kitaoka M. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J. Biol. Chem. 2011;286:34583–34592. doi: 10.1074/jbc.M111.248138.
    1. Marcobal A., Barboza M., Froehlich J.W., Block D.E., German J.B., Lebrilla C.B., Mills D.A. Consumption of human milk oligosaccharides by gut-related microbes. J. Agric. Food Chem. 2010;58:5334–5340. doi: 10.1021/jf9044205.
    1. Jantscher-Krenn E., Bode L. Human milk oligosaccharides and their potential benefits for the breast-fed neonate. Minerva Pediatr. 2012;64:83–99.
    1. Kitaoka M. Bifidobacterial enzymes involved in the metabolism of human milk oligosaccharides. Adv. Nutr. 2012;3:422S–429S. doi: 10.3945/an.111.001420.
    1. Garrido D., Kim J.H., German J.B., Raybould H.E., Mills D.A. Oligosaccharide binding proteins from Bifidobacterium longum subsp Infantis reveal preference for host glycans. PLoS ONE. 2011;6:e17315. doi: 10.1371/journal.pone.0017315.
    1. Chichlowski M., Guillaume De Lartigue J., Raybould H.E., Mills D.A. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. J. Pediatr. Gastroenterol. Nutr. 2012;55:321. doi: 10.1097/MPG.0b013e31824fb899.
    1. Wickramasinghe S., Pacheco A.R., Lemay D.G., Mills D.A. Bifidobacteria grown on human milk oligosaccharides downregulate the expression of inflammation-related genes in Caco-2 cells. BMC Microbiol. 2015;15:172. doi: 10.1186/s12866-015-0508-3.
    1. Lawson M.A., O’Neill I.J., Kujawska M., Javvadi S.G., Wijeyesekera A., Flegg Z., Chalklen L., Hall L.J. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. ISME J. 2020;14:635–648. doi: 10.1038/s41396-019-0553-2.
    1. Matsuki T., Yahagi K., Mori H., Matsumoto H., Hara T., Tajima S., Ogawa E., Kodama H., Yamamoto K., Yamada T. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat. Commun. 2016;7:1–12. doi: 10.1038/ncomms11939.
    1. Egan M., Motherway M.O.C., Kilcoyne M., Kane M., Joshi L., Ventura M., van Sinderen D. Cross-feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucin-based medium. BMC Microbiol. 2014;14:282. doi: 10.1186/s12866-014-0282-7.
    1. Egan M., Motherway M.O.C., Ventura M., van Sinderen D. Metabolism of sialic acid by Bifidobacterium breve UCC2003. Appl. Environ. Microbiol. 2014;80:4414–4426.
    1. Ward R.E., Niñonuevo M., Mills D.A., Lebrilla C.B., German J.B. In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria. Mol. Nutr. Food Res. 2007;51:1398–1405.
    1. Coulet M., Phothirath P., Allais L., Schilter B. Pre-clinical safety evaluation of the synthetic human milk, nature-identical, oligosaccharide 2′-O-Fucosyllactose (2′ FL) Regul. Toxicol. Pharmacol. 2014;68:59–69.
    1. Goehring K.C., Marriage B.J., Oliver J.S., Wilder J.A., Barrett E.G., Buck R.H. Similar to those who are breastfed, infants fed a formula containing 2′-fucosyllactose have lower inflammatory cytokines in a randomized controlled trial. J. Nutr. 2016;146:2559–2566. doi: 10.3945/jn.116.236919.
    1. Ackerman D.L., Doster R.S., Weitkamp J.-H., Aronoff D.M., Gaddy J.A., Townsend S.D. Human milk oligosaccharides exhibit antimicrobial and antibiofilm properties against Group B Streptococcus. ACS Infect. Dis. 2017;3:595–605. doi: 10.1021/acsinfecdis.7b00064.
    1. Ackerman D.L., Craft K.M., Doster R.S., Weitkamp J.-H., Aronoff D.M., Gaddy J.A., Townsend S.D. Antimicrobial and antibiofilm activity of human milk oligosaccharides against Streptococcus agalactiae, Staphylococcus aureus, and Acinetobacter baumannii. ACS Infect. Dis. 2017;4:315–324.
    1. Chambers S.A., Townsend S.D. Bioorthogonal human milk oligosaccharide probes for antimicrobial target identification within Streptococcus agalactiae. Carbohydr. Res. 2020;488:107895. doi: 10.1016/j.carres.2019.107895.
    1. Bushati N., Cohen S.M. MicroRNA functions. Annu. Rev. Cell Dev. Biol. 2007;23:175–205. doi: 10.1146/annurev.cellbio.23.090506.123406.
    1. Alvarez-Garcia I., Miska E.A. MicroRNA functions in animal development and human disease. Development. 2005;132:4653–4662. doi: 10.1242/dev.02073.
    1. Wienholds E., Plasterk R.H. MicroRNA function in animal development. FEBS Lett. 2005;579:5911–5922. doi: 10.1016/j.febslet.2005.07.070.
    1. Kittelmann S., McGregor A.P. Modulation and evolution of animal development through microRNA regulation of gene expression. Genes. 2019;10:321. doi: 10.3390/genes10040321.
    1. Tsukamoto M., Iinuma H., Matsuda K., Yagi T., Hashiguchi Y. Circulating exosomal microRNA-21 as a biomarker in each tumor stage of colorectal cancer. Oncology. 2017;92:360–370. doi: 10.1159/000463387.
    1. Vu T.L., Peng B., Zhang D.X., Ma V., Mathey-Andrews C.A., Lam C.K., Kiomourtzis T., Jin J., McReynolds L., Huang L., et al. Tumor-secreted extracellular vesicles promote the activation of cancer-associated fibroblasts via the transfer of microRNA-125b. J. Extracell. Vesicles. 2019;8:1599680. doi: 10.1080/20013078.2019.1599680.
    1. Kim S., Lee E., Jung J., Lee J.W., Kim H.J., Kim J., Yoo H.J., Lee H.J., Chae S.Y., Jeon S.-M., et al. microRNA-155 positively regulates glucose metabolism via PIK3R1-FOXO3a-cMYC axis in breast cancer. Oncogene. 2018;37:2982–2991. doi: 10.1038/s41388-018-0124-4.
    1. Weber J.A., Baxter D.H., Zhang S., Huang D.Y., How Huang K., Jen Lee M., Galas D.J., Wang K. The microRNA spectrum in 12 body fluids. Clin. Chem. 2010;56:1733–1741. doi: 10.1373/clinchem.2010.147405.
    1. Liao Y., Du X., Li J., Lönnerdal B. Human milk exosomes and their microRNAs survive digestion in vitro and are taken up by human intestinal cells. Mol. Nutr. Food Res. 2017;61:1700082. doi: 10.1002/mnfr.201700082.
