Dysregulated autoantibodies targeting vaso- and immunoregulatory receptors in Post COVID Syndrome correlate with symptom severity

Franziska Sotzny, Igor Salerno Filgueiras, Claudia Kedor, Helma Freitag, Kirsten Wittke, Sandra Bauer, Nuno Sepúlveda, Dennyson Leandro Mathias da Fonseca, Gabriela Crispim Baiocchi, Alexandre H C Marques, Myungjin Kim, Tanja Lange, Desirée Rodrigues Plaça, Finn Luebber, Frieder M Paulus, Roberta De Vito, Igor Jurisica, Kai Schulze-Forster, Friedemann Paul, Judith Bellmann-Strobl, Rebekka Rust, Uta Hoppmann, Yehuda Shoenfeld, Gabriela Riemekasten, Harald Heidecke, Otavio Cabral-Marques, Carmen Scheibenbogen, Franziska Sotzny, Igor Salerno Filgueiras, Claudia Kedor, Helma Freitag, Kirsten Wittke, Sandra Bauer, Nuno Sepúlveda, Dennyson Leandro Mathias da Fonseca, Gabriela Crispim Baiocchi, Alexandre H C Marques, Myungjin Kim, Tanja Lange, Desirée Rodrigues Plaça, Finn Luebber, Frieder M Paulus, Roberta De Vito, Igor Jurisica, Kai Schulze-Forster, Friedemann Paul, Judith Bellmann-Strobl, Rebekka Rust, Uta Hoppmann, Yehuda Shoenfeld, Gabriela Riemekasten, Harald Heidecke, Otavio Cabral-Marques, Carmen Scheibenbogen

Abstract

Most patients with Post COVID Syndrome (PCS) present with a plethora of symptoms without clear evidence of organ dysfunction. A subset of them fulfills diagnostic criteria of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Symptom severity of ME/CFS correlates with natural regulatory autoantibody (AAB) levels targeting several G-protein coupled receptors (GPCR). In this exploratory study, we analyzed serum AAB levels against vaso- and immunoregulatory receptors, mostly GPCRs, in 80 PCS patients following mild-to-moderate COVID-19, with 40 of them fulfilling diagnostic criteria of ME/CFS. Healthy seronegative (n=38) and asymptomatic post COVID-19 controls (n=40) were also included in the study as control groups. We found lower levels for various AABs in PCS compared to at least one control group, accompanied by alterations in the correlations among AABs. Classification using random forest indicated AABs targeting ADRB2, STAB1, and ADRA2A as the strongest classifiers (AABs stratifying patients according to disease outcomes) of post COVID-19 outcomes. Several AABs correlated with symptom severity in PCS groups. Remarkably, severity of fatigue and vasomotor symptoms were associated with ADRB2 AAB levels in PCS/ME/CFS patients. Our study identified dysregulation of AAB against various receptors involved in the autonomous nervous system (ANS), vaso-, and immunoregulation and their correlation with symptom severity, pointing to their role in the pathogenesis of PCS.

Keywords: COVID-19; Chronic Fatigue Syndrome; G-protein coupled receptor; ME/CFS,; autoantibodies; autonomic nervous system; post COVID syndrome; renin-angiotensin system.

Conflict of interest statement

The authors declare that HH and KS-F are managing directors of CellTrend. CellTrend holds together with Charité a patent for the diagnostic use of AABs against ADRB2. CS has a consulting agreement with CellTrend. FP reports grants from the Guthy Jackson Charitable Foundation, during the conduct of the study. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The handling editor MD declared a past co-authorship with the author YS.

Copyright © 2022 Sotzny, Filgueiras, Kedor, Freitag, Wittke, Bauer, Sepúlveda, Mathias da Fonseca, Baiocchi, Marques, Kim, Lange, Plaça, Luebber, Paulus, De Vito, Jurisica, Schulze-Forster, Paul, Bellmann-Strobl, Rust, Hoppmann, Shoenfeld, Riemekasten, Heidecke, Cabral-Marques and Scheibenbogen.

