Insights Into the Biodegradation of Lindane (γ-Hexachlorocyclohexane) Using a Microbial System

Wenping Zhang, Ziqiu Lin, Shimei Pang, Pankaj Bhatt, Shaohua Chen, Wenping Zhang, Ziqiu Lin, Shimei Pang, Pankaj Bhatt, Shaohua Chen

Abstract

Lindane (γ-hexachlorocyclohexane) is an organochlorine pesticide that has been widely used in agriculture over the last seven decades. The increasing residues of lindane in soil and water environments are toxic to humans and other organisms. Large-scale applications and residual toxicity in the environment require urgent lindane removal. Microbes, particularly Gram-negative bacteria, can transform lindane into non-toxic and environmentally safe metabolites. Aerobic and anaerobic microorganisms follow different metabolic pathways to degrade lindane. A variety of enzymes participate in lindane degradation pathways, including dehydrochlorinase (LinA), dehalogenase (LinB), dehydrogenase (LinC), and reductive dechlorinase (LinD). However, a limited number of reviews have been published regarding the biodegradation and bioremediation of lindane. This review summarizes the current knowledge regarding lindane-degrading microbes along with biodegradation mechanisms, metabolic pathways, and the microbial remediation of lindane-contaminated environments. The prospects of novel bioremediation technologies to provide insight between laboratory cultures and large-scale applications are also discussed. This review provides a theoretical foundation and practical basis to use lindane-degrading microorganisms for bioremediation.

Keywords: biodegradation; bioremediation; lindane; mechanisms; metabolic pathway.

Copyright © 2020 Zhang, Lin, Pang, Bhatt and Chen.

Figures

FIGURE 1
FIGURE 1
Chemical structures of four hexachlorocyclohexane (HCH) isomers.
FIGURE 2
FIGURE 2
Migration and transformation of lindane in soil.
FIGURE 3
FIGURE 3
Aerobic degradation pathways of lindane.
FIGURE 4
FIGURE 4
Anaerobic degradation pathways of lindane.

References

    1. Abhilash P., Singh N. (2010). Withania somnifera Dunal-mediated dissipation of lindane from simulated soil: implications for rhizoremediation of contaminated soil. J. Soils Sediments 10 272–282. 10.1007/s11368-009-0085-x
    1. Abolhassani M., Asadikaram G., Paydar P., Fallah H., Aghaee-Afshar M., Moazed V., et al. (2019). Organochlorine and organophosphorous pesticides may induce colorectal cancer; a case-control study. Ecotoxicol. Environ. Saf. 178 168–177. 10.1016/j.ecoenv.2019.04.030
    1. Abraham J., Silambarasan S., Logeswari P. (2014). Simultaneous degradation of organophosphorus and organochlorine pesticides by bacterial consortium. J. Taiwan Inst. Chem. Eng. 45 2590–2596. 10.1016/j.jtice.2014.06.014
    1. Agrahari A., Singh A., Srivastava A., Jha R. R., Patel D. K., Yadav S., et al. (2019). Overexpression of cerebral cytochrome P450s in prenatally exposed offspring modify the toxicity of lindane in rechallenged offspring. Toxicol. Appl. Pharmacol. 371 20–37. 10.1016/j.taap.2019.03.022
    1. Alvarez A., Benimeli C., Saez J., Fuentes M., Cuozzo S., Polti M., et al. (2012). Bacterial bio-resources for remediation of hexachlorocyclohexane. Int. J. Mol. Sci. 13 15086–15106. 10.3390/ijms131115086
    1. Anupama K., Paul S. (2009). Ex situ and in situ biodegradation of lindane by Azotobacter chroococcum. J. Environ. Sci. Health Part B 45 58–66. 10.1080/03601230903404465
    1. Aparicio J., Solá M. Z. S., Benimeli C. S., Amoroso M. J., Polti M. A. (2015). Versatility of Streptomyces sp. M7 to bioremediate soils co-contaminated with Cr (VI) and lindane. Ecotoxicol. Environ. Saf. 116 34–39. 10.1016/j.ecoenv.2015.02.036
