Mechanisms of podocyte injury and implications for diabetic nephropathy

Federica Barutta, Stefania Bellini, Gabriella Gruden, Federica Barutta, Stefania Bellini, Gabriella Gruden

Abstract

Albuminuria is the hallmark of both primary and secondary proteinuric glomerulopathies, including focal segmental glomerulosclerosis (FSGS), obesity-related nephropathy, and diabetic nephropathy (DN). Moreover, albuminuria is an important feature of all chronic kidney diseases (CKDs). Podocytes play a key role in maintaining the permselectivity of the glomerular filtration barrier (GFB) and injury of the podocyte, leading to foot process (FP) effacement and podocyte loss, the unifying underlying mechanism of proteinuric glomerulopathies. The metabolic insult of hyperglycemia is of paramount importance in the pathogenesis of DN, while insults leading to podocyte damage are poorly defined in other proteinuric glomerulopathies. However, shared mechanisms of podocyte damage have been identified. Herein, we will review the role of haemodynamic and oxidative stress, inflammation, lipotoxicity, endocannabinoid (EC) hypertone, and both mitochondrial and autophagic dysfunction in the pathogenesis of the podocyte damage, focussing particularly on their role in the pathogenesis of DN. Gaining a better insight into the mechanisms of podocyte injury may provide novel targets for treatment. Moreover, novel strategies for boosting podocyte repair may open the way to podocyte regenerative medicine.

Keywords: diabetic nephropathy; podocytes; proteinuria.

Conflict of interest statement

The authors declare that there are no competing interests associated with the manuscript.

© 2022 The Author(s).

Figures

Figure 1. Schematic representation of podocyte FPs
Figure 1. Schematic representation of podocyte FPs
The actin cytoskeleton of podocyte FPs is connected to both the SD, a specialised junction bridging the slit between FPs of neighbouring podocytes, and the GBM. Abbreviations: CD2AP, CD2-associated protein; GAG, glycosaminoglycan; LG, laminin G-like domain; MAGI, membrane-associated guanylate kinase; Nck, non-catalytic region of tyrosine kinase adaptor protein; PI3K, phosphoinositide 3 kinase; TRPC5/6, short transient receptor potential channel 5/6; ZO-1, zonula occludens-1.
Figure 2. Pathways of podocyte injury
Figure 2. Pathways of podocyte injury
The picture shows selected mechanisms leading to podocyte damage such as inflammation, oxidative stress, organelle dysfunction as detailed in the text. Abbreviations: ABCA1, ATP-binding cassette transporters A member 1; AF, autophagosome; AL, autolysosome; Ang-II, angiotensin-II; AT-1R, angiotensin II type 1 receptor; CB1R, endocannabinoid receptor of type 1; CB2R, endocannabinoid receptor of type 2; CCR2, C–C chemokine receptor 2; IL-1β, interleukin-1β; IL-1R, interleukin 1 receptor; MCP-1, monocyte chemoattractant protein 1; mtROS, mitochondrial reactive oxygen species; NLRP3, NOD-, LRR- and pyrin domain-containing protein 3; NOX4/5, NADPH oxidase 4/5; TNF-α, tumour necrosis factor-α; TNFR, tumour necrosis factor receptor.
Figure 3. TNT formation between podocytes
Figure 3. TNT formation between podocytes
(A) Representative image showing a TNT-like channel interconnecting two podocytes (magnification 630×, scale bar = 50 µm). Serial Z-stack images prove that the TNT does not adhere to the substrate. Colours represent the Z-depth (depth coding; red: bottom, blue: top). (B) Schematic representation of TNT-mediated mitochondrial transfer between podocytes.

References

    1. Scott R.P. and Quaggin S.E. (2015) Review series: the cell biology of renal filtration. J. Cell Biol. 209, 199–210 10.1083/jcb.201410017
    1. Garg P. (2018) A review of podocyte biology. Am. J. Nephrol. 47, 3–13 10.1159/000481633
    1. Mundel P. and Shankland S.J. (2002) Podocyte biology and response to injury. J. Am. Soc. Nephrol. 13, 3005–3015 10.1097/01.ASN.0000039661.06947.FD
    1. Grahammer F., Schell C. and Huber T.B. (2013) The podocyte slit diaphragm–from a thin grey line to a complex signalling hub. Nat. Rev. Nephrol. 9, 587–598 10.1038/nrneph.2013.169
    1. Butt L., Unnersjö-Jess D., Höhne M., Edwards A., Binz-Lotter J., Reilly al. . (2020) A molecular mechanism explaining albuminuria in kidney disease. Nat. Metab. 2, 461–474 10.1038/s42255-020-0204-y
    1. Fissell W.H. (2020) Reconsidering Garth Robinson: fluid flow and the glomerular filtration barrier. Curr. Opin. Nephrol. Hypertens. 29, 273–279 10.1097/MNH.0000000000000606
    1. Kriz W. and Endlich K. (2012) Podocytes and disease: introduction. Semin. Nephrol. 32, 305–306 10.1016/j.semnephrol.2012.06.001
    1. Kopp J.B., Anders H.-J., Susztak K., Podestà M.A., Remuzzi G., Hildebrandt al. . (2020) Podocytopathies. Nat. Rev. Dis. Primers. 6, 68 10.1038/s41572-020-0196-7
    1. Hayek S.S., Koh K.H., Grams M.E., Wei C., Ko Y.-A., Li al. . (2017) A tripartite complex of suPAR, APOL1 risk variants and αvβ3 integrin on podocytes mediates chronic kidney disease. Nat. Med. 23, 945–953 10.1038/nm.4362
    1. Wharram B.L., Goyal M., Wiggins J.E., Sanden S.K., Hussain S., Filipiak al. . (2005) Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J. Am. Soc. Nephrol. 16, 2941–2952 10.1681/ASN.2005010055
    1. Lasagni L., Lazzeri E., Shankland S.J., Anders H.-J. and Romagnani P. (2013) Podocyte mitosis - a catastrophe. Curr. Mol. Med. 13, 13–23 10.2174/156652413804486250
    1. Dalla Vestra M., Masiero A., Roiter A.M., Saller A., Crepaldi G. and Fioretto P. (2003) Is podocyte injury relevant in diabetic nephropathy? Studies in patients with type 2 diabetes. Diabetes 52, 1031–1035 10.2337/diabetes.52.4.1031
    1. Naylor R.W., Morais M.R.P.T. and Lennon R. (2021) Complexities of the glomerular basement membrane. Nat. Rev. Nephrol. 17, 112–127 10.1038/s41581-020-0329-y
    1. Lennon R., Byron A., Humphries J.D., Randles M.J., Carisey A., Murphy al. . (2014) Global analysis reveals the complexity of the human glomerular extracellular matrix. J. Am. Soc. Nephrol. 25, 939–951 10.1681/ASN.2013030233
    1. Beltcheva O., Martin P., Lenkkeri U. and Tryggvason K. (2001) Mutation spectrum in the nephrin gene (NPHS1) in congenital nephrotic syndrome. Hum. Mutat. 17, 368–373 10.1002/humu.1111
    1. Kestilä M., Lenkkeri U., Männikkö M., Lamerdin J., McCready P., Putaala al. . (1998) Positionally cloned gene for a novel glomerular protein–nephrin–is mutated in congenital nephrotic syndrome. Mol. Cell 1, 575–582 10.1016/S1097-2765(00)80057-X
    1. Boute N., Gribouval O., Roselli S., Benessy F., Lee H., Fuchshuber al. . (2000) NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat. Genet. 24, 349–354 10.1038/74166
    1. Kaplan J.M., Kim S.H., North K.N., Rennke H., Correia L.A., Tong al. . (2000) Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat. Genet. 24, 251–256 10.1038/73456
    1. Brown E.J., Schlöndorff J.S., Becker D.J., Tsukaguchi H., Tonna S.J., Uscinski al. . (2010) Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat. Genet. 42, 72–76 10.1038/ng.505
    1. Pugliese G., Penno G., Natali A., Barutta F., Di Paolo S., Reboldi al. . (2020) Diabetic kidney disease: new clinical and therapeutic issues. Joint position statement of the Italian Diabetes Society and the Italian Society of Nephrology on ‘The natural history of diabetic kidney disease and treatment of hyperglycemia in patients with type 2 diabetes and impaired renal function’. J. Nephrol. 33, 9–35 10.1007/s40620-019-00650-x
    1. Doublier S., Salvidio G., Lupia E., Ruotsalainen V., Verzola D., Deferrari al. . (2003) Nephrin expression is reduced in human diabetic nephropathy: evidence for a distinct role for glycated albumin and angiotensin II. Diabetes 52, 1023–1030 10.2337/diabetes.52.4.1023
    1. Langham R.G., Kelly D.J., Cox A.J., Thomson N.M., Holthöfer H., Zaoui al. . (2002) Proteinuria and the expression of the podocyte slit diaphragm protein, nephrin, in diabetic nephropathy: effects of angiotensin converting enzyme inhibition. Diabetologia 45, 1572–1576 10.1007/s00125-002-0946-y
    1. Koop K., Eikmans M., Baelde H.J., Kawachi H., De Heer E., Paul al. . (2003) Expression of podocyte-associated molecules in acquired human kidney diseases. J. Am. Soc. Nephrol. 14, 2063–2071 10.1097/01.ASN.0000078803.53165.C9
    1. Caramori M.L., Parks A. and Mauer M. (2013) Renal lesions predict progression of diabetic nephropathy in type 1 diabetes. J. Am. Soc. Nephrol. 24, 1175–1181 10.1681/ASN.2012070739
    1. Pagtalunan M.E., Miller P.L., Jumping-Eagle S., Nelson R.G., Myers B.D., Rennke al. . (1997) Podocyte loss and progressive glomerular injury in type II diabetes. J. Clin. Invest. 99, 342–348 10.1172/JCI119163
    1. Osterby R. and Gundersen H.J. (1975) Glomerular size and structure in diabetes mellitus. I. Early abnormalities. Diabetologia 11, 225–229 10.1007/BF00422326
    1. Marshall C.B. (2016) Rethinking glomerular basement membrane thickening in diabetic nephropathy: adaptive or pathogenic? Am. J. Physiol. Renal Physiol. 311, F831–F843 10.1152/ajprenal.00313.2016
    1. Bjørn S.F., Bangstad H.J., Hanssen K.F., Nyberg G., Walker J.D., Viberti al. . (1995) Glomerular epithelial foot processes and filtration slits in IDDM patients. Diabetologia 38, 1197–1204 10.1007/BF00422369
    1. White K.E., Bilous R.W.and Diabiopsies Study Group (2004) Structural alterations to the podocyte are related to proteinuria in type 2 diabetic patients. Nephrol. Dial. Transplant. 19, 1437–1440 10.1093/ndt/gfh129
    1. Meyer T.W., Bennett P.H. and Nelson R.G. (1999) Podocyte number predicts long-term urinary albumin excretion in Pima Indians with Type II diabetes and microalbuminuria. Diabetologia 42, 1341–1344 10.1007/s001250051447