Figures

Figure 1
Figure 1
Study workflow and description of autoantibody targets. (A) After data acquisition, different statistical analyses (written on the top) were carried out in order to characterize the signature of autoantibodies (AAB) against G protein coupled receptors (GPCRs) and COVID-19-associated molecules (e.g. renin-angiotensin system (RAS)) in Post COVID Syndrome (PCS) when compared with healthy controls (HC) and post COVID-19 healthy controls (PCHC). Created with Biorender. (B) The 10 squares on the left represent autonomic nervous system (ANS) related receptors, while the 10 on the right show non-ANS molecules and receptors (e.g. RAS, immune and circulatory systems). Blue edges in the network highlight the interactions among the AAB targets, while gray edges represent other interactions. Node colors map to Gene Ontology (GO) biological processes (BPs) and node size corresponds to number of interacting partners for each target. Circular nodes represent human and SARS-CoV-2 molecules (as well as two Spike (S) proteins with unspecified roles) that are described in the IMEx coronavirus interactome. Circular organization of the proteins on the top middle of the image represent interacting partners of the AAB targets (names are omitted, except for 3 proteins that link ACE2 via S). (C) Circular plot with targets and relevant pathways they are associated to. Edge colors differ between each pathway. Edges representing AAB pathways are named from A to J, and the corresponding name is present in the list.
Figure 2
Figure 2
Autoantibodies (-Ab) against G protein coupled receptors (GPCR) and COVID-19-associated molecules are dysregulated during Post COVID Syndrome (PCS). (A) Box plots of Ab investigated in PCS patients with and without ME/CFS and healthy controls post or without COVID-19 history (PCHC or HC). Significance determined by Kruskal Wallis test followed by Dunn test as post hoc. Dunn test p values were corrected for FDR. Adjusted p-values are being represented by: *p.adj < 0.05; **p.adj <0.01; ***p.adj < 0.001; ****p.adj < 0.0001. Boxes represent the median and interquartile range (IQR). (B) Forest plot of regression coefficients for the confounding factors age in years, gender (reference being female) and time post COVID-19 in months considering 95% confidence interval (CI). Red dots and CI indicate that variable has a positive influence in the Ab level, blue dots and CI indicate a negative influence and gray ones contain 0 in the confidence interval, therefore are taken as non significant.
Figure 3
Figure 3
Autoantibodies (-Ab) stratify patients by post-acute COVID-19 outcomes. (A) Principal component analysis (PCA) with spectral decomposition based on logarithmic values of 20 Abs show the stratification of the four studied groups. Variables pointing to the same sense of the corresponding principal components are positive correlated. Small ellipses are the concentration around the mean points of each group. (B) Graphs of variables (Abs) obtained by PCA of all individuals in this study. (C) Barplot with the contribution percentages of each variable to each dimension. A black dashed line is plotted on the 5% mark, and blue bars indicate a contribution higher than 5%.
Figure 4
Figure 4
Machine learning classification of study groups based on autoantibodies. (A) Receiver operating characteristic (ROC) curves of 20 antibodies (Abs) with an area under the curve (AUC) of 77% for healthy individuals and 77% for PCS patient group. (B) Stable curve showing number of trees and out-of-bag (OOB) error rate of 20.34%. (C) Variable importance score plot based on Gini decrease and number (no) of nodes, and the mean of minimum depth for each Ab, showing which variable presents a higher score in classifying COVID-19 post-acute infection outcomes. (D) Heatmap of the confusion matrix. Numbers represent the amount of occurrences that happened when training the random forest model in predicted (row) vs actual classification (column), therefore the blueish diagonal identifies the hits, while other cells are mismatches.
Figure 5
Figure 5
Autoantibody correlation signatures associate with post-acute infection outcome. Circular networks based on Spearman’s rank correlation for the level of the 20 autoantibodies (-Ab) in post COVID syndrome (PCS) patients with and without ME/CFS and healthy controls post or without COVID-19 history (PCHC or HC). There is a list with the abbreviations and the Abs names by the right side of the plot. Correlations greater than 0.6 are represented by the blue edges, and thicker edges imply greater correlations.