    1. Aparicio J. D., Benimeli C. S., Almeida C. A., Polti M. A., Colin V. L. (2017). Integral use of sugarcane vinasse for biomass production of actinobacteria: potential application in soil remediation. Chemosphere 181 478–484. 10.1016/j.chemosphere.2017.04.107
    1. Arora P. K., Srivastava A., Garg S. K., Singh V. P. (2017). Recent advances in degradation of chloronitrophenols. Bioresour. Technol. 250 902–909. 10.1016/j.biortech.2017.12.007
    1. Asemoloye M. D., Ahmad R., Jonathan S. G. (2017). Synergistic rhizosphere degradation of γ-hexachlorocyclohexane (lindane) through the combinatorial plant-fungal action. PLoS One 12:e0183373. 10.1371/journal.pone.0183373
    1. Bajaj S., Sagar S., Khare S., Singh D. K. (2017). Biodegradation of γ-hexachlorocyclohexane (lindane) by halophilic bacterium Chromohalobacter sp. LD2 isolated from HCH dumpsite. Int. Biodeterior. Biodegrad. 122 23–28. 10.1016/j.ibiod.2017.04.014
    1. Bashir S., Kuntze K., Vogt C., Nijenhuis I. (2018). Anaerobic biotransformation of hexachlorocyclohexane isomers by Dehalococcoides species and an enrichment culture. Biodegradation 29 409–418. 10.1007/s10532-018-9838-9
    1. Becerra-Castro C., Kidd P. S., Rodríguez-Garrido B., Monterroso C., Santos-Ucha P., Prieto-Fernández Á. (2013). Phytoremediation of hexachlorocyclohexane (HCH)-contaminated soils using Cytisus striatus and bacterial inoculants in soils with distinct organic matter content. Environ. Pollut. 178 202–210. 10.1016/j.envpol.2013.03.027
    1. Benimeli C., Fuentes M., Abate C., Amoroso M. (2008). Bioremediation of lindane-contaminated soil by Streptomyces sp. M7 and its effects on Zea mays growth. Int. Biodeterior. Biodegrad. 61 233–239. 10.1016/j.ibiod.2007.09.001
    1. Beyer A., Matthies M. (2001). Long-range transport potential of semivolatile organic chemicals in coupled air-water systems. Environ. Sci. Pollut. Res. 8 173–179. 10.1007/BF02987382
    1. Bhatt P. (2018). “Insilico tools to study the bioremediation in microorganisms,” in Handbook of Research on Microbial Tools for Environmental Waste Management, eds Pathak V., Navneet (Hershey, PA: IGI Global; ), 389–395. 10.4018/978-1-5225-3540-9.ch018
    1. Bhatt P. (2019). Smart Bioremediation Technologies: Microbial Enzymes. Amsterdam: Elsevier Science; 10.4018/978-1-5225-3540-9.ch018
    1. Bhatt P., Barh A. (2018). “Bioinformatic tools to study the soil microorganisms: an in silico approach for sustainable agriculture,” in In Silico Approach for Sustainable Agriculture, eds Choudhary D., Kumar M., Prasad R., Kumar V., (Singapore: Springer; ).
    1. Bhatt P., Bhatt K., Huang Y., Lin Z., Chen S. (2020a). Esterase is a powerful tool for the biodegradation of pyrethroid insecticides. Chemosphere 244:125507. 10.1016/j.chemosphere.2019.125507
    1. Bhatt P., Huang Y., Rene E. R., Kumar A. J., Chen S. (2020b). Mechanism of allethrin biodegradation by a newly isolated Sphingomonas trueperi strain CW3 from wastewater sludge. Bioresour. Technol. 305:123074. 10.1016/j.biortech.2020.123074
    1. Bhatt P., Huang Y., Zhan H., Chen S. (2019a). Insight into microbial applications for the biodegradation of pyrethroid insecticides. Front. Microbiol. 10:1778. 10.3389/fmicb.2019.01778
    1. Bhatt P., Huang Y., Zhang W., Sharma A., Chen S. (2020c). Enhanced cypermethrin degradation kinetics and metabolic pathway in Bacillus thuringiensis strain SG4. Microorganisms 8:223. 10.3390/microorganisms8020223
