Vertebral artery hypoplasia influences age-related differences in blood flow of the large intracranial arteries

Kathleen B Miller, Samuel J Gallo, Leonardo A Rivera-Rivera, Adam T Corkery, Anna J Howery, Sterling C Johnson, Howard A Rowley, Oliver Wieben, Jill N Barnes, Kathleen B Miller, Samuel J Gallo, Leonardo A Rivera-Rivera, Adam T Corkery, Anna J Howery, Sterling C Johnson, Howard A Rowley, Oliver Wieben, Jill N Barnes

Abstract

Our purpose was to compare cerebral blood flow in the large intracranial vessels between healthy adults with (VAH+) and without (No VAH) vertebral artery hypoplasia. We also evaluated age-related differences in regional blood flow through the large cerebral arteries. Healthy young (n = 20; age = 25 ± 3 years) and older adults (n = 19; age = 61 ± 5 years) underwent 4D flow MRI scans to evaluate blood flow in the internal carotid arteries (ICA) and basilar artery (BA). VAH was determined retrospectively from 4D flow MRI using both structural (vessel diameter ≤ 2 mm) and flow criteria (flow ≤ 50 mL/min). We identified 5 young and 5 older adults with unilateral VAH (prevalence = 26%). ICA flow was lower in the VAH+ group compared with the No VAH group (367 ± 75 mL/min vs. 432 ± 92 mL/min, respectively; p < 0.05). There was no difference in BA flow between VAH+ and No VAH (110 ± 20 mL/min vs. 126 ± 40 mL/min, respectively; p = 0.24). When comparing age-related differences in blood flow in the No VAH group, older adults demonstrated lower BA flow compared with young adults (111 ± 38 mL/min vs. 140 ± 38 mL/min, respectively; p < 0.05) but not ICA flow (428 ± 89 mL/min vs. 436 ± 98 mL/min, respectively; p = 0.82). In contrast, in the VAH+ group, older adults had lower ICA flow compared with young adults (312 ± 65 mL/min vs. 421 ± 35 mL/min, respectively; p < 0.01), but not BA flow (104 ± 16 mL/min vs. 117 ± 23 mL/min, respectively; p = 0.32). Our results suggest that the presence of VAH is associated with lower ICA blood flow. Furthermore, VAH may contribute to the variability in the age-related differences in cerebral blood flow in healthy adults.

Keywords: Aging; Brain blood flow; Cerebral anatomy; Posterior circulation; Stroke risk.

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

© 2021 The Author(s).

Figures

Fig. 1
Fig. 1
These are example images of the large intracranial arteries from the 4D flow MRI scan. Fig. 1A shows an example of a participant without vertebral artery hypoplasia (No VAH). Fig. 1B shows an example of a participant with VAH on the right side (VAH+). VAH was determined using both structural (hypoplastic vessel diameter less than or equal to 2.0 mm) and flow criteria (hypoplastic vessel flow less than or equal to 50 mL/min). Warmer colors reflect higher blood velocity. BA, basilar artery, L, left, R, right, VA, vertebral artery, VAH, vertebral artery hypoplasia.
Fig. 2
Fig. 2
Blood flow (A, B, C) and pulsatility index (D, E) data from the large intracranial arteries in participants with (VAH+) and without vertebral artery hypoplasia (No VAH) are shown here. A shows global blood flow, B shows internal carotid artery (ICA) blood flow and C shows basilar artery (BA) blood flow. D shows ICA pulsatility index and E shows BA pulsatility index. Bar graphs demonstrate group means ± standard deviation. Group means of No VAH are shown in black and individual data are shown in white circles (n = 29). Group means of VAH+ are shown in white and individual data are shown in white triangles (n = 10). *p 

Fig. 3

Blood flow of the large…

Fig. 3

Blood flow of the large intracranial arteries in young and older participants without…

Fig. 3
Blood flow of the large intracranial arteries in young and older participants without (No VAH; A) and with vertebral artery hypoplasia (VAH+; B) are shown here. In the top panels, group means of young No VAH are shown in grey and individual data is shown in grey circles (n = 15). Group means of older No VAH are shown in white and individual data is shown in white circles (n = 14). In the bottom panels, group means of young VAH+ are shown in grey and individual data is shown in grey triangles (n = 5). Group means of older VAH+ are shown in white and individual data is shown in white triangles (n = 5). BA, basilar artery, ICA, internal carotid arteries. *p 