Figure 6
Figure 6
Correlation between autoantibody (-Ab) levels and clinical scores. Plots represent Spearman correlation coefficient (r) of correlation of Abs with (A) symptom scores and (B) autonomic symptom score assessed by COMPASS-31 questionnaire of PCS/non-ME/CFS (grey) and PCS/ME/CFS (black) patients. p values represented by: *p < 0.05, **p< 0.01 and ***p<0.001.

References

    1. Davis HE, Assaf GS, McCorkell L, Wei H, Low RJ, Re'em Y, et al. . Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine (2021), (38):101019. doi: 10.1016/j.eclinm.2021.101019
    1. Xie Y, Bowe B, Al-Aly Z. Burdens of post-acute sequelae of COVID-19 by severity of acute infection, demographics and health status. Nat Commun (2021) 12(1):6571. doi: 10.1038/s41467-021-26513-3
    1. Ceban F, Ling S, Lui LMW, Lee Y, Gill H, Teopiz KM, et al. . Fatigue and cognitive impairment in post-COVID-19 syndrome: A systematic review and meta-analysis. Brain Behav Immun (2021) 101:93–135. doi: 10.1016/j.bbi.2021.12.020
    1. Logue JK, Franko NM, McCulloch DJ, McDonald D, Magedson A, Wolf CR, et al. . Sequelae in adults at 6 months after COVID-19 infection. JAMA Netw Open (2021) 4(2):e210830. doi: 10.1001/jamanetworkopen.2021.0830
    1. Kedor C, Freitag H, Meyer-Arndt L, Wittke K, Hanitsch LG, Zoller T, et al. . A prospective observational study of post-COVID-19 chronic fatigue syndrome following the first pandemic wave in Germany and biomarkers associated with symptom severity. Nature communications (2022) 13(1):5104. doi: 10.1038/s41467-022-32507-6
    1. Nacul L, Authier FJ, Scheibenbogen C, Lorusso L, Helland IB, Martin JA, et al. . European Network on myalgic Encephalomyelitis/Chronic fatigue syndrome (EUROMENE): Expert consensus on the diagnosis, service provision, and care of people with ME/CFS in Europe. Medicina (2021) 57(5):510. doi: 10.3390/medicina57050510
    1. Carruthers BM, Jain AK, De Meirleir KL, Peterson DL, Klimas NG, Lerner AM, et al. . Myalgic Encephalomyelitis/Chronic fatigue syndrome. J Chronic Fatigue Syndrome (2003) 11(1):7–115. doi: 10.1300/J092v11n01_02
    1. Mejia-Renteria H, Travieso A, Sagir A, Martinez-Gomez E, Carrascosa-Granada A, Toya T, et al. . In-vivo evidence of systemic endothelial vascular dysfunction in COVID-19. Int J Cardiol (2021) 345:153–5. doi: 10.1016/j.ijcard.2021.10.140
    1. Charfeddine S, Ibn Hadj Amor H, Jdidi J, Torjmen S, Kraiem S, Hammami R, et al. . Long COVID 19 syndrome: Is it related to microcirculation and endothelial dysfunction? insights from TUN-EndCOV study. Front Cardiovasc Med (2021) 8:745758(1702). doi: 10.3389/fcvm.2021.745758
    1. Chioh FW, Fong SW, Young BE, Wu KX, Siau A, Krishnan S, et al. . Convalescent COVID-19 patients are susceptible to endothelial dysfunction due to persistent immune activation. Elife (2021) 10:e64909. doi: 10.7554/eLife.64909
    1. Phetsouphanh C, Darley DR, Wilson DB, Howe A, Munier CML, Patel SK, et al. . Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat Immunol (2022) 23(2):210–6. doi: 10.1038/s41590-021-01113-x
    1. Haffke M, Freitag H, Rudolf G, Seifert M, Doehner W, Scherbakov N, et al. . Endothelial dysfunction and altered endothelial biomarkers in patients with post-COVID-19 syndrome and chronic fatigue syndrome (ME/CFS). J Transl Med (2022) 20(1):138. doi: 10.1186/s12967-022-03346-2
