Nanomaterials for Wound Healing and Infection Control

Mara Madalina Mihai, Monica Beatrice Dima, Bogdan Dima, Alina Maria Holban, Mara Madalina Mihai, Monica Beatrice Dima, Bogdan Dima, Alina Maria Holban

Abstract

Wound healing has been intensely studied in order to develop an "ideal" technique that achieves expeditious recovery and reduces scarring to the minimum, thus ensuring function preservation. The classic approach to wound management is represented by topical treatments, such as antibacterial or colloidal agents, in order to prevent infection and promote a proper wound-healing process. Nanotechnology studies submicroscopic particles (maximum diameter of 100 nm), as well as correlated phenomena. Metal nanoparticles (e.g., silver, gold, zinc) are increasingly being used in dermatology, due to their beneficial effect on accelerating wound healing, as well as treating and preventing bacterial infections. Other benefits include: ease of use, less frequent dressing changes and a constantly moist wound environment. This review highlights recent findings regarding nanoparticle application in wound management.

Keywords: chronic infection; infections control; nano-dressings; nanoparticles; wound healing.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Correlation between the clinical outlook, microbiological and host-related factors in acute and chronic wounds.
Figure 2
Figure 2
Main types of nanomaterials which can be used for wound treatment.

References

    1. Li J., Chen J., Kirsner R. Pathophysiology of acute wound healing. Clin. Dermatol. 2007;25:9–18.
    1. Negut I., Grumezescu V., Grumezescu A.M. Treatment Strategies for Infected Wounds. Molecules. 2018;23 doi: 10.3390/molecules23092392.
    1. Mihai M.M., Holban A.M., Giurcăneanu C.Ă.L.I.N., Popa L.G., Buzea M., Filipov M., Lazăr V.E.R.O.N.I.C.A., Chifiriuc M.C., Popa M.I. Identification and phenotypic characterization of the most frequent bacterial etiologies in chronic skin ulcers. Rom. J. Morphol. Embryol. 2014;55:1401–1408.
    1. Mihai M.M., Holban A.M., Giurcaneanu C., Popa L.G., Oanea R.M., Lazar V., Chifiriuc M.C., Popa M., Popa M.I. Microbial biofilms: Impact on the pathogenesis of periodontitis, cystic fibrosis, chronic wounds and medical device-related infections. Int. J. Mol. Sci. 2015;15:1552–1576. doi: 10.2174/1568026615666150414123800.
    1. Malone M., Johani K., Jensen S., Gosbell I., Dickson H., Hu H., Vickery K. Next Generation DNA Sequencing of Tissues from Infected Diabetic Foot Ulcers. EBioMedicine. 2017;21:142–149. doi: 10.1016/j.ebiom.2017.06.026.
    1. Mihai M.M., Preda M., Lungu I., Gestal M.C., Popa M.I., Holban A.M. Nanocoatings for Chronic Wound Repair-Modulation of Microbial Colonization and Biofilm Formation. Int. J. Mol. Sci. 2018;19:1179. doi: 10.3390/ijms19041179.
    1. Hamdan S., Pastar I., Drakulich S., Dikici E., Tomic-Canic M., Deo S., Daunert S. Nanotechnology-Driven Therapeutic Interventions in Wound Healing: Potential Uses and Applications. ACS Cent. Sci. 2017;3:163–175. doi: 10.1021/acscentsci.6b00371.
    1. Miller M.C., Nanchahal J. Advances in the modulation of cutaneous wound healing and scarring. BioDrugs. 2005;19:363–381. doi: 10.2165/00063030-200519060-00004.
    1. Friedman N.D., Temkin E., Carmeli Y. The negative impact of antibiotic resistance. Clin. Microbiol. Infect. 2016;22:416–422. doi: 10.1016/j.cmi.2015.12.002.
    1. Arafa M.G., El-Kased R.F. Thermoresponsive gels containing gold nanoparticles as smart antibacterial and wound healing agents. Sci. Rep. 2018;8:13674. doi: 10.1038/s41598-018-31895-4.