    1. Nakamura T., Ushiyama C., Suzuki S., Hara M., Shimada N., Ebihara al. . (2000) Urinary excretion of podocytes in patients with diabetic nephropathy. Nephrol. Dial. Transplant. 15, 1379–1383 10.1093/ndt/15.9.1379
    1. Li C. and Siragy H.M. (2014) High glucose induces podocyte injury via enhanced (pro)renin receptor-Wnt-β-catenin-snail signaling pathway. PLoS ONE 9, e89233 10.1371/journal.pone.0089233
    1. Iglesias-de la Cruz M.C., Ziyadeh F.N., Isono M., Kouahou M., Han D.C., Kalluri al. . (2002) Effects of high glucose and TGF-beta1 on the expression of collagen IV and vascular endothelial growth factor in mouse podocytes. Kidney Int. 62, 901–913 10.1046/j.1523-1755.2002.00528.x
    1. Yard B.A., Kahlert S., Engelleiter R., Resch S., Waldherr R., Groffen al. . (2001) Decreased glomerular expression of agrin in diabetic nephropathy and podocytes, cultured in high glucose medium. Exp. Nephrol. 9, 214–222 10.1159/000052614
    1. Kasinath B.S., Block J.A., Singh A.K., Terhune W.C., Maldonado R., Davalath al. . (1994) Regulation of rat glomerular epithelial cell proteoglycans by high-glucose medium. Arch. Biochem. Biophys. 309, 149–159 10.1006/abbi.1994.1097
    1. Kitsiou P.V., Tzinia A.K., Stetler-Stevenson W.G., Michael A.F., Fan W.-W., Zhou al. . (2003) Glucose-induced changes in integrins and matrix-related functions in cultured human glomerular epithelial cells. Am. J. Physiol. Renal Physiol. 284, F671–F679 10.1152/ajprenal.00266.2002
    1. Kim N.-H., Rincon-Choles H., Bhandari B., Choudhury G.G., Abboud H.E. and Gorin Y. (2006) Redox dependence of glomerular epithelial cell hypertrophy in response to glucose. Am. J. Physiol. Renal Physiol. 290, F741–F751 10.1152/ajprenal.00313.2005
    1. Wasik A.A. and Lehtonen S. (2018) Glucose transporters in diabetic kidney disease-friends or foes? Front. Endocrinol. (Lausanne) 9, 155 10.3389/fendo.2018.00155
    1. Forbes J.M. and Cooper M.E. (2013) Mechanisms of diabetic complications. Physiol. Rev. 93, 137–188 10.1152/physrev.00045.2011
    1. Brownlee M. (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54, 1615–1625 10.2337/diabetes.54.6.1615
    1. Goh S.-Y. and Cooper M.E. (2008) Clinical review: the role of advanced glycation end products in progression and complications of diabetes. J. Clin. Endocrinol. Metab. 93, 1143–1152 10.1210/jc.2007-1817
    1. Rabbani N. and Thornalley P.J. (2018) Advanced glycation end products in the pathogenesis of chronic kidney disease. Kidney Int. 93, 803–813 10.1016/j.kint.2017.11.034
    1. Azegami T., Nakayama T., Hayashi K., Hishikawa A., Yoshimoto N., Nakamichi al. . (2021) Vaccination against receptor for advanced glycation end products attenuates the progression of diabetic kidney disease. Diabetes 70, 2147–2158 10.2337/db20-1257
    1. Gruden G., Perin P.C. and Camussi G. (2005) Insight on the pathogenesis of diabetic nephropathy from the study of podocyte and mesangial cell biology. Curr. Diabetes Rev. 1, 27–40 10.2174/1573399052952622
    1. Brenner B.M., Lawler E.V. and Mackenzie H.S. (1996) The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int. 49, 1774–1777 10.1038/ki.1996.265
    1. Hostetter T.H., Olson J.L., Rennke H.G., Venkatachalam M.A. and Brenner B.M. (1981) Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am. J. Physiol. 241, F85–F93 10.1152/ajprenal.1981.241.1.F85
    1. Denic A., Glassock R.J. and Rule A.D. (2017) Single-nephron glomerular filtration rate in healthy adults. N. Engl. J. Med. 377, 1203–1204 10.1056/NEJMoa1614329
    1. D'Agati V.D., Chagnac A., de Vries A.P.J., Levi M., Porrini E., Herman-Edelstein al. . (2016) Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat. Rev. Nephrol. 12, 453–471 10.1038/nrneph.2016.75
    1. Tonneijck L., Muskiet M.H.A., Smits M.M., van Bommel E.J., Heerspink H.J.L., van Raalte al. . (2017) Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J. Am. Soc. Nephrol. 28, 1023–1039 10.1681/ASN.2016060666
    1. Anders H.-J., Davis J.M. and Thurau K. (2016) Nephron protection in diabetic kidney disease. N. Engl. J. Med. 375, 2096–2098 10.1056/NEJMcibr1608564
    1. Kriz W. and Lemley K.V. (2017) Potential relevance of shear stress for slit diaphragm and podocyte function. Kidney Int. 91, 1283–1286 10.1016/j.kint.2017.02.032
    1. Kriz W. and Lemley K.V. (2015) A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J. Am. Soc. Nephrol. 26, 258–269 10.1681/ASN.2014030278
    1. Endlich N. and Endlich K. (2012) The challenge and response of podocytes to glomerular hypertension. Semin. Nephrol. 32, 327–341 10.1016/j.semnephrol.2012.06.004
    1. Friedrich C., Endlich N., Kriz W. and Endlich K. (2006) Podocytes are sensitive to fluid shear stress in vitro. Am. J. Physiol. Renal Physiol. 291, F856–F865 10.1152/ajprenal.00196.2005
    1. Srivastava T., McCarthy E.T., Sharma R., Cudmore P.A., Sharma M., Johnson al. . (2010) Prostaglandin E(2) is crucial in the response of podocytes to fluid flow shear stress. J. Cell. Commun. Signal. 4, 79–90 10.1007/s12079-010-0088-9
    1. Huang C., Bruggeman L.A., Hydo L.M. and Miller R.T. (2012) Shear stress induces cell apoptosis via a c-Src-phospholipase D-mTOR signaling pathway in cultured podocytes. Exp. Cell. Res. 318, 1075–1085 10.1016/j.yexcr.2012.03.011
    1. Petermann A.T., Pippin J., Durvasula R., Pichler R., Hiromura K., Monkawa al. . (2005) Mechanical stretch induces podocyte hypertrophy in vitro. Kidney Int. 67, 157–166 10.1111/j.1523-1755.2005.00066.x
    1. Endlich N., Kress K.R., Reiser J., Uttenweiler D., Kriz W., Mundel al. . (2001) Podocytes respond to mechanical stress in vitro. J. Am. Soc. Nephrol. 12, 413–422 10.1681/ASN.V123413
    1. Barutta F., Pinach S., Giunti S., Vittone F., Forbes J.M., Chiarle al. . (2008) Heat shock protein expression in diabetic nephropathy. Am. J. Physiol. Renal Physiol. 295, F1817–F1824 10.1152/ajprenal.90234.2008
    1. Endlich N., Sunohara M., Nietfeld W., Wolski E.W., Schiwek D., Kränzlin al. . (2002) Analysis of differential gene expression in stretched podocytes: osteopontin enhances adaptation of podocytes to mechanical stress. FASEB J. 16, 1850–1852 10.1096/fj.02-0125fje
    1. Dessapt C., Baradez M.O., Hayward A., Dei Cas A., Thomas S.M., Viberti al. . (2009) Mechanical forces and TGFbeta1 reduce podocyte adhesion through alpha3beta1 integrin downregulation. Nephrol. Dial. Transplant. 24, 2645–2655 10.1093/ndt/gfp204
    1. Durvasula R.V., Petermann A.T., Hiromura K., Blonski M., Pippin J., Mundel al. . (2004) Activation of a local tissue angiotensin system in podocytes by mechanical strain. Kidney Int. 65, 30–39 10.1111/j.1523-1755.2004.00362.x
    1. Miceli I., Burt D., Tarabra E., Camussi G., Perin P.C. and Gruden G. (2010) Stretch reduces nephrin expression via an angiotensin II-AT(1)-dependent mechanism in human podocytes: effect of rosiglitazone. Am. J. Physiol. Renal Physiol. 298, F381–F390 10.1152/ajprenal.90423.2008
    1. Massa F., Tarabra E., Barutta F., Pinach S. and Gruden G. (2013) Mechanical stretch induces fibronectin production in human podocytes via a TGF-β1-dependent mechanism. Minerva Biotecnol. 25, 81–85
    1. Gyarmati G., Toma I. and Peti-Peterdi J. (2016) Mechanical overload may lead to podocyte damage by increasing podocyte [Ca2+] through TRPC6 channels and P2Y2 receptors. 10.13140/RG.2.2.25936.30729
    1. Zatz R., Dunn B.R., Meyer T.W., Anderson S., Rennke H.G. and Brenner B.M. (1986) Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J. Clin. Invest. 77, 1925–1930 10.1172/JCI112521
    1. Ricciardi C.A. and Gnudi L. (2021) Kidney disease in diabetes: From mechanisms to clinical presentation and treatment strategies. Metabolism 124, 154890 10.1016/j.metabol.2021.154890
    1. Perkovic V., Jardine M.J., Neal B., Bompoint S., Heerspink H.J.L., Charytan al. . (2019) Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 10.1056/NEJMoa1811744
    1. Heerspink H.J.L., Stefánsson B.V., Correa-Rotter R., Chertow G.M., Greene T., Hou al. . (2020) Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 10.1056/NEJMoa2024816
    1. Mann J.F.E., Ørsted D.D., Brown-Frandsen K., Marso S.P., Poulter N.R., Rasmussen al. . (2017) Liraglutide and renal outcomes in type 2 diabetes. N. Engl. J. Med. 377, 839–848 10.1056/NEJMoa1616011
    1. Marso S.P., Bain S.C., Consoli A., Eliaschewitz F.G., Jódar E., Leiter al. . (2016) Semaglutide and Cardiovascular Outcomes In Patients with Type 2 diabetes. N. Engl. J. Med. 375, 1834–1844 10.1056/NEJMoa1607141
    1. Tuttle K.R., Lakshmanan M.C., Rayner B., Busch R.S., Zimmermann A.G., Woodward al. . (2018) Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 6, 605–617 10.1016/S2213-8587(18)30104-9
    1. Farah L.X.S., Valentini V., Pessoa T.D., Malnic G., McDonough A.A. and Girardi A.C.C. (2016) The physiological role of glucagon-like peptide-1 in the regulation of renal function. Am. J. Physiol. Renal Physiol. 310, F123–F127 10.1152/ajprenal.00394.2015
    1. Carraro-Lacroix L.R., Malnic G. and Girardi A.C.C. (2009) Regulation of Na+/H+ exchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells. Am. J. Physiol. Renal Physiol. 297, F1647–F1655 10.1152/ajprenal.00082.2009
    1. Barutta F., Bernardi S., Gargiulo G., Durazzo M. and Gruden G. (2019) SGLT2 inhibition to address the unmet needs in diabetic nephropathy. Diabetes Metab. Res. Rev. 35, e3171 10.1002/dmrr.3171
    1. DeFronzo R.A., Reeves W.B. and Awad A.S. (2021) Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. Nat. Rev. Nephrol. 17, 319–334 10.1038/s41581-021-00393-8
    1. Thomas M.C. (2017) The potential and pitfalls of GLP-1 receptor agonists for renal protection in type 2 diabetes. Diabetes Metab. 43, 2S20–22S27 10.1016/S1262-3636(17)30069-1
    1. Cassis P., Locatelli M., Cerullo D., Corna D., Buelli S., Zanchi al. . (2018) SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy. JCI Insight 3, 98720 10.1172/jci.insight.98720