    1. Flaskamp L, Roubal C, Uddin S, Sotzny F, Kedor C, Bauer S, et al. . Serum of post-COVID-19 syndrome patients with or without ME/CFS differentially affects endothelial cell function. In Vitro. Cells (2022) 11(15):2376. doi: 10.3390/cells11152376
    1. Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, et al. . Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science (2020) 370(6515):eabd4585. doi: 10.1126/science.abd4585
    1. Khamsi R. Rogue antibodies could be driving severe COVID-19. Nature (2021) 590(7844):29–31. doi: 10.1038/d41586-021-00149-1
    1. Zuo Y, Estes SK, Ali RA, Gandhi AA, Yalavarthi S, Shi H, et al. . Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med (2020) 12(570):eabd3876. doi: 10.1126/scitranslmed.abd3876
    1. Wang EY, Mao T, Klein J, Dai Y, Huck JD, Jaycox JR, et al. . Diverse functional autoantibodies in patients with COVID-19. Nature (2021) 595(7866):283–8. doi: 10.1038/s41586-021-03631-y
    1. Rodriguez-Perez AI, Labandeira CM, Pedrosa MA, Valenzuela R, Suarez-Quintanilla JA, Cortes-Ayaso M, et al. . Autoantibodies against ACE2 and angiotensin type-1 receptors increase severity of COVID-19. J Autoimmun (2021) 122:102683. doi: 10.1016/j.jaut.2021.102683
    1. Cabral-Marques O, Halpert G, Schimke LF, Ostrinski Y, Vojdani A, Baiocchi GC, et al. . Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity. Nat Commun (2022) 13(1):1220. doi: 10.1038/s41467-022-28905-5
    1. Rojas M, Rodríguez Y, Acosta-Ampudia Y, Monsalve DM, Zhu C, Li QZ, et al. . Autoimmunity is a hallmark of post-COVID syndrome. J Transl Med (2022) 20(1):129. doi: 10.1186/s12967-022-03328-4
    1. Lingel H, Meltendorf S, Billing U, Thurm C, Vogel K, Majer C, et al. . Unique autoantibody prevalence in long-term recovered SARS-CoV-2-infected individuals. J Autoimmun (2021) 122:102682. doi: 10.1016/j.jaut.2021.102682
    1. Lee ECY, Tyler RE, Johnson D, Koh N, Ong BC, Foo SY, et al. . High frequency of anti-DSG 2 antibodies in post COVID-19 serum samples. J Mol Cell Cardiol (2022) 170:121–3. doi: 10.1016/j.yjmcc.2022.06.006
    1. Wallukat G, Hohberger B, Wenzel K, Furst J, Schulze-Rothe S, Wallukat A, et al. . Functional autoantibodies against G-protein coupled receptors in patients with persistent long-COVID-19 symptoms. J Transl Autoimmun (2021) 4:100100. doi: 10.1016/j.jtauto.2021.100100
    1. Cabral-Marques O, Marques A, Giil LM, De Vito R, Rademacher J, Günther J, et al. . GPCR-specific autoantibody signatures are associated with physiological and pathological immune homeostasis. Nat Commun (2018) 9(1):5224. doi: 10.1038/s41467-018-07598-9
    1. Yue X, Yin J, Wang X, Heidecke H, Hackel AM, Dong X, et al. . Induced antibodies directed to the angiotensin receptor type 1 provoke skin and lung inflammation, dermal fibrosis and act species overarching. Ann Rheum Dis. (2022). 81(9):1281–9. doi: 10.1136/annrheumdis-2021-222088
    1. Riemekasten G, Petersen F, Heidecke H. What makes antibodies against G protein-coupled receptors so special? a novel concept to understand chronic diseases. Front Immunol (2020) 11:564526. doi: 10.3389/fimmu.2020.564526
    1. Bynke A, Julin P, Gottfries CG, Heidecke H, Scheibenbogen C, Bergquist J. Autoantibodies to beta-adrenergic and muscarinic cholinergic receptors in myalgic encephalomyelitis (ME) patients - a validation study in plasma and cerebrospinal fluid from two Swedish cohorts. Brain behavior Immun - Health (2020) 7:100107. doi: 10.1016/j.bbih.2020.100107