    1. Bhatt P., Pal K., Bhandari G., Barh A. (2019b). Modelling of the methyl halide biodegradation on bacteria and its effect on other environmental systems. Pest. Biochem. Physiol. 158 88–100. 10.1016/j.pestbp.2019.04.015
    1. Billet L., Devers M., Rouard N., Laurent F. M., Spor A. (2019). Labour sharing promotes coexistence in atrazine degrading bacterial communities. Sci. Rep. 9:18363. 10.1038/s41598-019-54978-2
    1. Camacho-Pérez B., Ríos-Leal E., Rinderknecht-Seijas N., Poggi-Varaldo H. M. (2012). Enzymes involved in the biodegradation of hexachlorocyclohexane: a mini review. J. Environ. Manage. 95 306–318. 10.1016/j.jenvman.2011.06.047
    1. Chen S., Chang C., Deng Y., An S., Dong Y., Zhou J., et al. (2014). Fenpropathrin biodegradation pathway in Bacillus sp. DG-02 and its potential for bioremediation of pyrethroid-contaminated soils. J. Agric. Food. Chem. 62 2147–2157. 10.1021/jf404908j
    1. Chen S., Deng Y., Chang C., Lee J., Cheng Y., Cui Z., et al. (2015). Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19. Sci. Rep. 5:8784. 10.1038/srep08784
    1. Chen S., Dong Y. H., Chang C., Deng Y., Xi F. Z., Zhong G., et al. (2013). Characterization of a novel cyfluthrin-degrading bacterial strain Brevibacterium aureum and its biochemical degradation pathway. Bioresour. Technol. 132 16–23. 10.1016/j.biortech.2013.01.002
    1. Chen S., Geng P., Xiao Y., Hu M. (2012). Bioremediation of β-cypermethrin and 3-phenoxybenzaldehyde contaminated soils using Streptomyces aureus HP-S-01. Appl. Microbiol. Biotechnol. 94 505–515. 10.1007/s00253-011-3640-5
    1. Chen S., Hu M., Liu J., Zhong G., Yang L., Rizwan-ul-Haq M., et al. (2011). Biodegradation of beta-cypermethrin and 3-phenoxybenzoic acid by a novel Ochrobactrum lupini DG-S-01. J. Hazard. Mater. 187 433–440. 10.1016/j.jhazmat.2011.01.049
    1. Chen Y., Zhang L., Feng L., Chen G., Wang Y., Zhai Z., et al. (2019). Exploration of the key functional strains from an azo dye degradation microbial community by DGGE and high-throughput sequencing technology. Environ. Sci. Pollut. Res. Int. 6 24658–24671. 10.1007/s11356-019-05781-z
    1. Cuozzo S. A., Sineli P. E., Davila Costa J., Tortella G. (2017). Streptomyces sp. is a powerful biotechnological tool for the biodegradation of HCH isomers: biochemical and molecular basis. Crit. Rev. Biotechnol. 38 719–728. 10.1080/07388551.2017.1398133
    1. Cycoń M., Mrozik A., Piotrowska-Seget Z. (2017). Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: a review. Chemosphere 172 52–71. 10.1016/j.chemosphere.2016.12.129
    1. Datta J., Maiti A. K., Modak D. P., Chakrabartty P. K., Bhattacharyya P., Ray P. K. (2000). Metabolism of gamma-hexachlorocyclohexane by Arthrobacter citreus strain BI-100: Identification of metabolites. J. Gen. Appl. Microbiol. 46 59–67. 10.2323/jgam.46.59
    1. De Paolis M., Lippi D., Guerriero E., Polcaro C., Donati E. (2013). Biodegradation of α-, β-, and γ-hexachlorocyclohexane by Arthrobacter fluorescens and Arthrobacter giacomelloi. Appl. Biochem. Biotechnol. 170 514–524. 10.1007/s12010-013-0147-9
    1. Dominguez C. M., Oturan N., Romero A., Santos A., Oturan M. A. (2018a). Lindane degradation by electrooxidation process: effect of electrode materials on oxidation and mineralization kinetics. Water Res. 135 220–230. 10.1016/j.watres.2018.02.037
    1. Dominguez C. M., Oturan N., Romero A., Santos A., Oturan M. A. (2018b). Removal of lindane wastes by advanced electrochemical oxidation. Chemosphere 202 400–409. 10.1016/j.chemosphere.2018.03.124
    1. Dritsa V., Rigas F. (2013). The ligninolytic and biodegradation potential on lindane of Pleurotus ostreatus spp. J. Min. World Express 2 23–30.