    1. Wang J., Chen J., Sen S. MicroRNA as biomarkers and diagnostics. J. Cell. Physiol. 2016;231:25–30. doi: 10.1002/jcp.25056.
    1. Gallo A., Tandon M., Alevizos I., Illei G.G. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS ONE. 2012;7:e30679. doi: 10.1371/journal.pone.0030679.
    1. Zhou Q., Li M., Wang X., Li Q., Wang T., Zhu Q., Zhou X., Wang X., Gao X., Li X. Immune-related microRNAs are abundant in breast milk exosomes. Int. J. Biol. Sci. 2012;8:118. doi: 10.7150/ijbs.8.118.
    1. Alsaweed M., Lai C.T., Hartmann P.E., Geddes D.T., Kakulas F. Human milk cells and lipids conserve numerous known and novel miRNAs, some of which are differentially expressed during lactation. PLoS ONE. 2016;11:e0152610. doi: 10.1371/journal.pone.0152610.
    1. Alsaweed M., Lai C.T., Hartmann P.E., Geddes D.T., Kakulas F. Human milk miRNAs primarily originate from the mammary gland resulting in unique miRNA profiles of fractionated milk. Sci. Rep. 2016;6:1–13. doi: 10.1038/srep20680.
    1. Alsaweed M., Hepworth A.R., Lefevre C., Hartmann P.E., Geddes D.T., Hassiotou F. Human milk microRNA and total RNA differ depending on milk fractionation. J. Cell. Biochem. 2015;116:2397–2407. doi: 10.1002/jcb.25207.
    1. Carney M.C., Tarasiuk A., DiAngelo S.L., Silveyra P., Podany A., Birch L.L., Paul I.M., Kelleher S., Hicks S.D. Metabolism-related microRNAs in maternal breast milk are influenced by premature delivery. Pediatr. Res. 2017;82:226–236. doi: 10.1038/pr.2017.54.
    1. Shiff Y.E., Reif S., Marom R., Shiff K., Reifen R., Golan-Gerstl R. MiRNA-320a is less expressed and miRNA-148a more expressed in preterm human milk compared to term human milk. J. Funct. Foods. 2019;57:68–74. doi: 10.1016/j.jff.2019.03.047.
    1. Alsaweed M., Hartmann P.E., Geddes D.T., Kakulas F. MicroRNAs in breastmilk and the lactating breast: Potential immunoprotectors and developmental regulators for the infant and the mother. Int. J. Environ. Res. Public Health. 2015;12:13981–14020. doi: 10.3390/ijerph121113981.
    1. Kosaka N., Izumi H., Sekine K., Ochiya T. microRNA as a new immune-regulatory agent in breast milk. Silence. 2010;1:7. doi: 10.1186/1758-907X-1-7.
    1. Chu M., Zhao Y., Yu S., Hao Y., Zhang P., Feng Y., Zhang H., Ma D., Liu J., Cheng M. MicroRNA-221 may be involved in lipid metabolism in mammary epithelial cells. Int. J. Biochem. Cell Biol. 2018;97:118–127. doi: 10.1016/j.biocel.2018.02.014.
    1. Aly E., Darwish A.A., Lopez-Nicolas R., Frontela-Saseta C., Ros-Berruezo G. Selected Topics in Breastfeeding. IntechOpen; London, UK: 2018. Bioactive Components of Human Milk: Similarities and Differences between Human Milk and Infant Formula.
    1. Vogel H.J. Lactoferrin, a bird’s eye view. Biochem. Cell Biol. 2012;90:233–244. doi: 10.1139/o2012-016.
    1. Ochoa T.J., Chea-Woo E., Baiocchi N., Pecho I., Campos M., Prada A., Valdiviezo G., Lluque A., Lai D., Cleary T.G. Randomized double-blind controlled trial of bovine lactoferrin for prevention of diarrhea in children. J. Pediatr. 2013;162:349–356. doi: 10.1016/j.jpeds.2012.07.043.
    1. Manzoni P., Rinaldi M., Cattani S., Pugni L., Romeo M.G., Messner H., Stolfi I., Decembrino L., Laforgia N., Vagnarelli F. Bovine lactoferrin supplementation for prevention of late-onset sepsis in very low-birth-weight neonates: A randomized trial. JAMA. 2009;302:1421–1428. doi: 10.1001/jama.2009.1403.
    1. Manzoni P., Sánchez R.G., Meyer M., Stolfi I., Pugni L., Messner H., Cattani S., Betta P.M., Memo L., Decembrino L. Exposure to gastric acid inhibitors increases the risk of infection in preterm very low birth weight infants but concomitant administration of lactoferrin counteracts this effect. J. Pediatr. 2018;193:62–67. doi: 10.1016/j.jpeds.2017.09.080.
    1. Chang C.-J., Chao J.C.-J. Effect of human milk and epidermal growth factor on growth of human intestinal Caco-2 cells. J. Pediatr. Gastroenterol. Nutr. 2002;34:394–401. doi: 10.1097/00005176-200204000-00015.
    1. Hirai C., Ichiba H., Saito M., Shintaku H., Yamano T., Kusuda S. Trophic effect of multiple growth factors in amniotic fluid or human milk on cultured human fetal small intestinal cells. J. Pediatr. Gastroenterol. Nutr. 2002;34:524–528. doi: 10.1097/00005176-200205000-00010.
    1. Boesmans W., Gomes P., Janssens J., Tack J., Berghe P.V. Brain-derived neurotrophic factor amplifies neurotransmitter responses and promotes synaptic communication in the enteric nervous system. Gut. 2008;57:314–322. doi: 10.1136/gut.2007.131839.
    1. Blum J., Baumrucker C. Colostral and milk insulin-like growth factors and related substances: Mammary gland and neonatal (intestinal and systemic) targets. Domest. Anim. Endocrinol. 2002;23:101–110. doi: 10.1016/S0739-7240(02)00149-2.
    1. Hurley W.L., Theil P.K. Perspectives on immunoglobulins in colostrum and milk. Nutrients. 2011;3:442–474. doi: 10.3390/nu3040442.
    1. Lawrence R.M., Lawrence R.A. Breast milk and infection. Clin. Perinatol. 2004;31:501–528. doi: 10.1016/j.clp.2004.03.019.
    1. Hanson L.Å., Korotkova M. Seminars in Neonatology. WB Saunders; Philadelphia, PA, USA: 2002. The role of breastfeeding in prevention of neonatal infection.
    1. Lucas A. Long-term programming effects of early nutrition-Implications for the preterm infant. J. Perinatol. 2005;25:S2–S6. doi: 10.1038/sj.jp.7211308.
    1. Hylander M.A., Strobino D.M., Dhanireddy R. Human milk feedings and infection among very low birth weight infants. Pediatrics. 1998;102:e38. doi: 10.1542/peds.102.3.e38.