    1. Loebel M, Grabowski P, Heidecke H, Bauer S, Hanitsch LG, Wittke K, et al. . Antibodies to beta adrenergic and muscarinic cholinergic receptors in patients with chronic fatigue syndrome. Brain Behav Immun (2016) 52:32–9. doi: 10.1016/j.bbi.2015.09.013
    1. Freitag H, Szklarski M, Lorenz S, Sotzny F, Bauer S, Philippe A, et al. . Autoantibodies to vasoregulative G-Protein-Coupled receptors correlate with symptom severity, autonomic dysfunction and disability in myalgic Encephalomyelitis/Chronic fatigue syndrome. J Clin Med (2021) 10(16):3675. doi: 10.3390/jcm10163675
    1. Tanaka S, Kuratsune H, Hidaka Y, Hakariya Y, Tatsumi KI, Takano T, et al. . Autoantibodies against muscarinic cholinergic receptor in chronic fatigue syndrome. Int J Mol Med (2003) 12(2):225–30. doi: 10.3892/ijmm.12.2.225
    1. Cotler J, Holtzman C, Dudun C, Jason LA. A brief questionnaire to assess post-exertional malaise. Diagnostics (Basel) (2018) 8(3):66. doi: 10.3390/diagnostics8030066
    1. Bai F, Tomasoni D, Falcinella C, Barbanotti D, Castoldi R, Mulè G, et al. . Female gender is associated with long COVID syndrome: a prospective cohort study. Clin Microbiol Infect (2022) 28(4):611.e9–.e16. doi: 10.1016/j.cmi.2021.11.002
    1. Cella M, Chalder T. Measuring fatigue in clinical and community settings. J Psychosom Res (2010) 69(1):17–22. doi: 10.1016/j.jpsychores.2009.10.007
    1. Jason LA, Sunnquist M, Brown A, Reed J. Defining essential features of myalgic encephalomyelitis and chronic fatigue syndrome. J Hum Behav Soc Environ (2015) 25(6):657–74. doi: 10.1080/10911359.2015.1011256
    1. Bell DS. The doctor's guide to chronic fatigue syndrome: Understanding, treating, and living with cfids. Da Capo Press; (1995).
    1. Ware JE, Jr., Sherbourne CD. The MOS 36-item short-form health survey (SF-36). i. conceptual framework and item selection. Med Care (1992) 30(6):473–83.
    1. Fluge O, Risa K, Lunde S, Alme K, Rekeland IG, Sapkota D, et al. . B-lymphocyte depletion in myalgic encephalopathy/ chronic fatigue syndrome. an open-label phase II study with rituximab maintenance treatment. PloS One (2015) 10(7):e0129898. doi: 10.1371/journal.pone.0129898
    1. Sletten DM, Suarez GA, Low PA, Mandrekar J, Singer W. COMPASS 31: a refined and abbreviated composite autonomic symptom score. Mayo Clin Proc (2012) 87(12):1196–201. doi: 10.1016/j.mayocp.2012.10.013
    1. Kotlyar M, Pastrello C, Ahmed Z, Chee J, Varyova Z, Jurisica I. IID 2021: towards context-specific protein interaction analyses by increased coverage, enhanced annotation and enrichment analysis. Nucleic Acids Res (2022) 50(D1):D640–D7. doi: 10.1093/nar/gkab1034
    1. Perfetto L, Pastrello C, Del-Toro N, Duesbury M, Iannuccelli M, Kotlyar M, et al. . The IMEx coronavirus interactome: an evolving map of coronaviridae-host molecular interactions. Database (Oxford) (2020). doi: 10.1093/database/baaa096
    1. Brown KR, Otasek D, Ali M, McGuffin MJ, Xie W, Devani B, et al. . NAViGaTOR: Network analysis, visualization and graphing Toronto. Bioinformatics (2009) 25(24):3327–9. doi: 10.1093/bioinformatics/btp595
    1. Rahmati S, Abovsky M, Pastrello C, Kotlyar M, Lu R, Cumbaa CA, et al. . pathDIP 4: an extended pathway annotations and enrichment analysis resource for human, model organisms and domesticated species. Nucleic Acids Res (2020) 48(D1):D479–D88. doi: 10.1093/nar/gkz989