    1. Emma F., Montini G., Parikh S.M. and Salviati L. (2016) Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat. Rev. Nephrol. 12, 267–280 10.1038/nrneph.2015.214
    1. Tan R.J., Zhou D., Xiao L., Zhou L., Li Y., Bastacky al. . (2015) Extracellular superoxide dismutase protects against proteinuric kidney disease. J. Am. Soc. Nephrol. 26, 2447–2459 10.1681/ASN.2014060613
    1. Zhou L.L., Hou F.F., Wang G.B., Yang F., Xie D., Wang al. . (2009) Accumulation of advanced oxidation protein products induces podocyte apoptosis and deletion through NADPH-dependent mechanisms. Kidney Int. 76, 1148–1160 10.1038/ki.2009.322
    1. Zhou L.L., Cao W., Xie C., Tian J., Zhou Z., Zhou al. . (2012) The receptor of advanced glycation end products plays a central role in advanced oxidation protein products-induced podocyte apoptosis. Kidney Int. 82, 759–770 10.1038/ki.2012.184
    1. Ma T., Zhu J., Chen X., Zha D., Singhal P.C. and Ding G. (2013) High glucose induces autophagy in podocytes. Exp. Cell. Res. 319, 779–789 10.1016/j.yexcr.2013.01.018
    1. Marshall C.B., Pippin J.W., Krofft R.D. and Shankland S.J. (2006) Puromycin aminonucleoside induces oxidant-dependent DNA damage in podocytes in vitro and in vivo. Kidney Int. 70, 1962–1973 10.1038/sj.ki.5001965
    1. Forbes J.M., Coughlan M.T. and Cooper M.E. (2008) Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57, 1446–1454 10.2337/db08-0057
    1. Jha J.C., Banal C., Chow B.S.M., Cooper M.E. and Jandeleit-Dahm K. (2016) Diabetes and kidney disease: role of oxidative stress. Antioxid. Redox Signal. 25, 657–684 10.1089/ars.2016.6664
    1. Turrens J.F. (2003) Mitochondrial formation of reactive oxygen species. J. Physiol. 552, 335–344 10.1113/jphysiol.2003.049478
    1. Birk A.V., Chao W.M., Bracken C., Warren J.D. and Szeto H.H. (2014) Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis. Br. J. Pharmacol. 171, 2017–2028 10.1111/bph.12468
    1. Wan J., Kalpage H.A., Vaishnav A., Liu J., Lee I., Mahapatra al. . (2019) Regulation of respiration and apoptosis by cytochrome c threonine 58 phosphorylation. Sci. Rep. 9, 15815 10.1038/s41598-019-52101-z
    1. Galvan D.L., Badal S.S., Long J., Chang B.H., Schumacker P.T., Overbeek al. . (2017) Real-time in vivo mitochondrial redox assessment confirms enhanced mitochondrial reactive oxygen species in diabetic nephropathy. Kidney Int. 92, 1282–1287 10.1016/j.kint.2017.05.015
    1. Carlson E.C., Chhoun J.M., Laturnus D.I., Bikash K.C., Berg B., Zheng al. . (2013) Podocyte-specific overexpression of metallothionein mitigates diabetic complications in the glomerular filtration barrier and glomerular histoarchitecture: a transmission electron microscopy stereometric analysis. Diabetes Metab. Res. Rev. 29, 113–124 10.1002/dmrr.2342
    1. Qu H., Gong X., Liu X., Zhang R., Wang Y., Huang al. . (2021) Deficiency of mitochondrial glycerol 3-phosphate dehydrogenase exacerbates podocyte injury and the progression of diabetic kidney disease. Diabetes 70, 1372–1387 10.2337/db20-1157
    1. Miyamoto S., Zhang G., Hall D., Oates P.J., Maity S., Madesh al. . (2020) Restoring mitochondrial superoxide levels with elamipretide (MTP-131) protects db/db mice against progression of diabetic kidney disease. J. Biol. Chem. 295, 7249–7260 10.1074/jbc.RA119.011110
    1. Xiao L., Xu X., Zhang F., Wang M., Xu Y., Tang al. . (2017) The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biol. 11, 297–311 10.1016/j.redox.2016.12.022
    1. Szeto H.H., Liu S., Soong Y., Alam N., Prusky G.T. and Seshan S.V. (2016) Protection of mitochondria prevents high-fat diet-induced glomerulopathy and proximal tubular injury. Kidney Int. 90, 997–1011 10.1016/j.kint.2016.06.013
    1. You Y.-H., Quach T., Saito R., Pham J. and Sharma K. (2016) Metabolomics reveals a key role for fumarate in mediating the effects of NADPH oxidase 4 in diabetic kidney disease. J. Am. Soc. Nephrol. 27, 466–481 10.1681/ASN.2015030302
    1. Jha J.C., Gray S.P., Barit D., Okabe J., El-Osta A., Namikoshi al. . (2014) Genetic targeting or pharmacologic inhibition of NADPH oxidase Nox4 provides renoprotection in long-term diabetic nephropathy. J. Am. Soc. Nephrol. 25, 1237 10.1681/ASN.2013070810
    1. Jha J.C., Thallas-Bonke V., Banal C., Gray S.P., Chow B.S.M., Ramm al. . (2016) Podocyte-specific Nox4 deletion affords renoprotection in a mouse model of diabetic nephropathy. Diabetologia 59, 379–389 10.1007/s00125-015-3796-0
    1. Thallas-Bonke V., Jha J.C., Gray S.P., Barit D., Haller H., Schmidt al. . (2014) Nox-4 deletion reduces oxidative stress and injury by PKC-α-associated mechanisms in diabetic nephropathy. Physiol. Rep. 2, e12192 10.14814/phy2.12192
    1. Das R., Xu S., Quan X., Nguyen T.T., Kong I.D., Chung al. . (2014) Upregulation of mitochondrial Nox4 mediates TGF-β-induced apoptosis in cultured mouse podocytes. Am. J. Physiol. Renal Physiol. 306, F155–F167 10.1152/ajprenal.00438.2013
    1. Eid A.A., Ford B.M., Block K., Kasinath B.S., Gorin Y., Ghosh-Choudhury al. . (2010) AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. J. Biol. Chem. 285, 37503–37512 10.1074/jbc.M110.136796
    1. Teixeira G., Szyndralewiez C., Molango S., Carnesecchi S., Heitz F., Wiesel al. . (2017) Therapeutic potential of NADPH oxidase 1/4 inhibitors. Br. J. Pharmacol. 174, 1647–1669 10.1111/bph.13532
    1. Jha J.C., Cooper M.E., kennedy C. and Jandeleit-Dahm K.A.M., 499-P: The relative roles of pro-oxidant enzymes Nox4 and Nox5 in diabetic kidney disease | Diabetes | American Diabetes Association. Diabetes 68, 499–P 10.2337/db19-499-P
    1. Holterman C.E., Thibodeau J.-F., Towaij C., Gutsol A., Montezano A.C., Parks al. . (2014) Nephropathy and elevated BP in mice with podocyte-specific NADPH oxidase 5 expression. J. Am. Soc. Nephrol. 25, 784–797 10.1681/ASN.2013040371
    1. Jha J.C., Dai A., Holterman C.E., Cooper M.E., Touyz R.M., Kennedy al. . (2019) Endothelial or vascular smooth muscle cell-specific expression of human NOX5 exacerbates renal inflammation, fibrosis and albuminuria in the Akita mouse. Diabetologia 62, 1712–1726 10.1007/s00125-019-4924-z
    1. Heikkilä E., Juhila J., Lassila M., Messing M., Perälä N., Lehtonen al. . (2010) beta-Catenin mediates adriamycin-induced albuminuria and podocyte injury in adult mouse kidneys. Nephrol. Dial. Transplant. 25, 2437–2446 10.1093/ndt/gfq076
    1. Dai C., Stolz D.B., Kiss L.P., Monga S.P., Holzman L.B. and Liu Y. (2009) Wnt/beta-catenin signaling promotes podocyte dysfunction and albuminuria. J. Am. Soc. Nephrol. 20, 1997–2008 10.1681/ASN.2009010019
    1. Zhou L., Chen X., Lu M., Wu Q., Yuan Q., Hu al. . (2019) Wnt/β-catenin links oxidative stress to podocyte injury and proteinuria. Kidney Int. 95, 830–845 10.1016/j.kint.2018.10.032
    1. Barutta F., Bruno G., Grimaldi S. and Gruden G. (2015) Inflammation in diabetic nephropathy: moving toward clinical biomarkers and targets for treatment. Endocrine 48, 730–742 10.1007/s12020-014-0437-1
    1. Ikezumi Y., Suzuki T., Karasawa T., Kawachi H., Nikolic-Paterson D.J. and Uchiyama M. (2008) Activated macrophages down-regulate podocyte nephrin and podocin expression via stress-activated protein kinases. Biochem. Biophys. Res. Commun. 376, 706–711 10.1016/j.bbrc.2008.09.049
    1. Usui H.K., Shikata K., Sasaki M., Okada S., Matsuda M., Shikata al. . (2007) Macrophage scavenger receptor-a-deficient mice are resistant against diabetic nephropathy through amelioration of microinflammation. Diabetes 56, 363–372 10.2337/db06-0359
    1. You H., Gao T., Cooper T.K., Brian Reeves W. and Awad A.S. (2013) Macrophages directly mediate diabetic renal injury. Am. J. Physiol. Renal Physiol. 305, F1719–F1727 10.1152/ajprenal.00141.2013
    1. Prodjosudjadi W., Gerritsma J.S., van Es L.A., Daha M.R. and Bruijn J.A. (1995) Monocyte chemoattractant protein-1 in normal and diseased human kidneys: an immunohistochemical analysis. Clin. Nephrol. 44, 148–155
    1. Hartner A., Veelken R., Wittmann M., Cordasic N. and Hilgers K.F. (2005) Effects of diabetes and hypertension on macrophage infiltration and matrix expansion in the rat kidney. BMC Nephrol. 6, 6 10.1186/1471-2369-6-6
    1. Han S.-Y., So G.-A., Jee Y.-H., Han K.-H., Kang Y.-S., Kim al. . (2004) Effect of retinoic acid in experimental diabetic nephropathy. Immunol. Cell Biol. 82, 568–576 10.1111/j.1440-1711.2004.01287.x
    1. Gu L., Hagiwara S., Fan Q., Tanimoto M., Kobata M., Yamashita al. . (2006) Role of receptor for advanced glycation end-products and signalling events in advanced glycation end-product-induced monocyte chemoattractant protein-1 expression in differentiated mouse podocytes. Nephrol. Dial. Transplant. 21, 299–313 10.1093/ndt/gfi210
    1. Sanajou D., Ghorbani Haghjo A., Argani H., Roshangar L., Ahmad S.N.S., Jigheh al. . (2018) FPS-ZM1 and valsartan combination protects better against glomerular filtration barrier damage in streptozotocin-induced diabetic rats. J. Physiol. Biochem. 74, 467–478 10.1007/s13105-018-0640-2
    1. Ren J., Xu Y., Lu X., Wang L., Ide S., Hall al. . (2021) Twist1 in podocytes ameliorates podocyte injury and proteinuria by limiting CCL2-dependent macrophage infiltration. JCI Insight 6, 148109 10.1172/jci.insight.148109
    1. Burt D., Salvidio G., Tarabra E., Barutta F., Pinach S., Dentelli al. . (2007) The monocyte chemoattractant protein-1/cognate CC chemokine receptor 2 system affects cell motility in cultured human podocytes. Am. J. Pathol. 171, 1789–1799 10.2353/ajpath.2007.070398
    1. Tarabra E., Giunti S., Barutta F., Salvidio G., Burt D., Deferrari al. . (2009) Effect of the monocyte chemoattractant protein-1/CC chemokine receptor 2 system on nephrin expression in streptozotocin-treated mice and human cultured podocytes. Diabetes 58, 2109–2118 10.2337/db08-0895