    1. Parkinson J.R., Hyde M.J., Gale C., Santhakumaran S., Modi N. Preterm birth and the metabolic syndrome in adult life: A systematic review and meta-analysis. Pediatrics. 2013;131:e1240–e1263. doi: 10.1542/peds.2012-2177.
    1. Sullivan S., Schanler R.J., Kim J.H., Patel A.L., Trawöger R., Kiechl-Kohlendorfer U., Chan G.M., Blanco C.L., Abrams S., Cotten C.M. An exclusively human milk-based diet is associated with a lower rate of necrotizing enterocolitis than a diet of human milk and bovine milk-based products. J. Pediatr. 2010;156:562–567. doi: 10.1016/j.jpeds.2009.10.040.
    1. Patel P., Bhatia J. Human Milk: The Preferred First Food for Premature Infants. J Hum Nutr Food Sci. 2016;4:1098.
    1. Tudehope D.I. Human milk and the nutritional needs of preterm infants. J. Pediatr. 2013;162:S17–S25. doi: 10.1016/j.jpeds.2012.11.049.
    1. Bauer J., Gerss J. Longitudinal analysis of macronutrients and minerals in human milk produced by mothers of preterm infants. Clin. Nutr. 2011;30:215–220. doi: 10.1016/j.clnu.2010.08.003.
    1. De Figueiredo C.S.M., Palhares D.B., Melnikov P., Moura A.J.d.C.M., dos Santos S.C. Zinc and copper concentrations in human preterm milk. Biol. Trace Elem. Res. 2010;136:1–7. doi: 10.1007/s12011-009-8515-6.
    1. O’Brien C.E., Krebs N.F., Westcott J.L., Dong F. Relationships among plasma zinc, plasma prolactin, milk transfer, and milk zinc in lactating women. J. Hum. Lact. 2007;23:179–183. doi: 10.1177/0890334407300021.
    1. Dvorak B., Fituch C.C., Williams C.S., Hurst N.M., Schanler R.J. Increased epidermal growth factor levels in human milk of mothers with extremely premature infants. Pediatr. Res. 2003;54:15–19. doi: 10.1203/01.PDR.0000065729.74325.71.
    1. Gross S.J., Buckley R.H., Wakil S.S., McAllister D.C., David R.J., Faix R.G. Elevated IgA concentration in milk produced by mothers delivered of preterm infants. J. Pediatr. 1981;99:389–393. doi: 10.1016/S0022-3476(81)80323-X.
    1. Kunz C., Kuntz S., Rudloff S., Moreno F., Sanz M. Food Oligosaccharides: Production, Analysis and Bioactivity. Wiley; Hoboken, NJ, USA: 2014.
    1. Montagne P., Cuillière M.L., Molé C., Béné M.C., Faure G. Immunological and nutritional composition of human milk in relation to prematurity and mothers’ parity during the first 2 weeks of lactation. J. Pediatr. Gastroenterol. Nutr. 1999;29:75–80. doi: 10.1097/00005176-199907000-00018.
    1. Arora S., McJunkin C., Wehrer J., Kuhn P. Major factors influencing breastfeeding rates: Mother’s perception of father’s attitude and milk supply. Pediatrics. 2000;106:e67. doi: 10.1542/peds.106.5.e67.
    1. Kozhimannil K.B., Jou J., Attanasio L.B., Joarnt L.K., McGovern P. Medically complex pregnancies and early breastfeeding behaviors: A retrospective analysis. PLoS ONE. 2014;9:e104820. doi: 10.1371/journal.pone.0104820.
    1. Carver J.D. Advances in nutritional modifications of infant formulas. Am. J. Clin. Nutr. 2003;77:1550S–1554S. doi: 10.1093/ajcn/77.6.1550S.
    1. Grant C., Rotherham B., Sharpe S., Scragg R., Thompson J., Andrews J., Wall C., Murphy J., Lowry D. Randomized, double-blind comparison of growth in infants receiving goat milk formula versus cow milk infant formula. J. Paediatr. Child Health. 2005;41:564–568. doi: 10.1111/j.1440-1754.2005.00722.x.
    1. Martin C.R., Ling P.-R., Blackburn G.L. Review of infant feeding: Key features of breast milk and infant formula. Nutrients. 2016;8:279. doi: 10.3390/nu8050279.
    1. Cook D.A. Nutrient levels in infant formulas: Technical considerations. J. Nutr. 1989;119(Suppl. 12):1773–1778. doi: 10.1093/jn/119.12_Suppl.1773.
    1. Thompkinson D., Kharb S. Aspects of infant food formulation. Compr. Rev. Food Sci. Food Saf. 2007;6:79–102. doi: 10.1111/j.1541-4337.2007.00020.x.
    1. Koletzko B., Baker S., Cleghorn G., Neto U.F., Gopalan S., Hernell O., Hock Q.S., Jirapinyo P., Lonnerdal B., Pencharz P. Global standard for the composition of infant formula: Recommendations of an ESPGHAN coordinated international expert group. J. Pediatr. Gastroenterol. Nutr. 2005;41:584–599. doi: 10.1097/01.mpg.0000187817.38836.42.
    1. Koletzko B., Broekaert I., Demmelmair H., Franke J., Hannibal I., Oberle D., Schiess S., Baumann B.T., Verwied-Jorky S. Early Nutrition and Its Later Consequences: New Opportunities. Springer; Berlin/Heidelberg, Germany: 2005. Protein intake in the first year of life: A risk factor for later obesity? pp. 69–79.
    1. Høst A., Halken S., Jacobsen H.P., Christensen A.E., Herskind A.M., Plesner K. Clinical course of cow’s milk protein allergy/intolerance and atopic diseases in childhood. Pediat. Allergy Immunol. 2002;13:23–28. doi: 10.1034/j.1399-3038.13.s.15.7.x.
    1. Arslanoglu S., Moro G.E., Boehm G. Early supplementation of prebiotic oligosaccharides protects formula-fed infants against infections during the first 6 months of life. J. Nutr. 2007;137:2420–2424. doi: 10.1093/jn/137.11.2420.
    1. Moro G., Arslanoglu S., Stahl B., Jelinek J., Wahn U., Boehm G. A mixture of prebiotic oligosaccharides reduces the incidence of atopic dermatitis during the first six months of age. Arch. Dis. Child. 2006;91:814–819.
    1. Grüber C., Van Stuijvenberg M., Mosca F., Moro G., Chirico G., Braegger C.P., Riedler J., Boehm G., Wahn U., Group M.W. Reduced occurrence of early atopic dermatitis because of immunoactive prebiotics among low-atopy-risk infants. J. Allergy Clin. Immunol. 2010;126:791–797. doi: 10.1016/j.jaci.2010.07.022.
    1. Martín R., Langa S., Reviriego C., Jimínez E., Marín M.L., Xaus J., Fernández L., Rodríguez J.M. Human milk is a source of lactic acid bacteria for the infant gut. J. Pediatr. 2003;143:754–758.