    1. R Core Team . R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; (2021). Available at: .
    1. RStudio Team . RStudio: Integrated development environment for r. Boston, MA: RStudio, PBC; (2020). Available at: .
    1. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. . Circos: an information aesthetic for comparative genomics. Genome Res (2009) 19(9):1639–45. doi: 10.1101/gr.092759.109
    1. Yu G, He QY. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol Biosyst (2016) 12(2):477–9. doi: 10.1039/c5mb00663e
    1. Yu GC, Wang LG, Han YY, He QY. clusterProfiler: an r package for comparing biological themes among gene clusters. Omics (2012) 16(5):284–7. doi: 10.1089/omi.2011.0118
    1. Wickham H. ggplot2: elegant graphics for data analysis. springer; (2016). Publisher: Springer New York, NY, 2009. doi: 10.1007/978-0-387-98141-3
    1. Garnier S, Ross N, Rudis R, Camargo AP, Sciaini M, Scherer C. Rvision - colorblind-friendly color maps for r. (2021). Available at:
    1. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. . clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb) (2021) 2(3):100141. doi: 10.1016/j.xinn.2021.100141
    1. Garnier S, Ross N, Rudis B, Filipovic-Pierucci A, Galili T, timelyportfolio et al. . Sjmgarnier/viridis: viridis 0.6.0 (pre-CRAN release). Zenodo; (2021). doi: 10.5281/zenodo.4679424
    1. Schauberger P, Walker A. Openxlsx: Read, write and edit xlsx files (2021). Available at: .
    1. Kassambara A. Rstatix: Pipe-friendly framework for basic statistical tests (2021). Available at: .
    1. Kassambara A. Ggpubr: 'ggplot2' based publication ready plots (2020). Available at: .
    1. Edwards SM. Lemon: Freshing up your 'ggplot2' plots (2020). Available at: .
    1. Rigby RA, Stasinopoulos DM. Generalized additive models for location, scale and shape. J R Stat Soc C-Appl (2005) 54:507–44. doi: 10.1111/j.1467-9876.2005.00510.x
    1. Lever J, Krzywinski M, Altman N. Principal component analysis. Nat Methods (2017) 14(7):641–2. doi: 10.1038/nmeth.4346
    1. Ringner M. What is principal component analysis? Nat Biotechnol (2008) 26(3):303–4. doi: 10.1038/nbt0308-303
    1. Kassambara A, Mundt F. Factoextra: Extract and visualize the results of multivariate data analyses (2020). Available at: .
    1. Kaiser HF. The application of electronic computers to factor analysis. Educ psychol Measurement (1960) 20(1):141–51. doi: 10.1177/001316446002000116
    1. Liaw A, Wiener M. Classification and regression by randomforest. R News (2002) 2:18–22.
    1. Epskamp S, Cramer AOJ, Waldorp LJ, Schmittmann VD, Borsboom D. Qgraph: Network visualizations of relationships in psychometric data. J Stat Softw (2012) 48(4):1–18. doi: 10.18637/jss.v048.i04
    1. WHO . Living guidance for clinical management of COVID-19: living guidance, 23 November 2021. World Health Organization; (2021).