    1. Egorova D. O., Buzmakov S. A., Nazarova E. A., Andreev D. N., Demakov V. A., Plotnikova E. G. (2017). Bioremediation of hexachlorocyclohexane -contaminated soil by the new Rhodococcus wratislaviensis Strain Ch628. Water Air Soil Pollut. 228:183 10.1007/s11270-017-3344-2
    1. Elcey C. D., Kunhi A. M. (2009). Substantially enhanced degradation of hexachlorocyclohexane isomers by a microbial consortium on acclimation. J. Agric. Food Chem. 58 1046–1054. 10.1021/jf9038259
    1. Endo R., Kamakura M., Miyauchi K., Fukuda M., Ohtsubo Y., Tsuda M., et al. (2005). Identification and characterization of genes involved in the downstream degradation pathway of γ-hexachlorocyclohexane in Sphingomonas paucimobilis UT26. J. Bacteriol. 187 847–853. 10.1128/JB.187.3.847-853.2005
    1. Feng Y., Huang Y., Zhan H., Bhatt H., Chen S. (2020). An overview of strobilurin fungicide degradation: current status and future perspective. Front. Microbiol. 10:389 10.3389/fmicb.2020.00389
    1. Fuentes M. S., Briceno G. E., Saez J. M., Benimeli C. S., Diez M. C., Amorosso M. Z. (2013). Enhanced removal of a pesticides mixture by single cultures and consortia of free and immobilized Streptomyces strains. Biomed Res. Int. 2013:392573. 10.1155/2013/392573
    1. Gangola S., Sharma A., Bhatt P., Khati P., Chaudhary P. (2018). Presence of esterase and laccase in Bacillus subtilis facilitates biodegradation and detoxification of cypermethrin. Sci. Rep. 8:12755. 10.1038/s41598-018-31082-5
    1. Geueke B., Garg N., Ghosh S., Fleischmann T., Holliger C., Lal R., et al. (2013). Metabolomics of hexachlorocyclohexane (HCH) transformation: ratio of LinA to LinB determines metabolic fate of HCH isomers. Environ. Microbiol. 15 1040–1049. 10.1111/1462-2920.12009
    1. Giri K., Rawat A. P., Rawat M., Rai J. (2014). Biodegradation of hexachlorocyclohexane by two species of bacillus isolated from contaminated soil. Chem. Ecol. 30 97–109. 10.1080/02757540.2013.844795
    1. Githinji I. N. (2015). Screening and Isolation of γ-Hexachlorocyclohexane Degrading Bacteria from Contaminated Soil in Kenya. Nairobi: University of Nairobi; 10.1080/02757540.2013.844795
    1. Guillén-Jiménez F. D. M., Cristiani-Urbina E., Cancino-Díaz J. C., Flores-Moreno J. L., Barragán-Huerta B. E. (2012). Lindane biodegradation by the Fusarium verticillioides AT-100 strain, isolated from Agave tequilana leaves: kinetic study and identification of metabolites. Int. Biodeterior. Biodegrad. 74 36–47. 10.1016/j.ibiod.2012.04.020
    1. Huang Y., Zhan H., Bhatt P., Chen S. (2019). Paraquat degradation from contaminated environments: current achievements and perspectives. Front. Microbiol. 10:1754. 10.3389/fmicb.2019.01754
    1. Iype T., Thomas J., Mohan S., Johnson K. K., George L. E., Ambattu L. A., et al. (2017). A novel method for immobilization of proteins via entrapment of magnetic nanoparticles through epoxy cross-linking. Anal. Biochem. 519 42–50. 10.1016/j.ab.2016.12.007
    1. Jan K., Kamila H., Tomás J., Yuji N., Ana N., Federico G., et al. (2005). Quantitative analysis of substrate specificity of haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26. Biochemistry 44 3390–3401. 10.1021/bi047912o
    1. Janssen D. B. (2004). Evolving haloalkane dehalogenases. Curr. Opin. Chem. Biol. 8 150–159. 10.1016/j.cbpa.2004.02.012
    1. Jayaraj R., Megha P., Sreedev P. (2016). Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip. Toxicol. 9 90–100. 10.1515/intox-2016-0012
    1. Jung H. J., Koutavarapu R., Lee S., Kim J. H., Choi H. C., Choi M. Y. (2018). Enhanced photocatalytic degradation of lindane using metal–semiconductor Zn@ ZnO and ZnO/Ag nanostructures. J. Environ. Sci. 74 107–115. 10.1016/j.jes.2018.02.014
    1. Kaur H., Kaur G. (2016). Application of ligninolytic potentials of a white-rot fungus Ganoderma lucidum for degradation of lindane. Environ. Monit. Assess. 188:588. 10.1007/s10661-016-5606-7
    1. Keisuke M., Haeng-Seog L., Masao F., Masamichi T., Yuji N. (2002). Cloning and characterization of linR, involved in regulation of the downstream pathway for gamma-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26. Mol. Immunol. 68 1803–1807. 10.1128/AEM.68.4.1803-1807.2002
    1. Kumar D. (2018). Biodegradation of γ-Hexachlorocyclohexane by Burkholderia sp. IPL04. Biocatal. Agric. Biotechnol. 16 331–339. 10.1016/j.bcab.2018.09.001
    1. Kumar D., Jaswal S., Chopra S. (2017). Co-degradation study of lindane and chlorpyrifos by novel bacteria. Int. J. Environ. Waste Manag. 20 283–299. 10.1504/IJEWM.2017.090050
    1. Kumar D., Kumar A., Sharma J. (2016). Degradation study of lindane by novel strains Kocuria sp. DAB-1Y and Staphylococcus sp. DAB-1W. Bioresour. Bioprocess. 3:53. 10.1186/s40643-016-0130-8
    1. Kumar D., Pannu R. (2018). Perspectives of lindane (γ-hexachlorocyclohexane) biodegradation from the environment: a review. Bioresour. Bioprocess. 5:29 10.1186/s40643-018-0213-9