    1. Ward T.L., Hosid S., Ioshikhes I., Altosaar I. Human milk metagenome: A functional capacity analysis. BMC Microbiol. 2013;13:116. doi: 10.1186/1471-2180-13-116.
    1. Aakko J., Kumar H., Rautava S., Wise A., Autran C., Bode L., Salminen S. Human milk oligosaccharide categories define the microbiota composition in human colostrum. Benef. Microbes. 2017;8:563–567.
    1. Murphy K., Curley D., O’Callaghan T.F., O’Shea C.-A., Dempsey E.M., O’Toole P.W., Ross R.P., Ryan C.A., Stanton C. The composition of human milk and infant faecal microbiota over the first three months of life: A pilot study. Sci. Rep. 2017;7:1–10. doi: 10.1038/srep40597.
    1. Lackey K.A., Williams J.E., Meehan C.L., Zachek J.A., Benda E.D., Price W.J., Foster J.A., Sellen D.W., Kamau-Mbuthia E.W., Kamundia E.W. What’s normal? microbiomes in human milk and infant feces are related to each other but vary geographically: The INSPIRE study. Front. Nutr. 2019;6:45.
    1. Pannaraj P.S., Li F., Cerini C., Bender J.M., Yang S., Rollie A., Adisetiyo H., Zabih S., Lincez P.J., Bittinger K., et al. Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome. JAMA Pediatr. 2017;171:647–654. doi: 10.1001/jamapediatrics.2017.0378.
    1. Eidelman A.I., Szilagyi G. Patterns of bacterial colonization of human milk. Obstet. Gynecol. 1979;53:550–552.
    1. Osterman K.L., Rahm V.-A. Lactation Mastitis: Bacterial Cultivation of Breast Milk, Symptoms, Treatment, and Outcome. J. Hum. Lact. 2000;16:297–302. doi: 10.1177/089033440001600405.
    1. Thomsen A.C., Espersen T., Maigaard S. Course and treatment of milk stasis, noninfectious inflammation of the breast, and infectious mastitis in nursing women. Am. J. Obstet. Gynecol. 1984;149:492–495. doi: 10.1016/0002-9378(84)90022-X.
    1. Jones C. Maternal transmission of infectious pathogens in breast milk. J. Paediatr. Child Health. 2001;37:576–582. doi: 10.1046/j.1440-1754.2001.00743.x.
    1. Kumar A., Yadav M., Kakkar S. Human milk as a source of Q-fever infection in breast-fed babies. Indian J. Med. Res. 1981;73:510.
    1. Le Thomas I., Mariani-Kurkdjian P., Collignon A., Gravet A., Clermont O., Brahimi N.m., Gaudelus J., Aujard Y., Navarro J., Beaufils F. Breast milk transmission of a Panton-Valentine leukocidin-producing Staphylococcus aureus strain causing infantile pneumonia. J. Clin. Microbiol. 2001;39:728–729. doi: 10.1128/JCM.39.2.728-729.2001.
    1. Ryder R.W., Crosby-Ritchie A., McDonough B., Hall W.J. Human milk contaminated with Salmonella kottbus: A cause of nosocomial illness in infants. JAMA. 1977;238:1533–1534. doi: 10.1001/jama.1977.03280150103039.
    1. Botsford K.B., Weinstein R.A., Boyer K.M., Nathan C., Carman M., Paton J.B. Gram-negative bacilli in human milk feedings: Quantitation and clinical consequences for premature infants. J. Pediatr. 1986;109:707–710. doi: 10.1016/S0022-3476(86)80246-3.
    1. Larson E., Zuill R., Zier V., Berg B. Storage of human breast milk. Infect. Control Hosp. Epidemiol. 1984;5:127–130. doi: 10.1017/S0195941700059981.
    1. Sosa R., Barness L. Bacterial Growth in Refrigerated Human Milk. Am. J. Dis. Child. 1987;141:111–112. doi: 10.1001/archpedi.1987.04460010111040.
    1. Jost T., Lacroix C., Braegger C., Chassard C. Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Br. J. Nutr. 2013;110:1253–1262. doi: 10.1017/S0007114513000597.
    1. Sinkiewicz G., Nordström E.A. 353 occurrence of Lactobacillus reuteri, lactobacilli and bifidobacteria in human breast milk. Pediatric Res. 2005;58:415. doi: 10.1203/00006450-200508000-00382.
    1. Martín R., Jiménez E., Heilig H., Fernández L., Marín M.L., Zoetendal E.G., Rodríguez J.M. Isolation of Bifidobacteria from Breast Milk and Assessment of the Bifidobacterial Population by PCR-Denaturing Gradient Gel Electrophoresis and Quantitative Real-Time PCR. Appl. Environ. Microbiol. 2009;75:965–969. doi: 10.1128/AEM.02063-08.
    1. Kansandee W., Moonmangmee D., Moonmangmee S., Itsaranuwat P. Characterization and Bifidobacterium sp. growth stimulation of exopolysaccharide produced by Enterococcus faecalis EJRM152 isolated from human breast milk. Carbohydr. Polym. 2019;206:102–109. doi: 10.1016/j.carbpol.2018.10.117.
    1. Martín R., Olivares M., Marín M.L., Fernández L., Xaus J., Rodríguez J.M. Probiotic potential of 3 lactobacilli strains isolated from breast milk. J. Hum. Lact. 2005;21:8–17. doi: 10.1177/0890334404272393.
    1. Belhadj F.Z.B., Boublenza F., Karam N.-E. Stress tolerance in Lactobacillus plantarum LMF6 isolated from human breast milk. South Asian J. Exp. Biol. 2020;9:173–184.
    1. Li N., Pang B., Liu G., Zhao X., Xu X., Jiang C., Yang B., Liu Y., Shi J. Lactobacillus rhamnosus from human breast milk shows therapeutic function against foodborne infection by multi-drug resistant Escherichia coli in mice. Food Funct. 2020;11:435–447. doi: 10.1039/C9FO01698H.
    1. Le Doare K., Holder B., Bassett A., Pannaraj P.S. Mother’s milk: A purposeful contribution to the development of the infant microbiota and immunity. Front. Immunol. 2018;9:361. doi: 10.3389/fimmu.2018.00361.
    1. Hunt K.M., Foster J.A., Forney L.J., Schütte U.M., Beck D.L., Abdo Z., Fox L.K., Williams J.E., McGuire M.K., McGuire M.A. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE. 2011;6:e21313. doi: 10.1371/journal.pone.0021313.
    1. Chen P.-W., Lin Y.-L., Huang M.-S. Profiles of commensal and opportunistic bacteria in human milk from healthy donors in Taiwan. J. Food Drug Anal. 2018;26:1235–1244. doi: 10.1016/j.jfda.2018.03.004.