Fig. 4

Pulsatility index of large intracranial…

Fig. 4

Pulsatility index of large intracranial arteries in young and older participants without (No…

Fig. 4
Pulsatility index of large intracranial arteries in young and older participants without (No VAH; A) and with vertebral artery hypoplasia (VAH+; B) are shown here. In the top panels, group means of young No VAH are shown in grey and individual data is shown in grey circles (n = 15). Group means of older No VAH are shown in white and individual data is shown in white circles (n = 14). In the bottom panels, group means of young VAH+ are shown in grey and individual data is shown in grey triangles (n = 5). Group means of older VAH+ are shown in white and individual data is shown in white triangles (n = 5). BA, basilar artery, ICA, internal carotid arteries. *p 

Supplementary figure 1

Supplementary figure 1

Supplementary figure 1
Similar articles
References
    1. Acar M., Degirmenci B., Yucel A., Albayrak R., Haktanir A., Yaman M. Comparison of vertebral artery velocity and flow volume measurements for diagnosis of vertebrobasilar insufficiency using color duplex sonography. Eur J Radiol Postoperative Knee-Joint. 2005;54:221–224. doi: 10.1016/j.ejrad.2004.06.017. - DOI - PubMed
    1. Ainslie P.N., Cotter J.D., George K.P., Lucas S., Murrell C., Shave R., et al. Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing. J Physiol. 2008;586:4005–4010. doi: 10.1113/jphysiol.2008.158279. - DOI - PMC - PubMed
    1. Albayrak R., Degırmencı B., Acar M., Haktanır A., Colbay M., Yaman M. Doppler sonography evaluation of flow velocity and volume of the extracranial internal carotid and vertebral arteries in healthy adults. J Clin Ultrasound JCU. 2007;35:27–33. doi: 10.1002/jcu.20301. - DOI - PubMed
    1. Bakker S.L.M., de Leeuw F.-E., den Heijer T., Koudstaal P.J., Hofman A., Breteler M.M.B. Cerebral haemodynamics in the elderly: The Rotterdam Study. Neuroepidemiology. 2004;23:178–184. doi: 10.1159/000078503. - DOI - PubMed
    1. Barnes J.N., Schmidt J.E., Nicholson W.T., Joyner M.J. Cyclooxygenase inhibition abolishes age-related differences in cerebral vasodilator responses to hypercapnia. J Appl Physiol. 2012;112:1884–1890. doi: 10.1152/japplphysiol.01270.2011. - DOI - PMC - PubMed
Show all 54 references
Related information
LinkOut - more resources
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Fig. 3
Fig. 3
Blood flow of the large intracranial arteries in young and older participants without (No VAH; A) and with vertebral artery hypoplasia (VAH+; B) are shown here. In the top panels, group means of young No VAH are shown in grey and individual data is shown in grey circles (n = 15). Group means of older No VAH are shown in white and individual data is shown in white circles (n = 14). In the bottom panels, group means of young VAH+ are shown in grey and individual data is shown in grey triangles (n = 5). Group means of older VAH+ are shown in white and individual data is shown in white triangles (n = 5). BA, basilar artery, ICA, internal carotid arteries. *p 

Fig. 4

Pulsatility index of large intracranial…

Fig. 4

Pulsatility index of large intracranial arteries in young and older participants without (No…

Fig. 4
Pulsatility index of large intracranial arteries in young and older participants without (No VAH; A) and with vertebral artery hypoplasia (VAH+; B) are shown here. In the top panels, group means of young No VAH are shown in grey and individual data is shown in grey circles (n = 15). Group means of older No VAH are shown in white and individual data is shown in white circles (n = 14). In the bottom panels, group means of young VAH+ are shown in grey and individual data is shown in grey triangles (n = 5). Group means of older VAH+ are shown in white and individual data is shown in white triangles (n = 5). BA, basilar artery, ICA, internal carotid arteries. *p 