    1. Hoiby N., Bjarnsholt T., Moser C., Bassi G., Coenye T., Donelli G., Hall-Stoodley L., Hola V., Imbert C., Kirketerp-Møller K., et al. ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin. Microbiol. Infect. 2015;21:S1–S25. doi: 10.1016/j.cmi.2014.10.024.
    1. Mihai M.M., Giurcãneanu C., Popa L.G., Nitipir C., Popa M.I. Controversies and challenges of chronic wound infection diagnosis and treatment. Mod. Med. 2015;22:375–381.
    1. Mori H.M., Kawanami H., Kawahata H., Aoki M. Wound healing potential of lavender oil by acceleration of granulation and wound contraction through induction of TGF-beta in a rat model. BMC Complement. Altern. Med. 2016;16:144. doi: 10.1186/s12906-016-1128-7.
    1. Orchard A., van Vuuren S. Commercial Essential Oils as Potential Antimicrobials to Treat Skin Diseases. Evid.-Based Complement. Altern. Med. 2017;2017:4517971. doi: 10.1155/2017/4517971.
    1. Jamil B., Abbasi R., Abbasi S., Khan S.U., Ihsan A., Javed S., Bokhari H., Imran M. Encapsulation of Cardamom Essential Oil in Chitosan Nano-composites: In-vitro Efficacy on Antibiotic-Resistant Bacterial Pathogens and Cytotoxicity Studies. Front. Microbiol. 2016;7:1580. doi: 10.3389/fmicb.2016.01580.
    1. Kumar P.T., Lakshmanan V.-K., Anilkumar T., Ramya C., Reshmi P., Unnikrishnan A., Nair S.V., Jayakumar R. Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: In vitro and in vivo evaluation. ACS Appl. Mater. Interfaces. 2012;4:2618–2629. doi: 10.1021/am300292v.
    1. Niska K., Zielinska E., Radomski M.W., Inkielewicz-Stepniak I. Metal nanoparticles in dermatology and cosmetology: Interactions with human skin cells. Chem. Biol. Interact. 2018;295:38–51. doi: 10.1016/j.cbi.2017.06.018.
    1. Lin P.C., Lin S., Wang P.C., Sridhar R. Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv. 2014;32:711–726. doi: 10.1016/j.biotechadv.2013.11.006.
    1. Ferrari M. Nanogeometry: Beyond drug delivery. Nat. Nanotechnol. 2008;3:131–132. doi: 10.1038/nnano.2008.46.
    1. George S., Lin S., Ji Z., Thomas C.R., Li L., Mecklenburg M., Meng H., Wang X., Zhang H., Xia T., et al. Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano. 2012;6:3745–3759. doi: 10.1021/nn204671v.
    1. Vijayakumar V., Samal S.K., Mohanty S., Nayak S.K. Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management. Int. J. Biol. Macromol. 2019;122:137–148. doi: 10.1016/j.ijbiomac.2018.10.120.
    1. Szmyd R., Goralczyk A.G., Skalniak L., Cierniak A., Lipert B., Filon F.L., Crosera M., Borowczyk J., Laczna E., Drukala J., et al. Effect of silver nanoparticles on human primary keratinocytes. Biol. Chem. 2013;394:113–123. doi: 10.1515/hsz-2012-0202.
    1. Ahmadi M., Adibhesami M. The Effect of Silver Nanoparticles on Wounds Contaminated with Pseudomonas aeruginosa in Mice: An Experimental Study. Iran. J. Pharm. Res. 2017;16:661–669.
    1. Pal S., Nisi R., Stoppa M., Licciulli A. Silver-Functionalized Bacterial Cellulose as Antibacterial Membrane for Wound-Healing Applications. ACS Omega. 2017;2:3632–3639. doi: 10.1021/acsomega.7b00442.
    1. Radulescu M., Andronescu E., Dolete G., Popescu R.C., Fufă O., Chifiriuc M.C., Mogoantă L., Bălşeanu T.-A., Mogoșanu G.D., Grumezescu A.M., et al. Silver Nanocoatings for Reducing the Exogenous Microbial Colonization of Wound Dressings. Materials. 2016;9:345. doi: 10.3390/ma9050345.