    1. Li S.-W., Watanabe K., Hsu C.-C., Chao S.-H., Yang Z.-H., Lin Y.-J., Chen C.-C., Cao Y.-M., Huang H.-C., Chang C.-H. Bacterial composition and diversity in breast milk samples from mothers living in Taiwan and mainland China. Front. Microbiol. 2017;8:965. doi: 10.3389/fmicb.2017.00965.
    1. Fernández L., Browne P.D., Aparicio M., Alba C., Hechler C., Beijers R., Rodríguez J.M., de Weerth C. Human milk microbiome and maternal postnatal psychosocial distress. Front. Microbiol. 2019;10:2333.
    1. Cabrera-Rubio R., Collado M.C., Laitinen K., Salminen S., Isolauri E., Mira A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 2012;96:544–551. doi: 10.3945/ajcn.112.037382.
    1. Khodayar-Pardo P., Mira-Pascual L., Collado M.C., Martínez-Costa C. Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota. J. Perinatol. 2014;34:599–605. doi: 10.1038/jp.2014.47.
    1. Soto A., Martín V., Jiménez E., Mader I., Rodríguez J.M., Fernández L. Lactobacilli and bifidobacteria in human breast milk: Influence of antibiotherapy and other host and clinical factors. J. Pediatr. Gastroenterol. Nutr. 2014;59:78. doi: 10.1097/MPG.0000000000000347.
    1. Olivares M., Albrecht S., De Palma G., Ferrer M.D., Castillejo G., Schols H.A., Sanz Y. Human milk composition differs in healthy mothers and mothers with celiac disease. Eur. J. Nutr. 2015;54:119–128. doi: 10.1007/s00394-014-0692-1.
    1. Kumar H., du Toit E., Kulkarni A., Aakko J., Linderborg K.M., Zhang Y., Nicol M.P., Isolauri E., Yang B., Collado M.C., et al. Distinct Patterns in Human Milk Microbiota and Fatty Acid Profiles Across Specific Geographic Locations. Front. Microbiol. 2016;7:1619. doi: 10.3389/fmicb.2016.01619.
    1. Douglas C.A., Ivey K.L., Papanicolas L.E., Best K.P., Muhlhausler B.S., Rogers G.B. DNA extraction approaches substantially influence the assessment of the human breast milk microbiome. Sci. Rep. 2020;10:1–10.
    1. Meyer K.M., Pace R.M., Mohammad M., Haymond M., Aagaard K.M. 941: Composition of the breast milk microbiome is influenced by the method of 16S-amplicon sequencing used. Am. J. Obstet. Gynecol. 2019;220:S607–S608. doi: 10.1016/j.ajog.2018.11.965.
    1. Martín R., Jiménez E., Olivares M., Marín M., Fernández L., Xaus J., Rodríguez J. Lactobacillus salivarius CECT 5713, a potential probiotic strain isolated from infant feces and breast milk of a mother–child pair. Int. J. Food Microbiol. 2006;112:35–43. doi: 10.1016/j.ijfoodmicro.2006.06.011.
    1. Albesharat R., Ehrmann M.A., Korakli M., Yazaji S., Vogel R.F. Phenotypic and genotypic analyses of lactic acid bacteria in local fermented food, breast milk and faeces of mothers and their babies. Syst. Appl. Microbiol. 2011;34:148–155. doi: 10.1016/j.syapm.2010.12.001.
    1. Makino H., Kushiro A., Ishikawa E., Muylaert D., Kubota H., Sakai T., Oishi K., Martin R., Amor K.B., Oozeer R. Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism. Appl. Environ. Microbiol. 2011;77:6788–6793. doi: 10.1128/AEM.05346-11.
    1. Martín V., Maldonado-Barragán A., Moles L., Rodriguez-Baños M., Campo R.d., Fernández L., Rodríguez J.M., Jiménez E. Sharing of bacterial strains between breast milk and infant feces. J. Hum. Lact. 2012;28:36–44. doi: 10.1177/0890334411424729.
    1. Eshaghi M., Bibalan M.H., Rohani M., Esghaei M., Douraghi M., Talebi M., Pourshafie M.R. Bifidobacterium obtained from mother’s milk and their infant stool; A comparative genotyping and antibacterial analysis. Microb. Pathog. 2017;111:94–98. doi: 10.1016/j.micpath.2017.08.014.
    1. Urbaniak C., Angelini M., Gloor G.B., Reid G. Human milk microbiota profiles in relation to birthing method, gestation and infant gender. Microbiome. 2016;4:1. doi: 10.1186/s40168-015-0145-y.
    1. Biagi E., Aceti A., Quercia S., Beghetti I., Rampelli S., Turroni S., Soverini M., Zambrini A.V., Faldella G., Candela M., et al. Microbial Community Dynamics in Mother’s Milk and Infant’s Mouth and Gut in Moderately Preterm Infants. Front. Microbiol. 2018;9:2512. doi: 10.3389/fmicb.2018.02512.
    1. Dimitriu P.A., Iker B., Malik K., Leung H., Mohn W., Hillebrand G.G. New insights into the intrinsic and extrinsic factors that shape the human skin microbiome. MBio. 2019;10:e00839-19. doi: 10.1128/mBio.00839-19.
    1. Ramsay D.T., Kent J.C., Owens R.A., Hartmann P.E. Ultrasound imaging of milk ejection in the breast of lactating women. Pediatrics. 2004;113:361–367. doi: 10.1542/peds.113.2.361.
    1. Williams J.E., Carrothers J.M., Lackey K.A., Beatty N.F., Brooker S.L., Peterson H.K., Steinkamp K.M., York M.A., Shafii B., Price W.J. Strong multivariate relations exist among milk, oral, and fecal microbiomes in mother-infant dyads during the first six months postpartum. J. Nutr. 2019;149:902–914. doi: 10.1093/jn/nxy299.
    1. Geddes D.T. The use of ultrasound to identify milk ejection in women–tips and pitfalls. Int. Breastfeed. J. 2009;4:5. doi: 10.1186/1746-4358-4-5.
    1. Moossavi S., Sepehri S., Robertson B., Bode L., Goruk S., Field C.J., Lix L.M., de Souza R.J., Becker A.B., Mandhane P.J. Composition and variation of the human milk microbiota are influenced by maternal and early-life factors. Cell Host Microbe. 2019;25:324–335. doi: 10.1016/j.chom.2019.01.011.
    1. Moossavi S., Azad M.B. Origins of human milk microbiota: New evidence and arising questions. Gut Microbes. 2019:1–10. doi: 10.1080/19490976.2019.1667722.
    1. Riskin A., Almog M., Peri R., Halasz K., Srugo I., Kessel A. Changes in immunomodulatory constituents of human milk in response to active infection in the nursing infant. Pediatr. Res. 2012;71:220–225. doi: 10.1038/pr.2011.34.