Supplementary figure 1

Supplementary figure 1

Supplementary figure 1
Similar articles
References
    1. Acar M., Degirmenci B., Yucel A., Albayrak R., Haktanir A., Yaman M. Comparison of vertebral artery velocity and flow volume measurements for diagnosis of vertebrobasilar insufficiency using color duplex sonography. Eur J Radiol Postoperative Knee-Joint. 2005;54:221–224. doi: 10.1016/j.ejrad.2004.06.017. - DOI - PubMed
    1. Ainslie P.N., Cotter J.D., George K.P., Lucas S., Murrell C., Shave R., et al. Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing. J Physiol. 2008;586:4005–4010. doi: 10.1113/jphysiol.2008.158279. - DOI - PMC - PubMed
    1. Albayrak R., Degırmencı B., Acar M., Haktanır A., Colbay M., Yaman M. Doppler sonography evaluation of flow velocity and volume of the extracranial internal carotid and vertebral arteries in healthy adults. J Clin Ultrasound JCU. 2007;35:27–33. doi: 10.1002/jcu.20301. - DOI - PubMed
    1. Bakker S.L.M., de Leeuw F.-E., den Heijer T., Koudstaal P.J., Hofman A., Breteler M.M.B. Cerebral haemodynamics in the elderly: The Rotterdam Study. Neuroepidemiology. 2004;23:178–184. doi: 10.1159/000078503. - DOI - PubMed
    1. Barnes J.N., Schmidt J.E., Nicholson W.T., Joyner M.J. Cyclooxygenase inhibition abolishes age-related differences in cerebral vasodilator responses to hypercapnia. J Appl Physiol. 2012;112:1884–1890. doi: 10.1152/japplphysiol.01270.2011. - DOI - PMC - PubMed
Show all 54 references
Related information
LinkOut - more resources
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Fig. 4
Fig. 4
Pulsatility index of large intracranial arteries in young and older participants without (No VAH; A) and with vertebral artery hypoplasia (VAH+; B) are shown here. In the top panels, group means of young No VAH are shown in grey and individual data is shown in grey circles (n = 15). Group means of older No VAH are shown in white and individual data is shown in white circles (n = 14). In the bottom panels, group means of young VAH+ are shown in grey and individual data is shown in grey triangles (n = 5). Group means of older VAH+ are shown in white and individual data is shown in white triangles (n = 5). BA, basilar artery, ICA, internal carotid arteries. *p 