    1. Kumar M., Gupta S. K., Garg S. K., Kumar A. (2011). Biodegradation of hexachlorocyclohexane-isomers in contaminated soils. Soil Biol. Biochem. 38 2318–2327. 10.1016/j.soilbio.2006.02.010
    1. Lal R., Dogra C., Malhotra S., Sharma P., Pal R. (2006). Diversity, distribution and divergence of lin genes in hexachlorocyclohexane-degrading sphingomonads. Trends Biotechnol. 24 121–130. 10.1016/j.tibtech.2006.01.005
    1. Lal R., Pandey G., Sharma P., Kumari K., Malhotra S., Pandey R., et al. (2010). Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiol. Mol. Biol. Rev. 74 58–80. 10.1128/MMBR.00029-09
    1. Lin Z., Zhang W., Pang S., Huang Y., Mishra S., Bhatt P., et al. (2020). Current approaches to and future perspectives on methomyl degradation in contaminated soil/water environments. Molecules 25:738. 10.3390/molecules25030738
    1. Liu J., Chen S., Ding J., Xiao Y., Han H., Zhong G. (2015). Sugarcane bagasse as support for immobilization of Bacillus pumilus HZ-2 and its use in bioremediation of mesotrione-contaminated soils. Appl. Microbiol. Biotechnol. 99 10839–10851. 10.1007/s00253-015-6935-0
    1. Loredana S., Graziano P., Antonio M., Carlotta N. M., Caterina L., Maria A. A., et al. (2017). Lindane bioremediation capability of bacteria associated with the demosponge Hymeniacidon perlevis. Mar. Drugs 15:E108. 10.3390/md15040108
    1. Luo D., Pu Y., Tian H., Cheng J., Zhou T., Tao Y., et al. (2016). Concentrations of organochlorine pesticides in umbilical cord blood and related lifestyle and dietary intake factors among pregnant women of the Huaihe River Basin in China. Environ. Int. 92 276–283. 10.1016/j.envint.2016.04.017
    1. Manickam N., Mau M., Schlömann M. (2006). Characterization of the novel HCH-degrading strain, Microbacterium sp. ITRC1. Appl. Microbiol. Biotechnol. 69 580–588. 10.1007/s00253-005-0162-z
    1. Manickam N., Misra R., Mayilraj S. (2010). A novel pathway for the biodegradation of gamma-hexachlorocyclohexane by a Xanthomonas sp. strain ICH12. J. Appl. Microbiol. 102 1468–1478. 10.1111/j.1365-2672.2006.03209.x
    1. Manickam N., Reddy M., Saini H., Shanker R. (2008). Isolation of hexachlorocyclohexane-degrading Sphingomonas sp. by dehalogenase assay and characterization of genes involved in γ-HCH degradation. J. Appl. Microbiol. 104 952–960. 10.1111/j.1365-2672.2007.03610.x
    1. Markman S., Guschina I. A., Barnsley S., Buchanan K. L., Pascoe D., Müller C. T. (2007). Endocrine disrupting chemicals accumulate in earthworms exposed to sewage effluent. Chemosphere 70 119–125. 10.1016/j.chemosphere.2007.06.045
    1. Mas A., Jamshidi S., Lagadeuc Y., Eveillard D., Vandenkoornhuyse P. (2016). Beyond the black queen hypothesis. ISME J. 10 2085–2093. 10.1038/ismej.2016.22
    1. Mladenović D., Djuric D., Petronijević N., Radosavljević T., Radonjić N., Matić D., et al. (2010). The correlation between lipid peroxidation in different brain regions and the severity of lindane-induced seizures in rats. Mol. Cell. Biochem. 333:243. 10.1007/s11010-009-0225-z
    1. Mortazavi N., Asadikaram G., Ebadzadeh M. R., Kamalati A., Pakmanesh H., Dadgar R., et al. (2019). Organochlorine and organophosphorus pesticides and bladder cancer: a case-control study. J. Cell. Biochem. 120 14847–14859. 10.1002/jcb.28746
    1. Muñiz S., Gonzalvo P., Valdehita A., Molina-Molina J. M., Navas J. M., Olea N., et al. (2017). Ecotoxicological assessment of soils polluted with chemical waste from lindane production: use of bacterial communities and earthworms as bioremediation tools. Ecotoxicol. Environ. Saf. 145 539–548. 10.1016/j.ecoenv.2017.07.070
    1. Murthy H. M. R., Manonmani H. K. (2007). Aerobic degradation of technical hexachlorocyclohexane by a defined microbial consortium. J. Hazard. Mater. 149 18–25. 10.1016/j.jhazmat.2007.03.053
    1. Nagata Y., Endo R., Ito M., Ohtsubo Y., Tsuda M. (2007). Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Appl. Microbiol. Biotechnol. 76 741–752. 10.1007/s00253-007-1066-x
    1. Nagpal V., Paknikar K. (2006). Integrated biological approach for the enhanced degradation of lindane. J. Basic Microbiol. 56 820–826. 10.1002/jobm.201500559
    1. Nagpal V., Srinivasan M., Paknikar K. (2008). Biodegradation of γ-hexachlorocyclohexane (Lindane) by a non-white rot fungus Conidiobolus 03-1-56 isolated from litter. Indian J. Microbiol. 48 134–141. 10.1007/s12088-008-0013-6
    1. Nanasato Y., Namiki S., Oshima M., Moriuchi R., Konagaya K.-I., Seike N., et al. (2016). Biodegradation of γ-hexachlorocyclohexane by transgenic hairy root cultures of Cucurbita moschata that accumulate recombinant bacterial LinA. Plant Cell Rep. 35 1963–1974. 10.1007/s00299-016-2011-1
    1. Nolan K., Kamrath J., Levitt J. (2012). Lindane toxicity: a comprehensive review of the medical literature. Pediatr. Dermatol. 29 141–146. 10.1111/j.1525-1470.2011.01519.x
    1. Padhi S., Pati B. (2016). Severity of persistence and toxicity of hexachlorocyclohexane (HCH) to the environment-A current approach. Scholarly Res. J. Interdiscip. Stud. 4 3158–3168.