    1. Hassiotou F., Hepworth A.R., Metzger P., Tat Lai C., Trengove N., Hartmann P.E., Filgueira L. Maternal and infant infections stimulate a rapid leukocyte response in breastmilk. Clin. Transl. Immunol. 2013;2:e3. doi: 10.1038/cti.2013.1.
    1. Martén R.O., Langa S., Reviriego C., Jiménez E., Martǩn M.A.L., Olivares M., Boza J., Jiménez J., Fernández L., Xaus J. The commensal microflora of human milk: New perspectives for food bacteriotherapy and probiotics. Trends Food Sci. Technol. 2004;15:121–127. doi: 10.1016/j.tifs.2003.09.010.
    1. Damaceno Q.S., Souza J.P., Nicoli J.R., Paula R.L., Assis G.B., Figueiredo H.C., Azevedo V., Martins F.S. Evaluation of potential probiotics isolated from human milk and colostrum. Probiotics Antimicrob. Proteins. 2017;9:371–379. doi: 10.1007/s12602-017-9270-1.
    1. Rescigno M., Urbano M., Valzasina B., Francolini M., Rotta G., Bonasio R., Granucci F., Kraehenbuhl J.-P., Ricciardi-Castagnoli P. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2001;2:361–367. doi: 10.1038/86373.
    1. Langa S., Maldonado-Barragán A., Delgado S., Martín R., Martín V., Jiménez E., Ruíz-Barba J.L., Mayo B., Connor R.I., Suárez J.E. Characterization of Lactobacillus salivarius CECT 5713, a strain isolated from human milk: From genotype to phenotype. Appl. Microbiol. Biotechnol. 2012;94:1279–1287. doi: 10.1007/s00253-012-4032-1.
    1. Fernández L., Langa S., Martín V., Maldonado A., Jiménez E., Martín R., Rodríguez J.M. The human milk microbiota: Origin and potential roles in health and disease. Pharmacol. Res. 2013;69:1–10. doi: 10.1016/j.phrs.2012.09.001.
    1. Newburg D.S. Innate immunity and human milk. J. Nutr. 2005;135:1308–1312. doi: 10.1093/jn/135.5.1308.
    1. Macpherson A.J., Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science. 2004;303:1662–1665. doi: 10.1126/science.1091334.
    1. Gueimonde M., Laitinen K., Salminen S., Isolauri E. Breast milk: A source of bifidobacteria for infant gut development and maturation? Neonatology. 2007;92:64–66. doi: 10.1159/000100088.
    1. Perez P.F., Doré J., Leclerc M., Levenez F., Benyacoub J., Serrant P., Segura-Roggero I., Schiffrin E.J., Donnet-Hughes A. Bacterial imprinting of the neonatal immune system: Lessons from maternal cells? Pediatrics. 2007;119:e724–e732. doi: 10.1542/peds.2006-1649.
    1. Jiménez E., Fernández L., Maldonado A., Martín R., Olivares M., Xaus J., Rodríguez J. Oral administration of Lactobacillus strains isolated from breast milk as an alternative for the treatment of infectious mastitis during lactation. Appl. Env. Microbiol. 2008;74:4650–4655. doi: 10.1128/AEM.02599-07.
    1. Arroyo R., Martín V., Maldonado A., Jiménez E., Fernández L., Rodríguez J.M. Treatment of Infectious Mastitis during Lactation: Antibiotics versus Oral Administration of Lactobacilli Isolated from Breast Milk. Clin. Infect. Dis. 2010;50:1551–1558. doi: 10.1086/652763.
    1. Kordy K., Gaufin T., Mwangi M., Li F., Cerini C., Lee D.J., Adisetiyo H., Woodward C., Pannaraj P.S., Tobin N.H. Contributions to human breast milk microbiome and enteromammary transfer of Bifidobacterium breve. PLoS ONE. 2020;15:e0219633. doi: 10.1371/journal.pone.0219633.
    1. Elsen L.V.D., Garssen J., Burcelin R., Verhasselt V. Shaping the gut microbiota by breastfeeding: the gateway to allergy prevention? Front. Pediatr. 2019;7:47. doi: 10.3389/fped.2019.00047.
    1. Eidelman A.I., Schanler R.J. Breastfeeding and the use of human milk. Pediatrics. 2012 doi: 10.1542/peds.2011-3552.
    1. Parikh N., Hwang S.J., Ingelsson E., Benjamin E.J., Fox C.S., Vasan R.S., Murabito J.M. Breastfeeding in infancy and adult cardiovascular disease risk factors. Am. J. Med. 2009;122:656–663. doi: 10.1016/j.amjmed.2008.11.034.
    1. Wang L., Collins C., Ratliff M., Xie B., Wang Y. Breastfeeding reduces childhood obesity risks. Child. Obes. 2017;13:197–204. doi: 10.1089/chi.2016.0210.
    1. Klopp A., Vehling L., Becker A.B., Subbarao P., Mandhane P.J., E Turvey S., Lefebvre D.L., Sears M.R., Azad M.B., Daley D., et al. Modes of infant feeding and the risk of childhood asthma: A prospective birth cohort study. J. Pediatr. 2017;190:192–199. doi: 10.1016/j.jpeds.2017.07.012.
    1. Xu L., Lochhead P., Ko Y., Claggett B., Leong R.W., Ananthakrishnan A.N. Systematic review with meta-analysis: Breastfeeding and the risk of Crohn’s disease and ulcerative colitis. Aliment. Pharmacol. Ther. 2017;46:780–789. doi: 10.1111/apt.14291.
    1. Dogaru C., Nyffenegger D., Pescatore A.M., Spycher B.D., E Kuehni C. Breastfeeding and childhood asthma: Systematic review and meta-analysis. Am. J. Epidemiology. 2014;179:1153–1167. doi: 10.1093/aje/kwu072.
    1. Horta B.L., De Mola C.L., Victora C.G. Long-term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure and type 2 diabetes: A systematic review and meta-analysis. Acta Paediatr. 2015;104:30–37. doi: 10.1111/apa.13133.
    1. Temples H.S. Breastfeeding reduces risk of Type 2 Diabetes in the (PETS) Nurs. Outlook. 2019;67:115. doi: 10.1016/j.outlook.2018.12.026.
    1. Michaelsen F.K., Lauritzen L., Mortensen E.L. Breast-Feeding: Early Influences on Later Health. Springer; Berlin/Heidelberg, Germany: 2009. Effects of Breast-feeding on Cognitive Function; pp. 199–215.
    1. Ibrahim H.S., El-Ghany A., Mohamed S., El Shafie M.T., Hady E. Cognitive Functions in Breastfed versus Artificially Fed in Preschool Children. Egypt. J. Hosp. Med. 2019;77:5742–5751.
    1. Mackie R.I., Sghir A., Gaskins H.R. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 1999;69:1035s–1045s. doi: 10.1093/ajcn/69.5.1035s.