Supplementary figure 1

Supplementary figure 1

Supplementary figure 1
Supplementary figure 1
Supplementary figure 1

References

    1. Acar M., Degirmenci B., Yucel A., Albayrak R., Haktanir A., Yaman M. Comparison of vertebral artery velocity and flow volume measurements for diagnosis of vertebrobasilar insufficiency using color duplex sonography. Eur J Radiol Postoperative Knee-Joint. 2005;54:221–224. doi: 10.1016/j.ejrad.2004.06.017.
    1. Ainslie P.N., Cotter J.D., George K.P., Lucas S., Murrell C., Shave R., et al. Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing. J Physiol. 2008;586:4005–4010. doi: 10.1113/jphysiol.2008.158279.
    1. Albayrak R., Degırmencı B., Acar M., Haktanır A., Colbay M., Yaman M. Doppler sonography evaluation of flow velocity and volume of the extracranial internal carotid and vertebral arteries in healthy adults. J Clin Ultrasound JCU. 2007;35:27–33. doi: 10.1002/jcu.20301.
    1. Bakker S.L.M., de Leeuw F.-E., den Heijer T., Koudstaal P.J., Hofman A., Breteler M.M.B. Cerebral haemodynamics in the elderly: The Rotterdam Study. Neuroepidemiology. 2004;23:178–184. doi: 10.1159/000078503.
    1. Barnes J.N., Schmidt J.E., Nicholson W.T., Joyner M.J. Cyclooxygenase inhibition abolishes age-related differences in cerebral vasodilator responses to hypercapnia. J Appl Physiol. 2012;112:1884–1890. doi: 10.1152/japplphysiol.01270.2011.
    1. Bos C., Smits J.H.M., Zijlstra J.J., Blankestijn P.J., Bakker C.J.G., Viergever M.A. Underestimation of access flow by ultrasound dilution flow measurements. Phys Med Biol. 2002;47:481–489. doi: 10.1088/0031-9155/47/3/309.
    1. Buijs P.C., Krabbe-Hartkamp M.J., Bakker C.J., de Lange E.E., Ramos L.M., Breteler M.M., et al. Effect of age on cerebral blood flow: measurement with ungated two-dimensional phase-contrast MR angiography in 250 adults. Radiology. 1998;209:667–674. doi: 10.1148/radiology.209.3.9844657.
    1. Cao T., Shapiro S.M., Bersohn M.M., Liu S.C.K., Ginzton L.E. Influence of cardiac motion on Doppler measurements using in vitro and in vivo models. J Am Coll Cardiol. 1993;22:271–276. doi: 10.1016/0735-1097(93)90843-P.
    1. Chen J.J., Rosas H.D., Salat D.H. Age-associated reductions in cerebral blood flow are independent from regional atrophy. NeuroImage. 2011;55:468–478. doi: 10.1016/j.neuroimage.2010.12.032.
    1. Chuang Y.-M., Huang Y.-C., Hu H.-H., Yang C.-Y. Toward a further elucidation: role of vertebral artery hypoplasia in acute ischemic stroke. Eur Neurol. 2006;55:193–197. doi: 10.1159/000093868.
    1. Demirkaya S., Uluc K., Bek S., Vural O. Normal blood flow velocities of basal cerebral arteries decrease with advancing age: a transcranial Doppler sonography study. Tohoku J Exp Med. 2008;214:145–149. doi: 10.1620/tjem.214.145.
    1. Dörfler P., Puls I., Schließer M., Mäurer M., Becker G. Measurement of cerebral blood flow volume by extracranial sonography. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2000;20:269–271. doi: 10.1097/00004647-200002000-00007.
    1. Eriksson S., Hagenfeldt L., Law D., Patrono C., Pinca E., Wennmalm A. Effect of prostaglandin synthesis inhibitors on basal and carbon dioxide stimulated cerebral blood flow in man. Acta Physiol Scand. 1983;117:203–211. doi: 10.1111/j.1748-1716.1983.tb07198.x.
    1. Fisher J.P., Hartwich D., Seifert T., Olesen N.D., McNulty C.L., Nielsen H.B., et al. Cerebral perfusion, oxygenation and metabolism during exercise in young and elderly individuals. J Physiol. 2013;591:1859–1870. doi: 10.1113/jphysiol.2012.244905.
    1. Gaigalaite V., Vilimas A., Ozeraitiene V., Dementaviciene J., Janilionis R., Kalibatiene D., et al. Association between vertebral artery hypoplasia and posterior circulation stroke. BMC Neurol. 2016;16 doi: 10.1186/s12883-016-0644-x.
    1. Giller C.A., Hodges K., Batjer H.H. Transcranial Doppler pulsatility in vasodilation and stenosis. J Neurosurg. 1990;72:901–906. doi: 10.3171/jns.1990.72.6.0901.
    1. Hagstadius S., Risberg J. Regional cerebral blood flow characteristics and variations with age in resting normal subjects. Brain Cogn. 1989;10:28–43. doi: 10.1016/0278-2626(89)90073-0.