    1. Chang SE, Feng A, Meng W, Apostolidis SA, Mack E, Artandi M, et al. . New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nat Commun (2021) 12(1):5417. doi: 10.1038/s41467-021-25509-3
    1. Catar R, Herse-Naether M, Zhu N, Wagner P, Wischnewski O, Kusch A, et al. . Autoantibodies targeting AT1- and ETA-receptors link endothelial proliferation and coagulation via ets-1 transcription factor. Int J Mol Sci (2021) 23(1):244. doi: 10.3390/ijms23010244
    1. Kill A, Tabeling C, Undeutsch R, Kuhl AA, Gunther J, Radic M, et al. . Autoantibodies to angiotensin and endothelin receptors in systemic sclerosis induce cellular and systemic events associated with disease pathogenesis. Arthritis Res Ther (2014) 16(1):R29. doi: 10.1186/ar4457
    1. Simon M, Lucht C, Hosp I, Zhao H, Wu D, Heidecke H, et al. . Autoantibodies from patients with scleroderma renal crisis promote PAR-1 receptor activation and IL-6 production in endothelial cells. Int J Mol Sci (2021) 22(21):11793. doi: 10.3390/ijms222111793
    1. Gunther J, Kill A, Becker MO, Heidecke H, Rademacher J, Siegert E, et al. . Angiotensin receptor type 1 and endothelin receptor type a on immune cells mediate migration and the expression of IL-8 and CCL18 when stimulated by autoantibodies from systemic sclerosis patients. Arthritis Res Ther (2014) 16(2):R65. doi: 10.1186/ar4503
    1. Yu X, Stavrakis S, Hill MA, Huang S, Reim S, Li H, et al. . Autoantibody activation of beta-adrenergic and muscarinic receptors contributes to an "autoimmune" orthostatic hypotension. J Am Soc Hypertens (2012) 6(1):40–7. doi: 10.1016/j.jash.2011.10.003
    1. Hartwig J, Sotzny F, Bauer S, Heidecke H, Riemekasten G, Dragun D, et al. . IgG stimulated β2 adrenergic receptor activation is attenuated in patients with ME/CFS. Brain behavior Immun - Health (2020) 3:100047. doi: 10.1016/j.bbih.2020.100047
    1. Bisaccia G, Ricci F, Recce V, Serio A, Iannetti G, Chahal AA, et al. . Post-acute sequelae of COVID-19 and cardiovascular autonomic dysfunction: What do we know? J Cardiovasc Dev Dis (2021) 8(11):156. doi: 10.3390/jcdd8110156
    1. Wirth K, Scheibenbogen C. A unifying hypothesis of the pathophysiology of myalgic Encephalomyelitis/Chronic fatigue syndrome (ME/CFS): Recognitions from the finding of autoantibodies against ß2-adrenergic receptors. Autoimmun Rev (2020) 19(6):102527. doi: 10.1016/j.autrev.2020.102527
    1. Sepúlveda N, Malato J, Sotzny F, Grabowska AD, Fonseca A, Cordeiro C, et al. . Revisiting IgG antibody reactivity to Epstein-Barr virus in myalgic Encephalomyelitis/Chronic fatigue syndrome and its potential application to disease diagnosis. Frontiers in Medicine (2022). doi: 10.3389/fmed.2022.921101
    1. Su Y, Yuan D, Chen DG, Ng RH, Wang K, Choi J, et al. . Multiple early factors anticipate post-acute COVID-19 sequelae. Cell (2022) 185(5):881–95.e20. doi: 10.1016/j.cell.2022.01.014
    1. Yamada M, Lamping KG, Duttaroy A, Zhang W, Cui Y, Bymaster FP, et al. . Cholinergic dilation of cerebral blood vessels is abolished in M(5) muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci U.S.A. (2001) 98(24):14096–101. doi: 10.1073/pnas.251542998
    1. Araya R, Noguchi T, Yuhki M, Kitamura N, Higuchi M, Saido TC, et al. . Loss of M5 muscarinic acetylcholine receptors leads to cerebrovascular and neuronal abnormalities and cognitive deficits in mice. Neurobiol Dis (2006) 24(2):334–44. doi: 10.1016/j.nbd.2006.07.010
    1. Biswal B, Kunwar P, Natelson BH. Cerebral blood flow is reduced in chronic fatigue syndrome as assessed by arterial spin labeling. J Neurological Sci (2011) 301(1):9–11. doi: 10.1016/j.jns.2010.11.018