    1. Lyons A., O’Mahony D., O’Brien F., Mac Sharry J., Sheil B., Ceddia M., Russell W.M., Forsythe P., Bienenstock J., Kiely B., et al. Bacterial strain-specific induction of Foxp3+ T regulatory cells is protective in murine allergy models. Clin. Exp. Allergy. 2010;40:811–819. doi: 10.1111/j.1365-2222.2009.03437.x.
    1. Nantavisai K., Puttikamonkul S., Chotelersak K., Taweechotipatr M. In vitro adhesion property and competition against enteropathogens of Lactobacillus strains isolated from Thai infants. Songklanakarin J. Sci. Technol. 2018;40:69–74.
    1. Gregory K.E., Samuel B., Houghteling P., Shan G., Ausubel F., Sadreyev R.I., Walker W.A. Influence of maternal breast milk ingestion on acquisition of the intestinal microbiome in preterm infants. Microbiome. 2016;4:68. doi: 10.1186/s40168-016-0214-x.
    1. Cong X., Judge M., Xu W., Diallo A., Janton S., Brownell E.A., Maas K., Graf J. Influence of infant feeding type on gut microbiome development in hospitalized preterm infants. Nurs. Res. 2017;66:123–133. doi: 10.1097/NNR.0000000000000208.
    1. Zanella A., Silveira R.C., Roesch L.F.W., Corso A.L., Dobbler P.T., Mai V., Procianoy R.S. Influence of own mother’s milk and different proportions of formula on intestinal microbiota of very preterm newborns. PLoS ONE. 2019;14:e0217296. doi: 10.1371/journal.pone.0217296.
    1. Inch S., Von Xylander S. Mastitis: Causes and Management. World Health Organization; Geneva, Switzerland: 2000.
    1. Patel S., Vaidya Y.H., Patel R., Pandit R.J., Joshi C., Kunjadiya A. Culture independent assessment of human milk microbial community in lactational mastitis. Sci. Rep. 2017;7:7804. doi: 10.1038/s41598-017-08451-7.
    1. Contreras G.A., Rodríguez J.M. Mastitis: Comparative Etiology and Epidemiology. J. Mammary Gland. Boil. Neoplasia. 2011;16:339–356. doi: 10.1007/s10911-011-9234-0.
    1. Patel S., Vaidya Y.H., Joshi C., Kunjadia A.P. Culture-dependent assessment of bacterial diversity from human milk with lactational mastitis. Comp. Haematol. Int. 2015;25:437–443. doi: 10.1007/s00580-015-2205-x.
    1. Moazzez A. Breast abscess bacteriologic features in the era of community-acquired methicillin-resistant Staphylococcus aureus epidemics. Arch. Surg. 2007;142:881. doi: 10.1001/archsurg.142.9.881.
    1. Branch-Elliman W., Lee G.M., Golen T.H., Gold H.S., Baldini L.M., Wright S.B. Health and economic burden of post-partum Staphylococcus aureus breast abscess. PLoS ONE. 2013;8:e73155. doi: 10.1371/journal.pone.0073155.
    1. Padilha M., Iaucci J., Cabral V., Diniz E., Taddei C., Saad S.M.I. Maternal antibiotic prophylaxis affects Bifidobacterium spp. counts in the human milk, during the first week after delivery. Benef. Microbes. 2019;10:155–163.
    1. Maldonado-Lobón J.A., Díaz-López M.A., Carputo R., Duarte P., Díaz-Ropero M.P., Valero A.D., Sañudo A., Sempere L., Ruiz-López M.D., Bañuelos O., et al. Lactobacillus fermentum CECT 5716 reduces Staphylococcus load in the breastmilk of lactating mothers suffering breast pain: A randomized controlled trial. Breastfeed. Med. 2015;10:425–432. doi: 10.1089/bfm.2015.0070.
    1. Hurtado J.A., Maldonado-Lobón J.A., Díaz-Ropero M.P., Flores-Rojas K., Uberos J., Leante J.L., Affumicato L., Couce M.L., Garrido J.M., Olivares M., et al. Oral administration to nursing women of Lactobacillus fermentum CECT5716 prevents lactational mastitis development: A randomized controlled trial. Breastfeed. Med. 2017;12:202–209. doi: 10.1089/bfm.2016.0173.
    1. Bond D.M., Morris J.M., Nassar N. Nassar, Study protocol: evaluation of the probiotic Lactobacillus Fermentum CECT5716 for the prevention of mastitis in breastfeeding women: A randomised controlled trial. BMC Pregnancy Childbirth. 2017;17:148. doi: 10.1186/s12884-017-1330-8.
    1. Fernández L., Cárdenas N., Arroyo R., Manzano S., Jiménez E., Martin V., Rodríguez J.M. Prevention of infectious mastitis by oral administration of Lactobacillus salivarius PS2 during late pregnancy. Clin. Infect. Dis. 2015;62:568–573. doi: 10.1093/cid/civ974.
    1. Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B., Calder P.C. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014;11:506–514. doi: 10.1038/nrgastro.2014.66.
    1. Diaz J.P., Ruiz-Ojeda F.J., Gil-Campos M. Mechanisms of action of probiotic. Adv. Nutr. 2019;10:S49–S66. doi: 10.1093/advances/nmy063.
    1. Yousefi B., Eslami M., Ghasemian A., Kokhaei P., Farrokhi A.S., Darabi N. Probiotics importance and their immunomodulatory properties. J. Cell. Physiol. 2018;234:8008–8018. doi: 10.1002/jcp.27559.
    1. Lara-Villoslada F., Olivares M., Sierra S., Rodríguez J.M., Boza J., Xaus J. Beneficial effects of probiotic bacteria isolated from breast milk. Br. J. Nutr. 2007;98:S96–S100. doi: 10.1017/S0007114507832910.
    1. Arboleya S., Ruas-Madiedo P., Margolles A., Solís G., Salminen S., Reyes-Gavilán C.G.D.L., Gueimonde M. Characterization and in vitro properties of potentially probiotic Bifidobacterium strains isolated from breast-milk. Int. J. Food Microbiol. 2011;149:28–36. doi: 10.1016/j.ijfoodmicro.2010.10.036.
    1. Mehanna N.S., Tawfik N.F., Salem M.M., Effat B.A., Gad El-Rab D.A. Assessment of potential probiotic bacteria isolated from breast milk. Middle East J. Sci. Res. 2013;14:354–360.
    1. Kozak K., Charbonneau D.L., Sanozky-Dawes R., Klaenhammer T. Characterization of bacterial isolates from the microbiota of mothers’ breast milk and their infants. Gut Microbes. 2016;6:341–351. doi: 10.1080/19490976.2015.1103425.
    1. Jamyuang C., Phoonlapdacha P., Chongviriyaphan N., Chanput W., Nitisinprasert S., Nakphaichit M. Characterization and probiotic properties of Lactobacilli from human breast milk. 3 Biotech. 2019;9:398. doi: 10.1007/s13205-019-1926-y.