    1. Harvey R.E., Barnes J.N., Hart E.C.J., Nicholson W.T., Joyner M.J., Casey D.P. Influence of sympathetic nerve activity on aortic hemodynamics and pulse wave velocity in women. Am J Physiol - Heart Circ Physiol. 2017;312:H340–H346. doi: 10.1152/ajpheart.00447.2016.
    1. Hu X.-Y., Li Z.-X., Liu H.-Q., Zhang M., Wei M.-L., Fang S., et al. Relationship between vertebral artery hypoplasia and posterior circulation stroke in Chinese patients. Neuroradiology. 2013;55:291–295. doi: 10.1007/s00234-012-1112-y.
    1. Johnson K.M., Lum D.P., Turski P.A., Block W.F., Mistretta C.A., Wieben O. Improved 3D phase contrast MRI with off-resonance corrected dual echo VIPR. Magn Reson Med. 2008;60:1329–1336. doi: 10.1002/mrm.21763.
    1. Kety S.S. Human cerebral blood flow and oxygen consumption as related to aging. J Chronic Dis. 1956;3:478–486. doi: 10.1016/0021-9681(56)90146-1.
    1. Krejza J., Mariak Z., Walecki J., Szydlik P., Lewko J., Ustymowicz A. Transcranial color Doppler sonography of basal cerebral arteries in 182 healthy subjects: age and sex variability and normal reference values for blood flow parameters. AJR Am J Roentgenol. 1999;172:213–218. doi: 10.2214/ajr.172.1.9888770.
    1. Kulyk C., Voltan C., Simonetto M., Palmieri A., Farina F., Vodret F., et al. Vertebral artery hypoplasia: an innocent lamb or a disguise? J Neurol. 2018;265:2346–2352. doi: 10.1007/s00415-018-9004-7.
    1. Leenders K.L., Perani D., Lammertsma A.A., Heather J.D., Buckingham P., Jones T., et al. Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain. J Neurol. 1990;113:27–47. doi: 10.1093/brain/113.1.27.
    1. Lim M.-H., Cho Y.I., Jeong S.-K. Homocysteine and pulsatility index of cerebral arteries. Stroke. 2009;40:3216–3220. doi: 10.1161/STROKEAHA.109.558403.
    1. Jing Liu, Redmond M.J., Brodsky E.K., Alexander A.L., Aiming Lu, Thornton F.J., et al. Generation and visualization of four-dimensional MR angiography data using an undersampled 3-D projection trajectory. IEEE Trans Med Imaging. 2006;25:148–157. doi: 10.1109/TMI.2005.861706.
    1. Liu Y., Zhu X., Feinberg D., Guenther M., Gregori J., Weiner M.W., et al. Arterial spin labeling MRI study of age and gender effects on brain perfusion hemodynamics. Magn Reson Med. 2012;68:912–922. doi: 10.1002/mrm.23286.
    1. Loecher M., Schrauben E., Johnson K.M., Wieben O. Phase unwrapping in 4D MR flow with a 4D single-step laplacian algorithm. J Magn Reson Imaging. 2016;43:833–842. doi: 10.1002/jmri.25045.
    1. Lu H, Xu F, Rodrigue KM, Kennedy KM, Cheng Y, Flicker B, et al., Alterations in cerebral metabolic rate and blood supply across the adult lifespan. Cereb Cortex N Y NY 21; 2011: 1426–1434. 10.1093/cercor/bhq224.
    1. Mancini G.B.J., Abbott D., Kamimura C., Yeoh E. Validation of a new ultrasound method for the measurement of carotid artery intima medial thickness and plaque dimensions. Can J Cardiol. 2004;20:1355–1359.
    1. Martin A.J., Friston K.J., Colebatch J.G., Frackowiak R.S.J. Decreases in regional cerebral blood flow with normal aging. J Cereb Blood Flow Metab. 1991;11:684–689. doi: 10.1038/jcbfm.1991.121.
    1. Matsuda H., Maeda T., Yamada M., Gui L.X., Tonami N., Hisada K. Age-matched normal values and topographic maps for regional cerebral blood flow measurements by Xe-133 inhalation. Stroke. 1984;15:336–342. doi: 10.1161/01.STR.15.2.336.
    1. Melamed E., Lavy S., Bentin S., Cooper G., Rinot Y. Reduction in regional cerebral blood flow during normal aging in man. Stroke. 1980;11:31–35. doi: 10.1161/01.STR.11.1.31.
    1. Miller K.B., Howery A.J., Rivera-Rivera L.A., Johnson S.C., Rowley H.A., Wieben O., et al. Age-related reductions in cerebrovascular reactivity using 4D flow MRI. Front Aging Neurosci. 2019;11 doi: 10.3389/fnagi.2019.00281.
    1. Mitchell G.F. Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage. J Appl Physiol. 2008;105:1652–1660. doi: 10.1152/japplphysiol.90549.2008.
    1. Mitsumura H., Miyagawa S., Komatsu T., Hirai T., Kono Y.u., Iguchi Y. Relationship between vertebral artery hypoplasia and posterior circulation ischemia. J Stroke Cerebrovasc Dis. 2016;25:266–269. doi: 10.1016/j.jstrokecerebrovasdis.2015.09.027.