    1. Nam B.Y., Paeng J., Kim S.H., Lee S.H., Kim D.H., Kang al. . (2012) The MCP-1/CCR2 axis in podocytes is involved in apoptosis induced by diabetic conditions. Apoptosis 17, 1–13 10.1007/s10495-011-0661-6
    1. Sullivan T., Miao Z., Dairaghi D.J., Krasinski A., Wang Y., Zhao al. . (2013) CCR2 antagonist CCX140-B provides renal and glycemic benefits in diabetic transgenic human CCR2 knockin mice. Am. J. Physiol. Renal Physiol. 305, F1288–F1297 10.1152/ajprenal.00316.2013
    1. Ninichuk V., Clauss S., Kulkarni O., Schmid H., Segerer S., Radomska al. . (2008) Late onset of Ccl2 blockade with the Spiegelmer mNOX-E36-3’PEG prevents glomerulosclerosis and improves glomerular filtration rate in db/db mice. Am. J. Pathol. 172, 628–637 10.2353/ajpath.2008.070601
    1. Chow F.Y., Nikolic-Paterson D.J., Ozols E., Atkins R.C., Rollin B.J. and Tesch G.H. (2006) Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int. 69, 73–80 10.1038/sj.ki.5000014
    1. Chow F.Y., Nikolic-Paterson D.J., Ma F.Y., Ozols E., Rollins B.J. and Tesch G.H. (2007) Monocyte chemoattractant protein-1-induced tissue inflammation is critical for the development of renal injury but not type 2 diabetes in obese db/db mice. Diabetologia 50, 471–480 10.1007/s00125-006-0497-8
    1. Awad A.S., Kinsey G.R., Khutsishvili K., Gao T., Bolton W.K. and Okusa M.D. (2011) Monocyte/macrophage chemokine receptor CCR2 mediates diabetic renal injury. Am. J. Physiol. Renal Physiol. 301, F1358–F1366 10.1152/ajprenal.00332.2011
    1. Seok S.J., Lee E.S., Kim G.T., Hyun M., Lee J.-H., Chen al. . (2013) Blockade of CCL2/CCR2 signalling ameliorates diabetic nephropathy in db/db mice. Nephrol. Dial. Transplant. 28, 1700–1710 10.1093/ndt/gfs555
    1. Sayyed S.G., Ryu M., Kulkarni O.P., Schmid H., Lichtnekert J., Grüner al. . (2011) An orally active chemokine receptor CCR2 antagonist prevents glomerulosclerosis and renal failure in type 2 diabetes. Kidney Int. 80, 68–78 10.1038/ki.2011.102
    1. You H., Gao T., Raup-Konsavage W.M., Cooper T.K., Bronson S.K., Reeves al. . (2017) Podocyte-specific chemokine (C-C motif) receptor 2 overexpression mediates diabetic renal injury in mice. Kidney Int. 91, 671–682 10.1016/j.kint.2016.09.042
    1. de Zeeuw D., Bekker P., Henkel E., Hasslacher C., Gouni-Berthold I., Mehling al. . (2015) The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial. Lancet Diabetes Endocrinol. 3, 687–696 10.1016/S2213-8587(15)00261-2
    1. Menne J., Eulberg D., Beyer D., Baumann M., Saudek F., Valkusz al. . (2017) C-C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria. Nephrol. Dial. Transplant. 32, 307–315
    1. Hughes A.K., Stricklett P.K. and Kohan D.E. (2001) Shiga toxin-1 regulation of cytokine production by human glomerular epithelial cells. Nephron 88, 14–23 10.1159/000045953
    1. Lai K.N., Leung J.C.K., Chan L.Y.Y., Saleem M.A., Mathieson P.W., Lai al. . (2008) Activation of podocytes by mesangial-derived TNF-alpha: glomerulo-podocytic communication in IgA nephropathy. Am. J. Physiol. Renal Physiol. 294, F945–F955 10.1152/ajprenal.00423.2007
    1. Pedigo C.E., Ducasa G.M., Leclercq F., Sloan A., Mitrofanova A., Hashmi al. . (2016) Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury. J. Clin. Invest. 126, 3336–3350 10.1172/JCI85939
    1. Tejada T., Catanuto P., Ijaz A., Santos J.V., Xia X., Sanchez al. . (2008) Failure to phosphorylate AKT in podocytes from mice with early diabetic nephropathy promotes cell death. Kidney Int. 73, 1385–1393 10.1038/ki.2008.109
    1. Takano Y., Yamauchi K., Hayakawa K., Hiramatsu N., Kasai A., Okamura al. . (2007) Transcriptional suppression of nephrin in podocytes by macrophages: roles of inflammatory cytokines and involvement of the PI3K/Akt pathway. FEBS Lett. 581, 421–426 10.1016/j.febslet.2006.12.051
    1. Yamauchi K., Takano Y., Kasai A., Hayakawa K., Hiramatsu N., Enomoto al. . (2006) Screening and identification of substances that regulate nephrin gene expression using engineered reporter podocytes. Kidney Int. 70, 892–900 10.1038/sj.ki.5001625
    1. Doublier S., Ruotsalainen V., Salvidio G., Lupia E., Biancone L., Conaldi al. . (2001) Nephrin redistribution on podocytes is a potential mechanism for proteinuria in patients with primary acquired nephrotic syndrome. Am. J. Pathol. 158, 1723–1731 10.1016/S0002-9440(10)64128-4
    1. Koukouritaki S.B., Vardaki E.A., Papakonstanti E.A., Lianos E., Stournaras C. and Emmanouel D.S. (1999) TNF-alpha induces actin cytoskeleton reorganization in glomerular epithelial cells involving tyrosine phosphorylation of paxillin and focal adhesion kinase. Mol. Med. 5, 382–392 10.1007/BF03402127
    1. Chen A., Liu Y., Lu Y., Lee K. and He J.C. (2021) Disparate roles of retinoid acid signaling molecules in kidney disease. Am. J. Physiol. Renal Physiol. 320, F683–F692 10.1152/ajprenal.00045.2021
    1. Chen A., Feng Y., Lai H., Ju W., Li Z., Li al. . (2020) Soluble RARRES1 induces podocyte apoptosis to promote glomerular disease progression. J. Clin. Invest. 130, 5523–5535 10.1172/JCI140155
    1. Rosa A.C., Rattazzi L., Miglio G., Collino M. and Fantozzi R. (2012) Angiotensin II induces tumor necrosis factor-α expression and release from cultured human podocytes. Inflamm. Res. 61, 311–317 10.1007/s00011-011-0412-8
    1. Shi J.-X. and Huang Q. (2018) Glucagon-like peptide-1 protects mouse podocytes against high glucose-induced apoptosis, and suppresses reactive oxygen species production and proinflammatory cytokine secretion, through sirtuin 1 activation in vitro. Mol. Med. Rep. 18, 1789–1797 10.3892/mmr.2018.9085
    1. Omote K., Gohda T., Murakoshi M., Sasaki Y., Kazuno S., Fujimura al. . (2014) Role of the TNF pathway in the progression of diabetic nephropathy in KK-A(y) mice. Am. J. Physiol. Renal Physiol. 306, F1335–F1347 10.1152/ajprenal.00509.2013
    1. Liu P., Zhang Z. and Li Y. (2021) Relevance of the pyroptosis-related inflammasome pathway in the pathogenesis of diabetic kidney disease. Front. Immunol. 12, 603416 10.3389/fimmu.2021.603416
    1. Zhao M., Bai M., Ding G., Zhang Y., Huang S., Jia al. . (2018) Angiotensin II stimulates the NLRP3 inflammasome to induce podocyte injury and mitochondrial dysfunction. Kidney Dis. (Basel) 4, 83–94 10.1159/000488242
    1. Bai M., Chen Y., Zhao M., Zhang Y., He J.C.-J., Huang al. . (2017) NLRP3 inflammasome activation contributes to aldosterone-induced podocyte injury. Am. J. Physiol. Renal Physiol. 312, F556–F564 10.1152/ajprenal.00332.2016
    1. Shahzad K., Bock F., Dong W., Wang H., Kopf S., Kohli al. . (2015) Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int. 87, 74–84 10.1038/ki.2014.271
    1. Solini A., Menini S., Rossi C., Ricci C., Santini E., Blasetti Fantauzzi al. . (2013) The purinergic 2X7 receptor participates in renal inflammation and injury induced by high-fat diet: possible role of NLRP3 inflammasome activation. J. Pathol. 231, 342–353 10.1002/path.4237
    1. Boini K.M., Xia M., Koka S., Gehr T.W. and Li P.-L. (2016) Instigation of NLRP3 inflammasome activation and glomerular injury in mice on the high fat diet: role of acid sphingomyelinase gene. Oncotarget 7, 19031–19044 10.18632/oncotarget.8023
    1. Boini K.M., Xia M., Abais J.M., Li G., Pitzer A.L., Gehr al. . (2014) Activation of inflammasomes in podocyte injury of mice on the high fat diet: Effects of ASC gene deletion and silencing. Biochim. Biophys. Acta 1843, 836–845 10.1016/j.bbamcr.2014.01.033
    1. Bakris G.L., Agarwal R., Anker S.D., Pitt B., Ruilope L.M., Rossing al. . (2020) Effect of finerenone on chronic kidney disease outcomes in Type 2 diabetes. N. Engl. J. Med. 383, 2219–2229 10.1056/NEJMoa2025845
    1. Pitt B., Filippatos G., Agarwal R., Anker S.D., Bakris G.L., Rossing al. . (2021) Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N. Engl. J. Med. 385, 2252–2263 10.1056/NEJMoa2110956
    1. Yu J., Wu H., Liu Z.-Y., Zhu Q., Shan C. and Zhang K.-Q. (2017) Advanced glycation end products induce the apoptosis of and inflammation in mouse podocytes through CXCL9-mediated JAK2/STAT3 pathway activation. Int. J. Mol. Med. 40, 1185–1193 10.3892/ijmm.2017.3098
    1. Lorenzati B., Ianni Palarchio A., Barutta F. and Gruden G. (2013) Mechanical stretch and angiotensin II activate Janus tyrosine kinase-2 in human podocytes. Minerva Biotecnol. 25, 55–62
    1. Chen D., Liu Y., Chen J., Lin H., Guo H., Wu al. . (2021) JAK/STAT pathway promotes the progression of diabetic kidney disease via autophagy in podocytes. Eur. J. Pharmacol. 902, 174121 10.1016/j.ejphar.2021.174121
    1. Berthier C.C., Zhang H., Schin M., Henger A., Nelson R.G., Yee al. . (2009) Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes 58, 469–477 10.2337/db08-1328
    1. Tao J., Mariani L., Eddy S., Maecker H., Kambham N., Mehta al. . (2018) JAK-STAT signaling is activated in the kidney and peripheral blood cells of patients with focal segmental glomerulosclerosis. Kidney Int. 94, 795–808 10.1016/j.kint.2018.05.022
    1. Zhang H., Nair V., Saha J., Atkins K.B., Hodgin J.B., Saunders al. . (2017) Podocyte-specific JAK2 overexpression worsens diabetic kidney disease in mice. Kidney Int. 92, 909–921 10.1016/j.kint.2017.03.027
    1. Liu R., Zhong Y., Li X., Chen H., Jim B., Zhou al. . (2014) Role of transcription factor acetylation in diabetic kidney disease. Diabetes 63, 2440–2453 10.2337/db13-1810
    1. Tuttle K.R., Brosius F.C., Adler S.G., Kretzler M., Mehta R.L., Tumlin al. . (2018) JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: results from a Phase 2 randomized controlled clinical trial. Nephrol. Dial. Transplant. 33, 1950–1959 10.1093/ndt/gfx377
    1. Sadowski C.E., Lovric S., Ashraf S., Pabst W.L., Gee H.Y., Kohl al. . (2015) A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J. Am. Soc. Nephrol. 26, 1279–1289 10.1681/ASN.2014050489