    1. Pamela C., Andrea S. D., Nadin U., Uwe S. T., Albrecht P., Gerrit S., et al. (2011). Determination of lindane leachability in soil-biosolid systems and its bioavailability in wheat plants. Chemosphere 84 397–402. 10.1016/j.chemosphere.2011.03.070
    1. Polti M. A., Aparicio J. D., Benimeli C. S., Amoroso M. J. (2014). Simultaneous bioremediation of Cr (VI) and lindane in soil by actinobacteria. Int. Biodeterior. Biodegrad. 88 48–55. 10.1016/j.ibiod.2013.12.004
    1. Quintero J. C., Lu-Chau T. A., Moreira M. T., Feijoo G., Lema J. M. (2007). Bioremediation of HCH present in soil by the white-rot fungus Bjerkandera adusta in a slurry batch bioreactor. Int. Biodeterior. Biodegrad. 60 319–326. 10.1016/j.ibiod.2007.05.005
    1. Quintero J. C., Moreira M. T., Feijoo G., Lema J. M. (2005a). Anaerobic degradation of hexachlorocyclohexane isomers in liquid and soil slurry systems. Chemosphere 61 528–536. 10.1016/j.chemosphere.2005.02.010
    1. Quintero J. C., Moreira M. T., Feijoo G., Lema J. M. (2005b). Effect of surfactants on the soil desorption of hexachlorocyclohexane (HCH) isomers and their anaerobic biodegradation. J. Chem. Technol. Biotechnol. 80 1005–1015. 10.1002/jctb.1277
    1. Rinku P., Shashi B., Mandeep D., Mukesh K., Gauri D., Om P., et al. (2005). Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov. Int. J. Syst. Evol. Microbiol. 55 1965–1972. 10.1099/ijs.0.63201-0
    1. Saez J., Alvarez A., Fuentes M., Amoroso M., Benimeli C. (2017). “An overview on microbial degradation of lindane,” in Microbe-Induced Degradation of Pesticides, ed. Singh S., (Cham: Springer; ), 191–212. 10.1007/978-3-319-45156-5_9
    1. Saez J. M., Aparicio J. D., Amoroso M. J., Benimeli C. S. (2015). Effect of the acclimation of a Streptomyces consortium on lindane biodegradation by free and immobilized cells. Process Biochem. 50 1923–1933. 10.1016/j.procbio.2015.08.014
    1. Saez J. M., Bigliardo A. L., Raimondo E. E., Briceño G. E., Polti M. A., Benimeli C. S. (2018). Lindane dissipation in a biomixture: effect of soil properties and bioaugmentation. Ecotoxicol. Environ. Saf. 156 97–105. 10.1016/j.ecoenv.2018.03.011
    1. Sagar V., Singh D. (2011). Biodegradation of lindane pesticide by non white-rots soil fungus Fusarium sp. World J Microbiol. Biotechnol. 27 1747–1754. 10.1007/s11274-010-0628-8
    1. Sahoo B., Ningthoujam R., Chaudhuri S. (2019). Isolation and characterization of a lindane degrading bacteria Paracoccus sp. NITDBR1 and evaluation of its plant growth promoting traits. Int. Microbiol. 22 155–167. 10.1007/s10123-018-00037-1
    1. Sainz M. J., Gonzalez-Penalta B., Vilarino A. (2010). Effects of hexachlorocyclohexane on rhizosphere fungal propagules and root colonization by arbuscular mycorrhizal fungi in Plantago lanceolata. Eur. J. Soil Sci. 57 83–90. 10.1111/j.1365-2389.2005.00775.x
    1. Salam J. A., Das N. (2015). Degradation of lindane by a novel embedded bio-nano hybrid system in aqueous environment. Appl. Microbiol. Biotechnol. 99 2351–2360. 10.1007/s00253-014-6112-x
    1. Salam J. A., Hatha M. A., Das N. (2017). Microbial-enhanced lindane removal by sugarcane (Saccharum officinarum) in doped soil-applications in phytoremediation and bioaugmentation. J. Environ. Manage. 193 394–399. 10.1016/j.jenvman.2017.02.006