    1. van Campen CMC, Rowe PC, Visser FC. Cerebral blood flow is reduced in severe myalgic Encephalomyelitis/Chronic fatigue syndrome patients during mild orthostatic stress testing: An exploratory study at 20 degrees of head-up tilt testing. Healthcare (2020) 8(2):169. doi: 10.3390/healthcare8020169
    1. Boissoneault J, Letzen J, Robinson M, Staud R. Cerebral blood flow and heart rate variability predict fatigue severity in patients with chronic fatigue syndrome. Brain Imaging Behav (2019) 13(3):789–97. doi: 10.1007/s11682-018-9897-x
    1. Lee W, Park SY, Yoo Y, Kim SY, Kim JE, Kim SW, et al. . Macrophagic stabilin-1 restored disruption of vascular integrity caused by sepsis. Thromb haemostasis (2018) 118(10):1776–89. doi: 10.1055/s-0038-1669477
    1. Whitehead AK, Erwin AP, Yue X. Nicotine and vascular dysfunction. Acta Physiol (Oxf) (2021) 231(4):e13631. doi: 10.1111/apha.13631
    1. Tognetto M, D'Andrea MR, Trevisani M, Guerrini R, Salvadori S, Spisani L, et al. . Proteinase-activated receptor-1 (PAR-1) activation contracts the isolated human renal artery. vitro Br J Pharmacol (2003) 139(1):21–7. doi: 10.1038/sj.bjp.0705215
    1. Kuwabara Y, Tanaka-Ishikawa M, Abe K, Hirano M, Hirooka Y, Tsutsui H, et al. . Proteinase-activated receptor 1 antagonism ameliorates experimental pulmonary hypertension. Cardiovasc Res (2019) 115(8):1357–68. doi: 10.1093/cvr/cvy284
    1. Rovai ES, Alves T, Holzhausen M. Protease-activated receptor 1 as a potential therapeutic target for COVID-19. Exp Biol Med (Maywood NJ) (2021) 246(6):688–94. doi: 10.1177/1535370220978372
    1. Halder N, Lal G. Cholinergic system and its therapeutic importance in inflammation and autoimmunity. Front Immunol (2021) 12:660342. doi: 10.3389/fimmu.2021.660342
    1. Bellocchi C, Carandina A, Montinaro B, Targetti E, Furlan L, Rodrigues GD, et al. . The interplay between autonomic nervous system and inflammation across systemic autoimmune diseases. Int J Mol Sci (2022) 23(5):2449. doi: 10.3390/ijms23052449
    1. Julian DR, Kazakoff MA, Patel A, Jaynes J, Willis MS, Yates CC. Chemokine-based therapeutics for the treatment of inflammatory and fibrotic convergent pathways in COVID-19. Curr pathobiology Rep (2021) 9(4):93–105. doi: 10.1007/s40139-021-00226-0
    1. Yue X, Deng F, Chen J, Yin J, Zheng J, Chen Y, et al. . Autoantibodies against C5aR1, C3aR1, CXCR3, and CXCR4 are decreased in primary sjogren's syndrome. Mol Immunol (2021) 131:112–20. doi: 10.1016/j.molimm.2020.12.027
    1. Kzhyshkowska J, Gratchev A, Goerdt S. Stabilin-1, a homeostatic scavenger receptor with multiple functions. J Cell Mol Med (2006) 10(3):635–49. doi: 10.1111/j.1582-4934.2006.tb00425.x
    1. Willis Fox O, Preston RJS. Molecular basis of protease-activated receptor 1 signaling diversity. J Thromb Haemost (2020) 18(1):6–16. doi: 10.1111/jth.14643
    1. Weigold F, Günther J, Pfeiffenberger M, Cabral-Marques O, Siegert E, Dragun D, et al. . Antibodies against chemokine receptors CXCR3 and CXCR4 predict progressive deterioration of lung function in patients with systemic sclerosis. Arthritis Res Ther (2018) 20(1):52. doi: 10.1186/s13075-018-1545-8
    1. Stanova AK, Ryabkova VA, Utekhin SV, Shoenfeld VJ, Churilov LP, Shoenfeld Y. Anti-idiotypic agonistic antibodies: Candidates for the role of universal remedy. Antibodies (2020) 9(2):19. doi: 10.3390/antib9020019
    1. Murphy WJ, Longo DL. A possible role for anti-idiotype antibodies in SARS-CoV-2 infection and vaccination. N Engl J Med (2022) 386(4):394–6. doi: 10.1056/NEJMcibr2113694

Source: PubMed

3
Prenumerera