    1. Mele C., Iatropoulos P., Donadelli R., Calabria A., Maranta R., Cassis al. . (2011) MYO1E mutations and childhood familial focal segmental glomerulosclerosis. N. Engl. J. Med. 365, 295–306 10.1056/NEJMoa1101273
    1. Gee H.Y., Saisawat P., Ashraf S., Hurd T.W., Vega-Warner V., Fang al. . (2013) ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J. Clin. Invest. 123, 3243–3253 10.1172/JCI69134
    1. Akilesh S., Suleiman H., Yu H., Stander M.C., Lavin P., Gbadegesin al. . (2011) Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J. Clin. Invest. 121, 4127–4137 10.1172/JCI46458
    1. Subramanian B., Sun H., Yan P., Charoonratana V.T., Higgs H.N., Wang al. . (2016) Mice with mutant Inf2 show impaired podocyte and slit diaphragm integrity in response to protamine-induced kidney injury. Kidney Int. 90, 363–372 10.1016/j.kint.2016.04.020
    1. Schell C., Sabass B., Helmstaedter M., Geist F., Abed A., Yasuda-Yamahara al. . (2018) ARP3 controls the podocyte architecture at the kidney filtration barrier. Dev. Cell 47, 741.e8–757.e8 10.1016/j.devcel.2018.11.011
    1. Matsuda J., Asano-Matsuda K., Kitzler T.M. and Takano T. (2021) Rho GTPase regulatory proteins in podocytes. Kidney Int. 99, 336–345 10.1016/j.kint.2020.08.035
    1. Scott R.P., Hawley S.P., Ruston J., Du J., Brakebusch C., Jones al. . (2012) Podocyte-specific loss of Cdc42 leads to congenital nephropathy. J. Am. Soc. Nephrol. 23, 1149–1154 10.1681/ASN.2011121206
    1. Blattner S.M., Hodgin J.B., Nishio M., Wylie S.A., Saha J., Soofi al. . (2013) Divergent functions of the Rho GTPases Rac1 and Cdc42 in podocyte injury. Kidney Int. 84, 920–930 10.1038/ki.2013.175
    1. Wang L., Ellis M.J., Gomez J.A., Eisner W., Fennell W., Howell al. . (2012) Mechanisms of the proteinuria induced by Rho GTPases. Kidney Int. 81, 1075–1085 10.1038/ki.2011.472
    1. Zhu L., Jiang R., Aoudjit L., Jones N. and Takano T. (2011) Activation of RhoA in podocytes induces focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 22, 1621–1630 10.1681/ASN.2010111146
    1. Robins R., Baldwin C., Aoudjit L., Côté J.-F., Gupta I.R. and Takano T. (2017) Rac1 activation in podocytes induces the spectrum of nephrotic syndrome. Kidney Int. 92, 349–364 10.1016/j.kint.2017.03.010
    1. Yu H., Suleiman H., Kim A.H.J., Miner J.H., Dani A., Shaw al. . (2013) Rac1 activation in podocytes induces rapid foot process effacement and proteinuria. Mol. Cell. Biol. 33, 4755–4764 10.1128/MCB.00730-13
    1. Zhu J., Sun N., Aoudjit L., Li H., Kawachi H., Lemay al. . (2008) Nephrin mediates actin reorganization via phosphoinositide 3-kinase in podocytes. Kidney Int. 73, 556–566 10.1038/sj.ki.5002691
    1. Tian D., Jacobo S.M.P., Billing D., Rozkalne A., Gage S.D., Anagnostou al. . (2010) Antagonistic regulation of actin dynamics and cell motility by TRPC5 and TRPC6 channels. Sci. Signal. 3, ra77 10.1126/scisignal.2001200
    1. Schaldecker T., Kim S., Tarabanis C., Tian D., Hakroush S., Castonguay al. . (2013) Inhibition of the TRPC5 ion channel protects the kidney filter. J. Clin. Invest. 123, 5298–5309 10.1172/JCI71165
    1. Wei C., Möller C.C., Altintas M.M., Li J., Schwarz K., Zacchigna al. . (2008) Modification of kidney barrier function by the urokinase receptor. Nat. Med. 14, 55–63 10.1038/nm1696
    1. Lv Z., Hu M., Fan M., Li X., Lin J., Zhen al. . (2018) Podocyte-specific Rac1 deficiency ameliorates podocyte damage and proteinuria in STZ-induced diabetic nephropathy in mice. Cell Death Dis. 9, 342 10.1038/s41419-018-0353-z
    1. Pan Y., Jiang S., Hou Q., Qiu D., Shi J., Wang al. . (2018) Dissection of glomerular transcriptional profile in patients with diabetic nephropathy: SRGAP2a protects podocyte structure and function. Diabetes 67, 717–730 10.2337/db17-0755
    1. Fan X., Yang H., Kumar S., Tumelty K.E., Pisarek-Horowitz A., Rasouly al. . (2016) SLIT2/ROBO2 signaling pathway inhibits nonmuscle myosin IIA activity and destabilizes kidney podocyte adhesion. JCI Insight 1, e86934 10.1172/jci.insight.86934
    1. Morigi M., Buelli S., Angioletti S., Zanchi C., Longaretti L., Zoja al. . (2005) In response to protein load podocytes reorganize cytoskeleton and modulate endothelin-1 gene: implication for permselective dysfunction of chronic nephropathies. Am. J. Pathol. 166, 1309–1320 10.1016/S0002-9440(10)62350-4
    1. Daehn I., Casalena G., Zhang T., Shi S., Fenninger F., Barasch al. . (2014) Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis. J. Clin. Invest. 124, 1608–1621 10.1172/JCI71195
    1. Qi H., Casalena G., Shi S., Yu L., Ebefors K., Sun al. . (2017) Glomerular endothelial mitochondrial dysfunction is essential and characteristic of diabetic kidney disease susceptibility. Diabetes 66, 763–778 10.2337/db16-0695
    1. Casalena G.A., Yu L., Gil R., Rodriguez S., Sosa S., Janssen al. . (2020) The diabetic microenvironment causes mitochondrial oxidative stress in glomerular endothelial cells and pathological crosstalk with podocytes. Cell Commun. Signal. 18, 105 10.1186/s12964-020-00605-x
    1. Mahtal N., Lenoir O. and Tharaux P.-L. (2021) Glomerular endothelial cell crosstalk with podocytes in diabetic kidney disease. Front. Med. (Lausanne) 8, 659013 10.3389/fmed.2021.659013
    1. van der Vlag J. and Buijsers B. (2020) Heparanase in kidney disease. Adv. Exp. Med. Biol. 1221, 647–667 10.1007/978-3-030-34521-1_26
    1. Garsen M., Lenoir O., Rops A.L.W.M.M., Dijkman H.B., Willemsen B., van Kuppevelt al. . (2016) Endothelin-1 induces proteinuria by heparanase-mediated disruption of the glomerular glycocalyx. J. Am. Soc. Nephrol. 27, 3545–3551 10.1681/ASN.2015091070
    1. Ebefors K., Wiener R.J., Yu L., Azeloglu E.U., Yi Z., Jia al. . (2019) Endothelin receptor-A mediates degradation of the glomerular endothelial surface layer via pathologic crosstalk between activated podocytes and glomerular endothelial cells. Kidney Int. 96, 957–970 10.1016/j.kint.2019.05.007
    1. Boels M.G.S., Avramut M.C., Koudijs A., Dane M.J.C., Lee D.H., van der Vlag al. . (2016) Atrasentan reduces albuminuria by restoring the glomerular endothelial glycocalyx barrier in diabetic nephropathy. Diabetes 65, 2429–2439 10.2337/db15-1413
    1. Heerspink H.J.L., Parving H.-H., Andress D.L., Bakris G., Correa-Rotter R., Hou al. . (2019) Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet 393, 1937–1947 10.1016/S0140-6736(19)30772-X
    1. Trachtman H., Nelson P., Adler S., Campbell K.N., Chaudhuri A., Derebail al. . (2018) DUET: a phase 2 study evaluating the efficacy and safety of sparsentan in patients with FSGS. J. Am. Soc. Nephrol. 29, 2745–2754 10.1681/ASN.2018010091
    1. Di Marzo V. (2008) Endocannabinoids: synthesis and degradation. Rev. Physiol. Biochem. Pharmacol. 160, 1–24
    1. Howlett A.C., Barth F., Bonner T.I., Cabral G., Casellas P., Devane al. . (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev. 54, 161–202 10.1124/pr.54.2.161
    1. Pertwee R.G. (1997) Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol. Ther. 74, 129–180 10.1016/S0163-7258(97)82001-3
    1. Cota D., Marsicano G., Tschöp M., Grübler Y., Flachskamm C., Schubert al. . (2003) The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J. Clin. Invest. 112, 423–431 10.1172/JCI17725
    1. Gruden G., Barutta F., Kunos G. and Pacher P. (2016) Role of the endocannabinoid system in diabetes and diabetic complications. Br. J. Pharmacol. 173, 1116–1127 10.1111/bph.13226
    1. Silvestri C. and Di Marzo V. (2013) The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab. 17, 475–490 10.1016/j.cmet.2013.03.001
    1. Maccarrone M., Bab I., Bíró T., Cabral G.A., Dey S.K., Di Marzo al. . (2015) Endocannabinoid signaling at the periphery: 50 years after THC. Trends Pharmacol. Sci. 36, 277–296 10.1016/j.tips.2015.02.008
    1. Kobayashi N., Gao S., Chen J., Saito K., Miyawaki K., Li al. . (2004) Process formation of the renal glomerular podocyte: is there common molecular machinery for processes of podocytes and neurons? Anat. Sci. Int. 79, 1–10 10.1111/j.1447-073x.2004.00066.x
    1. Weide T. and Huber T.B. (2009) Signaling at the slit: podocytes chat by synaptic transmission. J. Am. Soc. Nephrol. 20, 1862–1864 10.1681/ASN.2009070691
    1. Rastaldi M.P., Armelloni S., Berra S., Li M., Pesaresi M., Poczewski al. . (2003) Glomerular podocytes possess the synaptic vesicle molecule Rab3A and its specific effector rabphilin-3a. Am. J. Pathol. 163, 889–899 10.1016/S0002-9440(10)63449-9
    1. Barutta F., Piscitelli F., Pinach S., Bruno G., Gambino R., Rastaldi al. . (2011) Protective role of cannabinoid receptor type 2 in a mouse model of diabetic nephropathy. Diabetes 60, 2386–2396 10.2337/db10-1809
    1. Mukhopadhyay P., Rajesh M., Pan H., Patel V., Mukhopadhyay B., Bátkai al. . (2010) Cannabinoid-2 receptor limits inflammation, oxidative/nitrosative stress, and cell death in nephropathy. Free Radic. Biol. Med. 48, 457–467 10.1016/j.freeradbiomed.2009.11.022
    1. Jourdan T., Szanda G., Rosenberg A.Z., Tam J., Earley B.J., Godlewski al. . (2014) Overactive cannabinoid 1 receptor in podocytes drives type 2 diabetic nephropathy. Proc. Natl. Acad. Sci. U.S.A. 111, E5420–E5428 10.1073/pnas.1419901111
    1. Nam D.H., Lee M.H., Kim J.E., Song H.K., Kang Y.S., Lee al. . (2012) Blockade of cannabinoid receptor 1 improves insulin resistance, lipid metabolism, and diabetic nephropathy in db/db mice. Endocrinology 153, 1387–1396 10.1210/en.2011-1423
    1. Barutta F., Bruno G., Mastrocola R., Bellini S. and Gruden G. (2018) The role of cannabinoid signaling in acute and chronic kidney diseases. Kidney Int. 94, 252–258 10.1016/j.kint.2018.01.024