    1. Salam J. A., Lakshmi V., Das D., Das N. (2013). Biodegradation of lindane using a novel yeast strain, Rhodotorula sp. VITJzN03 isolated from agricultural soil. World J. Microbiol. Biotechnol. 29 475–487. 10.1007/s11274-012-1201-4
    1. Sangwan N., Lata P., Dwivedi V., Singh A., Niharika N., Kaur J., et al. (2012). Comparative metagenomic analysis of soil microbial communities across three hexachlorocyclohexane contamination levels. PLoS One 7:e46219. 10.1371/journal.pone.0046219
    1. Sharma P., Shankar S., Agarwal A., Singh R. (2010). Variation in serum lipids and liver function markers in lindane exposed female wistar rats: attenuating effect of curcumin, vitamin C and vitamin E. Asian J. Exp. Biol. Sci. 1 440–444.
    1. Shong J., Diaz M. R. J., Collins C. H. (2012). Towards synthetic microbial consortia for bioprocessing. Curr. Opin. Biotechnol. 23 798–802. 10.1016/j.copbio.2012.02.001
    1. Sineli P. E., Tortella G., Costa J. D., Benimeli C. S., Cuozzo S. A. (2016). Evidence of α-, β-and γ-HCH mixture aerobic degradation by the native actinobacteria Streptomyces sp. M7. World J. Microbiol. Biotechnol. 32:81. 10.1007/s11274-016-2037-0
    1. Singh B. K., Kuhad R. C. (2000). Degradation of insecticide lindane (γ-HCH) by white-rot fungi Cyathus bulleri and Phanerochaete sordida. Pest Manag. Sci. 56 142–146.10.1002/1526-4998(200002)56:2<142::aidps104>;2-i
    1. Singh R., Manickam N., Mudiam M. K. R., Murthy R. C., Misra V. (2013). An integrated (nano-bio) technique for degradation of γ-HCH contaminated soil. J. Hazard. Mater. 258 35–41. 10.1016/j.jhazmat.2013.04.016
    1. Singh T., Singh D. K. (2019a). Lindane degradation by root epiphytic bacterium Achromobacter sp. strain A3 from Acorus calamus and characterization of associated proteins. Int. J. Phytoremediat. 21 419–424. 10.1080/15226514.2018.1524835
    1. Singh T., Singh D. K. (2019b). Rhizospheric Microbacterium sp. P27 showing potential of lindane degradation and plant growth promoting traits. Curr. Microbiol. 76 888–895. 10.1007/s00284-019-01703-x
    1. Sun G., Du Y., Yin J., Jiang Y., Zhang D., Jiang B., et al. (2019). Response of microbial communities to different organochlorine pesticides (O) contamination levels in contaminated soils. Chemosphere 215 461–469. 10.1016/j.chemosphere.2018.09.160
    1. Tsygankov V. Y., Lukyanova O., Boyarova M., Gumovskiy A., Donets M., Lyakh V., et al. (2019). Organochlorine pesticides in commercial Pacific salmon in the Russian Far Eastern seas: food safety and human health risk assessment. Mar. Pollut. Bull. 140 503–508. 10.1016/j.marpolbul.2019.02.008
    1. Usman M., Tascone O., Faure P., Hanna K. (2014). Chemical oxidation of hexachlorocyclohexanes (HCHs) in contaminated soils. Sci. Total Environ. 476 434–439. 10.1016/j.scitotenv.2014.01.027
    1. Vankar P. S., Ramashanker S. (2011). Lindane levels in the dumping grounds in Chinhat area, Lucknow, India. Elecron. J. Environ. Agric. Food. Chem. 10 2081–2089.
    1. Vega M., Romano D., Uotila E. (2016). Lindane (persistent organic pollutant) in the EU. Directorate General for Internal Policies. Policy Department C: Citizens’ Rights and Constitutional Affairs. Petitions. PE 571.398. Available at: (accessed August 16, 2019).