    1. Ogeng’o J., Olabu B., Sinkeet R., Ogeng’o N.M., Elbusaid H. Vertebral artery hypoplasia in a Black Kenyan population. Int Sch Res Not. 2014;2014:1–5. doi: 10.1155/2014/934510.
    1. Olesen N.D., Nielsen H.B., Olsen N.V., Secher N.H. The age-related reduction in cerebral blood flow affects vertebral artery more than internal carotid artery blood flow. Clin Physiol Funct Imaging. 2019;39:255–260. doi: 10.1111/cpf.12568.
    1. Park J.-H., Kim J.-M., Roh J.-K. Hypoplastic vertebral artery: frequency and associations with ischaemic stroke territory. J Neurol Neurosurg Psychiatry. 2007;78:954–958. doi: 10.1136/jnnp.2006.105767.
    1. Peterson C., Phillips L., Linden A., Hsu W. Vertebral artery hypoplasia: prevalence and reliability of identifying and grading its severity on magnetic resonance imaging scans. J Manipulative Physiol Ther. 2010;33:207–211. doi: 10.1016/j.jmpt.2010.01.012.
    1. Rivera-Rivera L.A., Schubert T., Turski P., Johnson K.M., Berman S.E., Rowley H.A., et al. Changes in intracranial venous blood flow and pulsatility in Alzheimer’s disease: A 4D flow MRI study. J Cereb Blood Flow Metab. 2017;37:2149–2158. doi: 10.1177/0271678X16661340.
    1. Roth W., Morgello S., Goldman J., Mohr J.P., Elkind M.S.V., Marshall R.S., et al. Histopathological differences between the anterior and posterior brain arteries as a function of aging. Stroke. 2017;48:638–644. doi: 10.1161/STROKEAHA.116.015630.
    1. Sabayan B., van der Grond J., Westendorp R.G., Jukema J.W., Ford I., Buckley B.M., et al. Total cerebral blood flow and mortality in old age: a 12-year follow-up study. Neurology. 2013;81:1922–1929. doi: 10.1212/01.wnl.0000436618.48402.da.
    1. Sato K., Yoneya M., Otsuki A., Sadamoto T., Ogoh S. Anatomical vertebral artery hypoplasia and insufficiency impairs dynamic blood flow regulation. Clin Physiol Funct Imaging. 2015;35:485–489. doi: 10.1111/cpf.12179.
    1. Scheel P., Ruge C., Petruch U.R., Schöning M. Color duplex measurement of cerebral blood flow volume in healthy adults. Stroke. 2000;31:147–150. doi: 10.1161/01.STR.31.1.147.
    1. Schöning M., Walter J., Scheel P. Estimation of cerebral blood flow through color duplex sonography of the carotid and vertebral arteries in healthy adults. Stroke. 1994;25:17–22. doi: 10.1161/01.STR.25.1.17.
    1. Schrauben E., Wåhlin A., Ambarki K., Spaak E., Malm J., Wieben O., et al. Fast 4D flow MRI intracranial segmentation and quantification in tortuous arteries. J Magn Reson Imaging. 2015;42:1458–1464. doi: 10.1002/jmri.24900.
    1. Seidel E., Eicke B.M., Tettenborn B., Krummenauer F. Reference values for vertebral artery flow volume by duplex sonography in young and elderly adults. Stroke. 1999;30:2692–2696. doi: 10.1161/01.STR.30.12.2692.
    1. Szárazová A.S., Bartels E., Turčáni P. Vertebral artery hypoplasia and the posterior circulation stroke. Perspect Med, New Trends Neurosonol Cerebr Hemodyn Update. 2012;1:198–202. doi: 10.1016/j.permed.2012.02.063.
    1. Thierfelder K.M., Baumann A.B., Sommer W.H., Armbruster M., Opherk C., Janssen H., et al. Vertebral artery hypoplasia: frequency and effect on cerebellar blood flow characteristics. Stroke. 2014;45:1363–1368. doi: 10.1161/STROKEAHA.113.004188.
    1. Wentland A.L., Rowley H.A., Vigen K.K., Field A.S. Fetal origin of the posterior cerebral artery produces left-right asymmetry on perfusion imaging. AJNR Am J Neuroradiol. 2010;31:448–453. doi: 10.3174/ajnr.A1858.
    1. Zarrinkoob L., Ambarki K., Wåhlin A., Birgander R., Eklund A., Malm J. Blood flow distribution in cerebral arteries. J Cereb Blood Flow Metab. 2015;35:648–654. doi: 10.1038/jcbfm.2014.241.
    1. Zhang D.P., Ma Q.K., Zhang J.W., Zhang S.L., Lu G.F., Yin S. Vertebral artery hypoplasia, posterior circulation infarction and relative hypoperfusion detected by perfusion magnetic resonance imaging semiquantitatively. J Neurol Sci. 2016;368:41–46. doi: 10.1016/j.jns.2016.06.043.
    1. Zhao M., Amin-Hanjani S., Ruland S., Curcio A.P., Ostergren L., Charbel F.T. Regional cerebral blood flow using quantitative MR angiography. AJNR Am J Neuroradiol. 2007;28:1470–1473. doi: 10.3174/ajnr.A0582.

Source: PubMed

3
Prenumerera