    1. Barutta F., Corbelli A., Mastrocola R., Gambino R., Di Marzo V., Pinach al. . (2010) Cannabinoid receptor 1 blockade ameliorates albuminuria in experimental diabetic nephropathy. Diabetes 59, 1046–1054 10.2337/db09-1336
    1. Lecru L., Desterke C., Grassin-Delyle S., Chatziantoniou C., Vandermeersch S., Devocelle al. . (2015) Cannabinoid receptor 1 is a major mediator of renal fibrosis. Kidney Int. 88, 72–84 10.1038/ki.2015.63
    1. Barutta F., Grimaldi S., Franco I., Bellini S., Gambino R., Pinach al. . (2014) Deficiency of cannabinoid receptor of type 2 worsens renal functional and structural abnormalities in streptozotocin-induced diabetic mice. Kidney Int. 86, 979–990 10.1038/ki.2014.165
    1. Hsu Y.-C., Lei C.-C., Shih Y.-H., Ho C. and Lin C.-L. (2015) Induction of proteinuria by cannabinoid receptors 1 signaling activation in CB1 transgenic mice. Am. J. Med. Sci. 349, 162–168 10.1097/MAJ.0000000000000352
    1. Jourdan T., Park J.K., Varga Z.V., Pálóczi J., Coffey N.J., Rosenberg al. . (2018) Cannabinoid-1 receptor deletion in podocytes mitigates both glomerular and tubular dysfunction in a mouse model of diabetic nephropathy. Diabetes Obes. Metab. 20, 698–708 10.1111/dom.13150
    1. Barutta F., Grimaldi S., Gambino R., Vemuri K., Makriyannis A., Annaratone al. . (2017) Dual therapy targeting the endocannabinoid system prevents experimental diabetic nephropathy. Nephrol. Dial. Transplant. 32, 1655–1665 10.1093/ndt/gfx010
    1. Barutta F., Bellini S., Mastrocola R., Gambino R., Piscitelli F., di Marzo al. . (2018) Reversal of albuminuria by combined AM6545 and perindopril therapy in experimental diabetic nephropathy. Br. J. Pharmacol. 175, 4371–4385 10.1111/bph.14495
    1. Cinar R., Iyer M.R. and Kunos G. (2020) The therapeutic potential of second and third generation CB1R antagonists. Pharmacol. Ther. 208, 107477 10.1016/j.pharmthera.2020.107477
    1. Tang C., Livingston M.J., Liu Z. and Dong Z. (2020) Autophagy in kidney homeostasis and disease. Nat. Rev. Nephrol. 16, 489–508 10.1038/s41581-020-0309-2
    1. Mizushima N., Yamamoto A., Matsui M., Yoshimori T. and Ohsumi Y. (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15, 1101–1111 10.1091/mbc.e03-09-0704
    1. Hartleben B., Gödel M., Meyer-Schwesinger C., Liu S., Ulrich T., Köbler al. . (2010) Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J. Clin. Invest. 120, 1084–1096 10.1172/JCI39492
    1. Bork T., Liang W., Yamahara K., Lee P., Tian Z., Liu al. . (2020) Podocytes maintain high basal levels of autophagy independent of mtor signaling. Autophagy 16, 1932–1948 10.1080/15548627.2019.1705007
    1. Yang D., Livingston M.J., Liu Z., Dong G., Zhang M., Chen al. . (2018) Autophagy in diabetic kidney disease: regulation, pathological role and therapeutic potential. Cell. Mol. Life Sci. 75, 669–688 10.1007/s00018-017-2639-1
    1. Lenoir O., Jasiek M., Hénique C., Guyonnet L., Hartleben B., Bork al. . (2015) Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy 11, 1130–1145 10.1080/15548627.2015.1049799
    1. Liu J., Li Q.X., Wang X.J., Zhang C., Duan Y.Q., Wang al. . (2016) β-Arrestins promote podocyte injury by inhibition of autophagy in diabetic nephropathy. Cell Death Dis. 7, e2183 10.1038/cddis.2016.89
    1. Zhao X., Chen Y., Tan X., Zhang L., Zhang H., Li al. . (2018) Advanced glycation end-products suppress autophagic flux in podocytes by activating mammalian target of rapamycin and inhibiting nuclear translocation of transcription factor EB. J. Pathol. 245, 235–248 10.1002/path.5077
    1. Liu W.J., Gan Y., Huang W.F., Wu H.-L., Zhang X.-Q., Zheng al. . (2019) Lysosome restoration to activate podocyte autophagy: a new therapeutic strategy for diabetic kidney disease. Cell Death Dis. 10, 806 10.1038/s41419-019-2002-6
    1. Oshima Y., Kinouchi K., Ichihara A., Sakoda M., Kurauchi-Mito A., Bokuda al. . (2011) Prorenin receptor is essential for normal podocyte structure and function. J. Am. Soc. Nephrol. 22, 2203–2212 10.1681/ASN.2011020202
    1. Yamamoto-Nonaka K., Koike M., Asanuma K., Takagi M., Oliva Trejo J.A., Seki al. . (2016) Cathepsin D in podocytes is important in the pathogenesis of proteinuria and CKD. J. Am. Soc. Nephrol. 27, 2685–2700 10.1681/ASN.2015040366
    1. Li L., Liu Y., Li S., Yang R., Zeng C., Rong al. . (2019) Signal regulatory protein α protects podocytes through promoting autophagic activity. JCI Insight 5, 124747 10.1172/jci.insight.124747
    1. Lloberas N., Cruzado J.M., Franquesa M., Herrero-Fresneda I., Torras J., Alperovich al. . (2006) Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats. J. Am. Soc. Nephrol. 17, 1395–1404 10.1681/ASN.2005050549
    1. Yang Y., Wang J., Qin L., Shou Z., Zhao J., Wang al. . (2007) Rapamycin prevents early steps of the development of diabetic nephropathy in rats. Am. J. Nephrol. 27, 495–502 10.1159/000106782
    1. Sakaguchi M., Isono M., Isshiki K., Sugimoto T., Koya D. and Kashiwagi A. (2006) Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice. Biochem. Biophys. Res. Commun. 340, 296–301 10.1016/j.bbrc.2005.12.012
    1. Wu L., Feng Z., Cui S., Hou K., Tang L., Zhou al. . (2013) Rapamycin upregulates autophagy by inhibiting the mTOR-ULK1 pathway, resulting in reduced podocyte injury. PLoS ONE 8, e63799 10.1371/journal.pone.0063799
    1. Lee M.-J., Feliers D., Mariappan M.M., Sataranatarajan K., Mahimainathan L., Musi al. . (2007) A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy. Am. J. Physiol. Renal Physiol. 292, F617–F627 10.1152/ajprenal.00278.2006
    1. Sokolovska J., Isajevs S., Sugoka O., Sharipova J., Lauberte L., Svirina al. . (2010) Influence of metformin on GLUT1 gene and protein expression in rat streptozotocin diabetes mellitus model. Arch. Physiol. Biochem. 116, 137–145 10.3109/13813455.2010.494672
    1. Dugan L.L., You Y.-H., Ali S.S., Diamond-Stanic M., Miyamoto S., DeCleves al. . (2013) AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J. Clin. Invest. 123, 4888–4899 10.1172/JCI66218
    1. Inoki K., Mori H., Wang J., Suzuki T., Hong S., Yoshida al. . (2011) mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J. Clin. Invest. 121, 2181–2196 10.1172/JCI44771
    1. Gödel M., Hartleben B., Herbach N., Liu S., Zschiedrich S., Lu al. . (2011) Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J. Clin. Invest. 121, 2197–2209 10.1172/JCI44774
    1. Liu Y., Jurczak M.J., Lear T.B., Lin B., Larsen M.B., Kennerdell al. . (2021) A Fbxo48 inhibitor prevents pAMPKα degradation and ameliorates insulin resistance. Nat. Chem. Biol. 17, 298–306 10.1038/s41589-020-00723-0
    1. Lee Y.H., Kim S.H., Kang J.M., Heo J.H., Kim D.-J., Park al. . (2019) Empagliflozin attenuates diabetic tubulopathy by improving mitochondrial fragmentation and autophagy. Am. J. Physiol. Renal Physiol. 317, F767–F780 10.1152/ajprenal.00565.2018
    1. Ren H., Shao Y., Wu C., Ma X., Lv C. and Wang Q. (2020) Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway. Mol. Cell. Endocrinol. 500, 110628 10.1016/j.mce.2019.110628
    1. Tang C., Cai J., Yin X.-M., Weinberg J.M., Venkatachalam M.A. and Dong Z. (2021) Mitochondrial quality control in kidney injury and repair. Nat. Rev. Nephrol. 17, 299–318 10.1038/s41581-020-00369-0
    1. Hamanaka R.B. and Chandel N.S. (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem. Sci. 35, 505–513 10.1016/j.tibs.2010.04.002
    1. Antico Arciuch V.G., Elguero M.E., Poderoso J.J. and Carreras M.C. (2012) Mitochondrial regulation of cell cycle and proliferation. Antioxid. Redox Signal. 16, 1150–1180 10.1089/ars.2011.4085
    1. Wai T. and Langer T. (2016) Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab. 27, 105–117 10.1016/j.tem.2015.12.001
    1. Burman J.L., Pickles S., Wang C., Sekine S., Vargas J.N.S., Zhang al. . (2017) Mitochondrial fission facilitates the selective mitophagy of protein aggregates. J. Cell Biol. 216, 3231–3247 10.1083/jcb.201612106
    1. Ventura-Clapier R., Garnier A. and Veksler V. (2008) Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc. Res. 79, 208–217 10.1093/cvr/cvn098
    1. Brinkkoetter P.T., Bork T., Salou S., Liang W., Mizi A., Özel al. . (2019) Anaerobic glycolysis maintains the glomerular filtration barrier independent of mitochondrial metabolism and dynamics. Cell Rep. 27, 1551.e5–1566.e5 10.1016/j.celrep.2019.04.012
    1. Imasawa T., Obre E., Bellance N., Lavie J., Imasawa T., Rigothier al. . (2017) High glucose repatterns human podocyte energy metabolism during differentiation and diabetic nephropathy. FASEB J. 31, 294–307 10.1096/fj.201600293r
    1. Diomedi-Camassei F., Di Giandomenico S., Santorelli F.M., Caridi G., Piemonte F., Montini al. . (2007) COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. J. Am. Soc. Nephrol. 18, 2773–2780 10.1681/ASN.2006080833
    1. Heeringa S.F., Chernin G., Chaki M., Zhou W., Sloan A.J., Ji al. . (2011) COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J. Clin. Invest. 121, 2013–2024 10.1172/JCI45693
    1. Gasser D.L., Winkler C.A., Peng M., An P., McKenzie L.M., Kirk al. . (2013) Focal segmental glomerulosclerosis is associated with a PDSS2 haplotype and, independently, with a decreased content of coenzyme Q10. Am. J. Physiol. Renal Physiol. 305, F1228–F1238 10.1152/ajprenal.00143.2013
    1. López L.C., Schuelke M., Quinzii C.M., Kanki T., Rodenburg R.J.T., Naini al. . (2006) Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am. J. Hum. Genet. 79, 1125–1129 10.1086/510023
    1. Park E., Ahn Y.H., Kang H.G., Yoo K.H., Won N.H., Lee al. . (2017) COQ6 mutations in children with steroid-resistant focal segmental glomerulosclerosis and sensorineural hearing loss. Am. J. Kidney Dis. 70, 139–144 10.1053/j.ajkd.2016.10.040
    1. Peng M., Falk M.J., Haase V.H., King R., Polyak E., Selak al. . (2008) Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease. PLoS Genet. 4, e1000061 10.1371/journal.pgen.1000061