    1. Halloran K., Underwood M.A. Underwood, Probiotic mechanisms of action. Early Hum. Dev. 2019;135:58–65. doi: 10.1016/j.earlhumdev.2019.05.010.
    1. Díaz-Ropero M., Martin R., Sierra S., Lara-Villoslada F., Rodríguez J.M., Xaus J., Olivares M. Two Lactobacillus strains, isolated from breast milk, differently modulate the immune response. J. Appl. Microbiol. 2007;102:337–343. doi: 10.1111/j.1365-2672.2006.03102.x.
    1. Solís G., Reyes-Gavilan C.D.L., Fernández N., Margolles A., Gueimonde M., Reyes-Gavilán C.G.D.L. Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut. Anaerobe. 2010;16:307–310. doi: 10.1016/j.anaerobe.2010.02.004.
    1. Rajoka M.S.R., Zhao H., Mehwish H.M., Li N., Lu Y., Lian Z., Shao D., Jin M., Li Q., Zhao L., et al. Anti-tumor potential of cell free culture supernatant of Lactobacillus rhamnosus strains isolated from human breast milk. Food Res. Int. 2019;123:286–297. doi: 10.1016/j.foodres.2019.05.002.
    1. Gunyakti A., Özüsağlam M.A. Lactobacillus gasseri from human milk with probiotic potential and some technological properties. LWT. 2019;109:261–269. doi: 10.1016/j.lwt.2019.04.043.
    1. Mu Q., Tavella V.J., Luo X. Role of Lactobacillus reuteri in Human Health and Diseases. Front. Microbiol. 2018;9:757. doi: 10.3389/fmicb.2018.00757.
    1. Kosek M.N., Peñataro-Yori P., Paredes-Olortegui M., Lefante J., Ramal-Asayag C., Zamora-Babilonia M., Oberhelman R.A. Safety of Lactobacillus Reuteri DSM 17938 in Healthy Children 2–5 Years of Age. Pediatr. Infect. Disease J. 2019;38:e178–e180. doi: 10.1097/INF.0000000000002267.
    1. Fatheree N.Y., Liu Y., Taylor C.M., Hoang T.K., Cai C., Rahbar M.H., Hessabi M., Ferris M., McMurtry V., Wong C., et al. Lactobacillus reuteri for infants with colic: A double-blind, placebo-controlled, randomized clinical trial. J. Pediatr. 2017;191:170–178. doi: 10.1016/j.jpeds.2017.07.036.
    1. Sung V., D’Amico F., Cabana M.D., Chau K., Koren G., Savino F., Szajewska H., Deshpande G., Dupont C., Indrio F., et al. Lactobacillus reuteri to treat infant colic: A meta-analysis. Pediatrics. 2018;141:e20171811. doi: 10.1542/peds.2017-1811.
    1. Rodenas C.L.G., Lepage M., Ngom-Bru C., Fotiou A., Papagaroufalis K., Berger B. Effect of formula containing Lactobacillus reuteri DSM 17938 on fecal microbiota of infants born by cesarean-section. J. Pediatr. Gastroenterol. Nutr. 2016;63:681–687. doi: 10.1097/MPG.0000000000001198.
    1. Francavilla R., Lionetti E., Castellaneta S., Ciruzzi F., Indrio F., Masciale A., Fontana F., La Rosa M.M., Cavallo L., Francavilla A. Randomised clinical trial: L actobacillus reuteri DSM 17938 vs. placebo in children with acute diarrhoea-a double-blind study. Aliment. Pharmacol. Ther. 2012;36:363–369.
    1. Dinleyici E.C., Dalgic N., Guven S., Metin O., Yasa O., Kurugol Z., Turel O., Tanir G., SamiYazar A., Sancar M., et al. Lactobacillus reuteri DSM 17938 shortens acute infectious diarrhea in a pediatric outpatient setting. Jornal Pediatria. 2015;91:392–396. doi: 10.1016/j.jped.2014.10.009.
    1. Dinleyici E.C., Vandenplas Y., PROBAGE Study Group Lactobacillus reuteri DSM 17938 effectively reduces the duration of acute diarrhoea in hospitalised children. Acta Paediatr. 2014;103:e300–e305.
    1. Urbanska M., Gieruszczak-Białek D., Szajewska H. Systematic review with meta-analysis: Lactobacillus reuteri DSM 17938 for diarrhoeal diseases in children. Aliment. Pharmacol. Ther. 2016;43:1025–1034. doi: 10.1111/apt.13590.
    1. Gutiérrez-Castrellón P., López-Velázquez G., Garcia M.L.D., Jimenez-Gutierrez C., Mancilla-Ramirez J., Estevez-Jimenez J., Parra M. Diarrhea in preschool children and Lactobacillus reuteri: A randomized controlled trial. Pediatrics. 2014;133:e904–e909. doi: 10.1542/peds.2013-0652.
    1. Khalkhali S., Mojgani N. In vitro and in vivo safety analysis of Enterococcus faecium 2C isolated from human breast milk. Microb. Pathog. 2018;116:73–77. doi: 10.1016/j.micpath.2018.01.012.
    1. Bagci U., Togay S.O., Temiz A., Ay M. Probiotic characteristics of bacteriocin-producing Enterococcus faecium strains isolated from human milk and colostrum. Folia Microbiol. 2019;64:735–750. doi: 10.1007/s12223-019-00687-2.
    1. Fouhy F., Deane J., Rea M.C., O’Sullivan O., Ross P., O’Callaghan G., Plant B.J., Stanton C. The effects of freezing on faecal microbiota as determined using MiSeq sequencing and culture-based investigations. PLoS ONE. 2015;10:e0119355. doi: 10.1371/journal.pone.0119355.
    1. Lackey K.A., Williams J.E., Price W.J., Carrothers J.M., Brooker S.L., Shafii B., McGuire M.A., McGuire M. Comparison of commercially-available preservatives for maintaining the integrity of bacterial DNA in human milk. J. Microbiol. Methods. 2017;141:73–81. doi: 10.1016/j.mimet.2017.08.002.
    1. Fouhy F., Clooney A.G., Stanton C., Claesson M.J., Cotter P. 16S rRNA gene sequencing of mock microbial populations-impact of DNA extraction method, primer choice and sequencing platform. BMC Microbiol. 2016;16:123. doi: 10.1186/s12866-016-0738-z.
    1. Martín R., Bermúdez-Humarán L.G., Langella P. Searching for the bacterial effector: The example of the multi-skilled commensal bacterium Faecalibacterium prausnitzii. Front. Microbiol. 2018;9:346. doi: 10.3389/fmicb.2018.00346.
    1. Cani P.D., De Vos W.M. Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front. Microbiol. 2017;8:1765. doi: 10.3389/fmicb.2017.01765.

Source: PubMed

3
Prenumerera