    1. Vijgen J., Abhilash P., Li Y. F., Lal R., Forter M., Torres J., et al. (2011). Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs—a global perspective on the management of Lindane and its waste isomers. Environ. Sci. Pollut. Res. 18 152–162. 10.1007/s11356-010-0417-9
    1. Vijgen J., de Borst B., Weber R., Stobiecki T., Forter M. (2019). HCH and lindane contaminated sites: European and global need for a permanent solution for a long-time neglected issue. Environ. Pollut. 248 696–705. 10.1016/j.envpol.2019.02.029
    1. Vijgen J., Weber R., Lichtensteiger W., Schlumpf M. (2018). The legacy of pesticides and POPs stockpiles—a threat to health and the environment. Environ. Sci. Pollut. Res. 25 31793–31798. 10.1007/s11356-018-3188-3
    1. Wacławek S., Antoš V., Hrabák P., Černík M. (2016). Remediation of hexachlorocyclohexanes by cobalt-mediated activation of peroxymonosulfate. Desalin. Water Treat. 57 26274–26279. 10.1080/19443994.2015.1119757
    1. Wang C. W., Chang S. C., Liang C. (2019). Persistent organic pollutant lindane degradation by alkaline cold-brew green tea. Chemosphere 232 281–286. 10.1016/j.chemosphere.2019.05.187
    1. Wang S. M., Tseng S. K. (2009). Reductive dechlorination of trichloroethylene by combining autotrophic hydrogen-bacteria and zero-valent iron particles. Bioresour. Technol. 100 111–117. 10.1016/j.biortech.2008.05.033
    1. Wang X. L. (2019). Joint multi-departmental submission: prohibition on production, circulation, application, import and export of pesticides such as lindane. Mod. Agrochem. 18:44.
    1. Weber R., Aliyeva G., Vijgen J. (2013). The need for an integrated approach to the global challenge of POPs management. Environ. Sci. Pollut. Res. 20 1901–1906. 10.1007/s11356-012-1247-8
    1. Yang J., Feng Y., Zhan H., Liu J., Yang F., Zhang K., et al. (2018). Characterization of a pyrethroid-degrading Pseudomonas fulva strain P31 and biochemical degradation pathway of D-phenothrin. Front. Microbiol. 9:1003. 10.3389/fmicb.2018.01003
    1. Ye T., Zhou T., Li Q., Xu X., Fan X., Zhang L., et al. (2020). Cupriavidus sp. HN-2, a novel quorum quenching bacterial isolate, is a potent biocontrol agent against Xanthomonas campestris pv. campestris. Microorganisms 8:E45. 10.3390/microorganisms8010045
    1. Ye T., Zhou T., Fan X., Bhatt P., Zhang L., Chen S. (2019). Acinetobacter lactucae strain QL-1, a novel quorum quenching candidate against bacterial pathogen Xanthomonas campestris pv. campestris. Front. Microbiol. 10:2867 10.3389/fmicb.2019.02867
    1. Zhang H., Chen F., Zhao H., Lu J., Zhao M., Hong Q., et al. (2018). Colonization on cucumber root and enhancement of chlorimuron-ethyl degradation in the rhizosphere by Hansschlegelia zhihuaiae S113 and root exudates. J. Agric. Food Chem. 66 4584–4591. 10.1021/acs.jafc.8b00041
    1. Zhan H., Huang Y., Lin Z., Bhatt P., Chen S. (2020). New insights into the microbial degradation and catalytic mechanism of synthetic pyrethroids. Environ. Res. 182:109138. 10.1016/j.envres.2020.109138
    1. Zhan H., Feng Y., Fan X., Chen S. (2018a). Recent advances in glyphosate biodegradation. Appl. Microbiol. Biotechnol. 102 5033–5043. 10.1007/s00253-018-9035-0
    1. Zhan H., Wang H., Liao L., Feng Y., Fan X., Zhang L., et al. (2018b). Kinetics and novel degradation pathway of permethrin in Acinetobacter baumannii ZH-14. Front. Microbiol. 9:98. 10.3389/fmicb.2018.00098
    1. Zhang J., Lu L., Chen F., Chen L., Yin J., Huang X. (2018). Detoxification of diphenyl ether herbicide lactofen by Bacillus sp. Za and enantioselective characteristics of an esterase gene lacE. J. Hazard. Mater. 341 336–345. 10.1016/j.jhazmat.2017.07.064
    1. Zhang W., Ye Y., Hu D., Ou L., Wang X. (2010). Characteristics and transport of organochlorine pesticides in urban environment: air, dust, rain, canopy throughfall, and runoff. J. Environ. Monit. 12 2153–2160. 10.1039/c0em00110d

Source: PubMed

3
Prenumerera