    1. Daehn I.S. (2020) Mitochondria matter: a critical role of ADCK4 in stabilizing the CoQ complex in podocytes in steroid-resistant nephrotic syndrome. J. Am. Soc. Nephrol. 31, 1167–1169 10.1681/ASN.2020040467
    1. Widmeier E., Yu S., Nag A., Chung Y.W., Nakayama M., Fernández-Del-Río al. . (2020) ADCK4 deficiency destabilizes the coenzyme Q complex, which is rescued by 2,4-dihydroxybenzoic acid treatment. J. Am. Soc. Nephrol. 31, 1191–1211 10.1681/ASN.2019070756
    1. Na K.R., Jeong J.Y., Shin J.A., Chang Y.-K., Suh K.-S., Lee al. . (2021) Mitochondrial dysfunction in podocytes caused by CRIF1 deficiency leads to progressive albuminuria and glomerular sclerosis in mice. Int. J. Mol. Sci. 22, 4827 10.3390/ijms22094827
    1. Ducasa G.M., Mitrofanova A., Mallela S.K., Liu X., Molina J., Sloan al. . (2019) ATP-binding cassette A1 deficiency causes cardiolipin-driven mitochondrial dysfunction in podocytes. J. Clin. Invest. 129, 3387–3400 10.1172/JCI125316
    1. Li J., Sun Y.B.Y., Chen W., Fan J., Li S., Qu al. . (2020) Smad4 promotes diabetic nephropathy by modulating glycolysis and OXPHOS. EMBO Rep. 21, e48781 10.15252/embr.201948781
    1. Hall A.M., Vilasi A., Garcia-Perez I., Lapsley M., Alston C.L., Pitceathly al. . (2015) The urinary proteome and metabonome differ from normal in adults with mitochondrial disease. Kidney Int. 87, 610–622 10.1038/ki.2014.297
    1. Fedorova L.V., Tamirisa A., Kennedy D.J., Haller S.T., Budnyy G., Shapiro al. . (2013) Mitochondrial impairment in the five-sixth nephrectomy model of chronic renal failure: proteomic approach. BMC Nephrol. 14, 209 10.1186/1471-2369-14-209
    1. Tin A., Grams M.E., Ashar F.N., Lane J.A., Rosenberg A.Z., Grove al. . (2016) Association between mitochondrial DNA copy number in peripheral blood and incident CKD in the atherosclerosis risk in Communities Study. J. Am. Soc. Nephrol. 27, 2467–2473 10.1681/ASN.2015060661
    1. Su M., Dhoopun A.-R., Yuan Y., Huang S., Zhu C., Ding al. . (2013) Mitochondrial dysfunction is an early event in aldosterone-induced podocyte injury. Am. J. Physiol. Renal Physiol. 305, F520–F531 10.1152/ajprenal.00570.2012
    1. Audzeyenka I., Rachubik P., Typiak M., Kulesza T., Topolewska A., Rogacka al. . (2021) Hyperglycemia alters mitochondrial respiration efficiency and mitophagy in human podocytes. Exp. Cell. Res. 407, 112758 10.1016/j.yexcr.2021.112758
    1. Casalena G., Krick S., Daehn I., Yu L., Ju W., Shi al. . (2014) Mpv17 in mitochondria protects podocytes against mitochondrial dysfunction and apoptosis in vivo and in vitro. Am. J. Physiol. Renal Physiol. 306, F1372–F1380 10.1152/ajprenal.00608.2013
    1. Ma Y., Chen Z., Tao Y., Zhu J., Yang H., Liang al. . (2019) Increased mitochondrial fission of glomerular podocytes in diabetic nephropathy. Endocr. Connect. 8, 1206–1212 10.1530/EC-19-0234
    1. Elgass K., Pakay J., Ryan M.T. and Palmer C.S. (2013) Recent advances into the understanding of mitochondrial fission. Biochim. Biophys. Acta 1833, 150–161 10.1016/j.bbamcr.2012.05.002
    1. Galvan D.L., Long J., Green N., Chang B.H., Lin J.S., Schumacker al. . (2019) Drp1S600 phosphorylation regulates mitochondrial fission and progression of nephropathy in diabetic mice. J. Clin. Invest. 129, 2807–2823 10.1172/JCI127277
    1. Wang W., Wang Y., Long J., Wang J., Haudek S.B., Overbeek al. . (2012) Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab. 15, 186–200 10.1016/j.cmet.2012.01.009
    1. Deng Q., Wen R., Liu S., Chen X., Song S., Li al. . (2020) Increased long noncoding RNA maternally expressed gene 3 contributes to podocyte injury induced by high glucose through regulation of mitochondrial fission. Cell Death Dis. 11, 814 10.1038/s41419-020-03022-7
    1. Ayanga B.A., Badal S.S., Wang Y., Galvan D.L., Chang B.H., Schumacker al. . (2016) Dynamin-related protein 1 deficiency improves mitochondrial fitness and protects against progression of diabetic nephropathy. J. Am. Soc. Nephrol. 27, 2733–2747 10.1681/ASN.2015101096
    1. Qin X., Zhao Y., Gong J., Huang W., Su H., Yuan al. . (2019) Berberine protects glomerular podocytes via inhibiting Drp1-mediated mitochondrial fission and dysfunction. Theranostics 9, 1698–1713 10.7150/thno.30640
    1. Yuan Y., Zhang A., Qi J., Wang H., Liu X., Zhao al. . (2018) p53/Drp1-dependent mitochondrial fission mediates aldosterone-induced podocyte injury and mitochondrial dysfunction. Am. J. Physiol. Renal Physiol. 314, F798–F808 10.1152/ajprenal.00055.2017
    1. Li X., Tao H., Xie K., Ni Z., Yan Y., Wei al. . (2014) cAMP signaling prevents podocyte apoptosis via activation of protein kinase A and mitochondrial fusion. PLoS ONE 9, e92003 10.1371/journal.pone.0092003
    1. McLelland G.-L., Soubannier V., Chen C.X., McBride H.M. and Fon E.A. (2014) Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 33, 282–295 10.1002/embj.201385902
    1. Li W., Wang Q., Du M., Ma X., Wu L., Guo al. . (2016) Effects of overexpressing FoxO1 on apoptosis in glomeruli of diabetic mice and in podocytes cultured in high glucose medium. Biochem. Biophys. Res. Commun. 478, 612–617 10.1016/j.bbrc.2016.07.115
    1. Sun J., Zhu H., Wang X., Gao Q., Li Z. and Huang H. (2019) CoQ10 ameliorates mitochondrial dysfunction in diabetic nephropathy through mitophagy. J. Endocrinol. 240, 445–465 10.1530/JOE-18-0578
    1. Li W., Du M., Wang Q., Ma X., Wu L., Guo al. . (2017) FoxO1 promotes mitophagy in the podocytes of diabetic male mice via the PINK1/Parkin pathway. Endocrinology 158, 2155–2167 10.1210/en.2016-1970
    1. Zhou D., Zhou M., Wang Z., Fu Y., Jia M., Wang al. . (2019) PGRN acts as a novel regulator of mitochondrial homeostasis by facilitating mitophagy and mitochondrial biogenesis to prevent podocyte injury in diabetic nephropathy. Cell Death Dis. 10, 524 10.1038/s41419-019-1754-3
    1. Sharma K., Karl B., Mathew A.V., Gangoiti J.A., Wassel C.L., Saito al. . (2013) Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J. Am. Soc. Nephrol. 24, 1901–1912 10.1681/ASN.2013020126
    1. Zhu C., Xuan X., Che R., Ding G., Zhao M., Bai al. . (2014) Dysfunction of the PGC-1α-mitochondria axis confers adriamycin-induced podocyte injury. Am. J. Physiol. Renal Physiol. 306, F1410–F1417 10.1152/ajprenal.00622.2013
    1. Li S.-Y., Park J, Qiu C., Han S.H., Palmer M.B., Arany al. . (2017) Increasing the level of peroxisome proliferator-activated receptor γ coactivator-1α in podocytes results in collapsing glomerulopathy. JCI Insight 2, 92930 10.1172/jci.insight.92930
    1. Chuang P.Y., Xu J., Dai Y., Jia F., Mallipattu S.K., Yacoub al. . (2014) In vivo RNA interference models of inducible and reversible Sirt1 knockdown in kidney cells. Am. J. Pathol. 184, 1940–1956 10.1016/j.ajpath.2014.03.016
    1. Chuang P.Y., Cai W., Li X., Fang L., Xu J., Yacoub al. . (2017) Reduction in podocyte SIRT1 accelerates kidney injury in aging mice. Am. J. Physiol. Renal Physiol. 313, F621–F628 10.1152/ajprenal.00255.2017
    1. Hong Q., Zhang L., Das B., Li Z., Liu B., Cai al. . (2018) Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury. Kidney Int. 93, 1330–1343 10.1016/j.kint.2017.12.008
    1. Long J., Badal S.S., Ye Z., Wang Y., Ayanga B.A., Galvan al. . (2016) Long noncoding RNA Tug1 regulates mitochondrial bioenergetics in diabetic nephropathy. J. Clin. Invest. 126, 4205–4218 10.1172/JCI87927
    1. Shen H., Ming Y., Xu C., Xu Y., Zhao S. and Zhang Q. (2019) Deregulation of long noncoding RNA (TUG1) contributes to excessive podocytes apoptosis by activating endoplasmic reticulum stress in the development of diabetic nephropathy. J. Cell. Physiol. 234, 15123–15133 10.1002/jcp.28153
    1. Merscher-Gomez S., Guzman J., Pedigo C.E., Lehto M., Aguillon-Prada R., Mendez al. . (2013) Cyclodextrin protects podocytes in diabetic kidney disease. Diabetes 62, 3817–3827 10.2337/db13-0399
    1. Yang Y., Yang Q., Yang J., Ma Y. and Ding G. (2017) Angiotensin II induces cholesterol accumulation and injury in podocytes. Sci. Rep. 7, 10672 10.1038/s41598-017-09733-w
    1. Wright M.B., Varona Santos J., Kemmer C., Maugeais C., Carralot J.-P., Roever al. . (2021) Compounds targeting OSBPL7 increase ABCA1-dependent cholesterol efflux preserving kidney function in two models of kidney disease. Nat. Commun. 12, 4662 10.1038/s41467-021-24890-3
    1. Hannun Y.A. and Obeid L.M. (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9, 139–150 10.1038/nrm2329
    1. Woo C.Y., Baek J.Y., Kim A.R., Hong C.H., Yoon J.E., Kim al. . (2020) Inhibition of ceramide accumulation in podocytes by myriocin prevents diabetic nephropathy. Diabetes Metab. J. 44, 581–591 10.4093/dmj.2019.0063
    1. Li G., Kidd J., Kaspar C., Dempsey S., Bhat O.M., Camus al. . (2020) Podocytopathy and nephrotic syndrome in mice with podocyte-specific deletion of the Asah1 gene: role of ceramide accumulation in glomeruli. Am. J. Pathol. 190, 1211–1223 10.1016/j.ajpath.2020.02.008
    1. Yoo T.-H., Pedigo C.E., Guzman J., Correa-Medina M., Wei C., Villarreal al. . (2015) Sphingomyelinase-like phosphodiesterase 3b expression levels determine podocyte injury phenotypes in glomerular disease. J. Am. Soc. Nephrol. 26, 133–147 10.1681/ASN.2013111213
    1. Drexler Y., Molina J., Mitrofanova A., Fornoni A. and Merscher S. (2021) Sphingosine-1-phosphate metabolism and signaling in kidney diseases. J. Am. Soc. Nephrol. 32, 9–31 10.1681/ASN.2020050697
    1. Prasad R., Hadjidemetriou I., Maharaj A., Meimaridou E., Buonocore F., Saleem al. . (2017) Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome. J. Clin. Invest. 127, 942–953 10.1172/JCI90171
    1. Linhares N.D., Arantes R.R., Araujo S.A. and Pena S.D.J. (2018) Nephrotic syndrome and adrenal insufficiency caused by a variant in SGPL1. Clin. Kidney J. 11, 462–467 10.1093/ckj/sfx130
    1. Schümann J., Grevot A., Ledieu D., Wolf A., Schubart A., Piaia al. . (2015) Reduced activity of sphingosine-1-phosphate lyase induces podocyte-related glomerular proteinuria, skin irritation, and platelet activation. Toxicol. Pathol. 43, 694–703 10.1177/0192623314565650
    1. Lasagni L., Angelotti M.L., Ronconi E., Lombardi D., Nardi S., Peired al. . (2015) Podocyte regeneration driven by renal progenitors determines glomerular disease remission and can be pharmacologically enhanced. Stem Cell Rep. 5, 248–263 10.1016/j.stemcr.2015.07.003
    1. Peired A., Angelotti M.L., Ronconi E., la Marca G., Mazzinghi B., Sisti al. . (2013) Proteinuria impairs podocyte regeneration by sequestering retinoic acid. J. Am. Soc. Nephrol. 24, 1756–1768 10.1681/ASN.2012090950
    1. Romoli S., Angelotti M.L., Antonelli G., Kumar Vr S., Mulay S.R., Desai al. . (2018) CXCL12 blockade preferentially regenerates lost podocytes in cortical nephrons by targeting an intrinsic podocyte-progenitor feedback mechanism. Kidney Int. 94, 1111–1126 10.1016/j.kint.2018.08.013
    1. Kaverina N.V., Eng D.G., Freedman B.S., Kutz J.N., Chozinski T.J., Vaughan al. . (2019) Dual lineage tracing shows that glomerular parietal epithelial cells can transdifferentiate toward the adult podocyte fate. Kidney Int. 96, 597–611 10.1016/j.kint.2019.03.014
    1. Eng D.G., Kaverina N.V., Schneider R.R.S., Freedman B.S., Gross K.W., Miner al. . (2018) Detection of renin lineage cell transdifferentiation to podocytes in the kidney glomerulus with dual lineage tracing. Kidney Int. 93, 1240–1246 10.1016/j.kint.2018.01.014
    1. Pippin J.W., Kaverina N.V., Eng D.G., Krofft R.D., Glenn S.T., Duffield al. . (2015) Cells of renin lineage are adult pluripotent progenitors in experimental glomerular disease. Am. J. Physiol. Renal Physiol. 309, F341–F358 10.1152/ajprenal.00438.2014
    1. Kaverina N.V., Eng D.G., Largent A.D., Daehn I., Chang A., Gross al. . (2017) WT1 is necessary for the proliferation and migration of cells of renin lineage following kidney podocyte depletion. Stem Cell Rep. 9, 1152–1166 10.1016/j.stemcr.2017.08.020
    1. Benigni A., Morigi M., Rizzo P., Gagliardini E., Rota C., Abbate al. . (2011) Inhibiting angiotensin-converting enzyme promotes renal repair by limiting progenitor cell proliferation and restoring the glomerular architecture. Am. J. Pathol. 179, 628–638 10.1016/j.ajpath.2011.04.003
    1. Dai Y., Chen A., Liu R., Gu L., Sharma S., Cai al. . (2017) Retinoic acid improves nephrotoxic serum-induced glomerulonephritis through activation of podocyte retinoic acid receptor α. Kidney Int. 92, 1444–1457 10.1016/j.kint.2017.04.026
    1. Zhang J., Pippin J.W., Vaughan M.R., Krofft R.D., Taniguchi Y., Romagnani al. . (2012) Retinoids augment the expression of podocyte proteins by glomerular parietal epithelial cells in experimental glomerular disease. Nephron Exp. Nephrol. 121, e23–e37 10.1159/000342808
    1. Pichaiwong W., Hudkins K.L., Wietecha T., Nguyen T.Q., Tachaudomdach C., Li al. . (2013) Reversibility of structural and functional damage in a model of advanced diabetic nephropathy. J. Am. Soc. Nephrol. 24, 1088–1102 10.1681/ASN.2012050445
    1. Andeen N.K., Nguyen T.Q., Steegh F., Hudkins K.L., Najafian B. and Alpers C.E. (2015) The phenotypes of podocytes and parietal epithelial cells may overlap in diabetic nephropathy. Kidney Int. 88, 1099–1107 10.1038/ki.2015.273
    1. Bellucci L., Montini G., Collino F. and Bussolati B. (2021) Mesenchymal stromal cell-derived extracellular vesicles pass through the filtration barrier and protect podocytes in a 3D glomerular model under continuous perfusion. Tissue Eng. Regen. Med. 18, 549–560 10.1007/s13770-021-00374-9
    1. Jin J., Shi Y., Gong J., Zhao L., Li Y., He al. . (2019) Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte. Stem Cell Res. Ther. 10, 95 10.1186/s13287-019-1177-1
    1. Jin J., Wang Y., Zhao L., Zou W., Tan M. and He Q. (2020) Exosomal miRNA-215-5p derived from adipose-derived stem cells attenuates epithelial-mesenchymal transition of podocytes by inhibiting ZEB2. Biomed Res. Int. 2020, 2685305 10.1155/2020/2685305
    1. Duan Y., Luo Q., Wang Y., Ma Y., Chen F., Zhu al. . (2020) Adipose mesenchymal stem cell-derived extracellular vesicles containing microRNA-26a-5p target TLR4 and protect against diabetic nephropathy. J. Biol. Chem. 295, 12868–12884 10.1074/jbc.RA120.012522
    1. Ciampi O., Iacone R., Longaretti L., Benedetti V., Graf M., Magnone al. . (2016) Generation of functional podocytes from human induced pluripotent stem cells. Stem Cell Res. 17, 130–139 10.1016/j.scr.2016.06.001
    1. Sharmin S., Taguchi A., Kaku Y., Yoshimura Y., Ohmori T., Sakuma al. . (2016) Human induced pluripotent stem cell-derived podocytes mature into vascularized glomeruli upon experimental transplantation. J. Am. Soc. Nephrol. 27, 1778–1791 10.1681/ASN.2015010096
    1. Musah S., Mammoto A., Ferrante T.C., Jeanty S.S.F., Hirano-Kobayashi M., Mammoto al. . (2017) Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat. Biomed. Eng. 1, 0069 10.1038/s41551-017-0069
    1. Nishinakamura R. (2019) Human kidney organoids: progress and remaining challenges. Nat. Rev. Nephrol. 15, 613–624 10.1038/s41581-019-0176-x
    1. Harder J.L., Menon R., Otto E.A., Zhou J., Eddy S., Wys al. . (2019) Organoid single cell profiling identifies a transcriptional signature of glomerular disease. JCI Insight 4, 122697 10.1172/jci.insight.122697
    1. Marzo L., Gousset K. and Zurzolo C. (2012) Multifaceted roles of tunneling nanotubes in intercellular communication. Front. Physiol. 3, 72 10.3389/fphys.2012.00072
    1. Rustom A., Saffrich R., Markovic I., Walther P. and Gerdes H.-H. (2004) Nanotubular highways for intercellular organelle transport. Science 303, 1007–1010 10.1126/science.1093133
    1. Kiriyama Y. and Nochi H. (2017) Intra- and intercellular quality control mechanisms of mitochondria. Cells 7, E1 10.3390/cells7010001
    1. Barutta F., Kimura S., Hase K., Bellini S., Corbetta B., Corbelli al. . (2021) Protective role of the M-Sec-Tunneling nanotube system in podocytes. J. Am. Soc. Nephrol. 32, 1114–1130 10.1681/ASN.2020071076
    1. Eddy S., Mariani L.H. and Kretzler M. (2020) Integrated multi-omics approaches to improve classification of chronic kidney disease. Nat. Rev. Nephrol. 16, 657–668 10.1038/s41581-020-0286-5
    1. Martini S., Nair V., Keller B.J., Eichinger F., Hawkins J.J., Randolph al. . (2014) Integrative biology identifies shared transcriptional networks in CKD. J. Am. Soc. Nephrol. 25, 2559–2572 10.1681/ASN.2013080906
    1. McNulty M.T., Fermin D., Eichinger F., Jang D., Kretzler M., Burtt al. . (2021) A glomerular transcriptomic landscape of apolipoprotein L1 in Black patients with focal segmental glomerulosclerosis. Kidney Int. S0085-2538, 01149–2 10.1016/j.kint.2021.10.041
    1. Hodgin J.B., Nair V., Zhang H., Randolph A., Harris R.C., Nelson al. . (2013) Identification of cross-species shared transcriptional networks of diabetic nephropathy in human and mouse glomeruli. Diabetes 62, 299–308 10.2337/db11-1667
    1. Barisoni L., Troost J.P., Nast C., Bagnasco S., Avila-Casado C., Hodgin al. . (2016) Reproducibility of the NEPTUNE descriptor-based scoring system on whole-slide images and histologic and ultrastructural digital images. Mod. Pathol. 29, 671–684 10.1038/modpathol.2016.58
    1. Hodgin J.B., Mariani L.H., Zee J., Liu Q., Smith A.R., Eddy al. . (2021) Quantification of glomerular structural lesions: associations with clinical outcomes and transcriptomic profiles in nephrotic syndrome. Am. J. Kidney Dis. S0272-6386, 01004–0 10.1053/j.ajkd.2021.10.004
    1. Schröppel B., Huber S., Horster M., Schlöndorff D. and Kretzler M. (1998) Analysis of mouse glomerular podocyte mRNA by single-cell reverse transcription-polymerase chain reaction. Kidney Int. 53, 119–124 10.1046/j.1523-1755.1998.00742.x
    1. Potter S.S. (2018) Single-cell RNA sequencing for the study of development, physiology and disease. Nat. Rev. Nephrol. 14, 479–492 10.1038/s41581-018-0021-7
    1. He B., Chen P., Zambrano S., Dabaghie D., Hu Y., Möller-Hackbarth al. . (2021) Single-cell RNA sequencing reveals the mesangial identity and species diversity of glomerular cell transcriptomes. Nat. Commun. 12, 2141 10.1038/s41467-021-22331-9
    1. Lombardo J.A., Aliaghaei M., Nguyen Q.H., Kessenbrock K. and Haun J.B. (2021) Microfluidic platform accelerates tissue processing into single cells for molecular analysis and primary culture models. Nat. Commun. 12, 2858 10.1038/s41467-021-23238-1
    1. Puelles V.G., van der Wolde J.W., Schulze K.E., Short K.M., Wong M.N., Bensley al. . (2016) Validation of a three-dimensional method for counting and sizing podocytes in whole glomeruli. J. Am. Soc. Nephrol. 27, 3093–3104 10.1681/ASN.2015121340
    1. Brähler S., Yu H., Suleiman H., Krishnan G.M., Saunders B.T., Kopp al. . (2016) Intravital and kidney slice imaging of podocyte membrane dynamics. J. Am. Soc. Nephrol. 27, 3285–3290 10.1681/ASN.2015121303
    1. Motrapu M., Świderska M.K., Mesas I., Marschner J.A., Lei Y., Martinez Valenzuela al. . (2020) Drug testing for residual progression of diabetic kidney disease in mice beyond therapy with metformin, ramipril, and empagliflozin. J. Am. Soc. Nephrol. 31, 1729–1745 10.1681/ASN.2019070703
    1. Anguiano Gómez L., Lei Y., Kumar Devarapu S. and Anders H.-J. (2018) The diabetes pandemic suggests unmet needs for ‘CKD with diabetes’ in addition to ‘diabetic nephropathy’-implications for pre-clinical research and drug testing. Nephrol. Dial. Transplant. 33, 1292–1304 10.1093/ndt/gfx219
    1. Montini G., Malaventura C. and Salviati L. (2008) Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N. Engl. J. Med. 358, 2849–2850 10.1056/NEJMc0800582

Source: PubMed

3
Prenumerera