    1. Lu M.M., Bai J., Shao D., Qiu J., Li M., Zheng X., Xiao Y., Wang Z., Chang Z.-M., Chen L., et al. Antibacterial and biodegradable tissue nano-adhesives for rapid wound closure. Int. J. Nanomed. 2018;13:5849–5863. doi: 10.2147/IJN.S177109.
    1. Boroumand Z., Golmakani N., Boroumand S. Clinical trials on silver nanoparticles for wound healing. Nanomed. J. 2018;5:186–191.
    1. Fong J., Wood F., Fowler B. A silver coated dressing reduces the incidence of early burn wound cellulitis and associated costs of inpatient treatment: Comparative patient care audits. Burns. 2005;31:562–567. doi: 10.1016/j.burns.2004.12.009.
    1. Lu S., Xia D., Huang G., Jing H., Wang Y., Gu H. Concentration effect of gold nanoparticles on proliferation of keratinocytes. Colloids Surf. B Biointerfaces. 2010;81:406–411. doi: 10.1016/j.colsurfb.2010.06.019.
    1. Marza S., Magyari K. Skin wound regeneration with bioactive glass-gold nanoparticles ointment. Biomed. Mater. 2019;14:025011. doi: 10.1088/1748-605X/aafd7d.
    1. Balaure P.C., Holban A.M., Grumezescu A.M., Mogoşanu G.D., Bălşeanu T.A., Stan M.S., Dinischiotu A., Volceanov A., Mogoantă L. In vitro and in vivo studies of novel fabricated bioactive dressings based on collagen and zinc oxide 3D scaffolds. Int. J. Pharm. 2018;557:199–207. doi: 10.1016/j.ijpharm.2018.12.063.
    1. Yang H., Liu C., Yang D., Zhang H., Xi Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: The role of particle size, shape and composition. J. Appl. Toxicol. 2009;29:69–78. doi: 10.1002/jat.1385.
    1. Khan M.I., Behera S.K., Paul P., Das B., Suar M., Jayabalan R., Fawcett D., Poinern G.E.J., Tripathy S.K., Mishra A. Biogenic Au@ZnO core-shell nanocomposites kill Staphylococcus aureus without provoking nuclear damage and cytotoxicity in mouse fibroblasts cells under hyperglycemic condition with enhanced wound healing proficiency. Med. Microbiol. Immunol. 2018 doi: 10.1007/s00430-018-0564-z.
    1. Gao Y., Han Y., Cui M., Tey H.L., Wang L., Xu C. ZnO nanoparticles as an antimicrobial tissue adhesive for skin wound closure. J. Mater. Chem. B. 2017;5:4535–4541. doi: 10.1039/C7TB00664K.
    1. Arya G., Kumari R.M., Sharma N., Gupta N., Kumar A., Chatterjee S., Nimesh S. Catalytic, antibacterial and antibiofilm efficacy of biosynthesised silver nanoparticles using Prosopis juliflora leaf extract along with their wound healing potential. J. Photochem. Photobiol. B. 2019;190:50–58. doi: 10.1016/j.jphotobiol.2018.11.005.
    1. Sood R., Chopra D.S. Optimization of reaction conditions to fabricate Ocimum sanctum synthesized silver nanoparticles and its application to nano-gel systems for burn wounds. Mater. Sci. Eng. C Mater. Biol. Appl. 2018;92:575–589. doi: 10.1016/j.msec.2018.06.070.
    1. Ye H., Cheng J., Yu K. In situ reduction of silver nanoparticles by gelatin to obtain porous silver nanoparticle/chitosan composites with enhanced antimicrobial and wound-healing activity. Int. J. Biol. Macromol. 2019;121:633–642. doi: 10.1016/j.ijbiomac.2018.10.056.
    1. Shao F., Yang A., Yu D.M., Wang J., Gong X., Tian H.X. Bio-synthesis of Barleria gibsoni leaf extract mediated zinc oxide nanoparticles and their formulation gel for wound therapy in nursing care of infants and children. J. Photochem. Photobiol. B. 2018;189:267–273. doi: 10.1016/j.jphotobiol.2018.10.014.
    1. Shariatinia Z. Pharmaceutical applications of chitosan. Adv. Colloid Interface Sci. 2019;263:131–194. doi: 10.1016/j.cis.2018.11.008.
    1. Biranje S.S., Madiwale P.V., Patankar K.C., Chhabra R., Dandekar-Jain P., Adivarekar R.V. Hemostasis and anti-necrotic activity of wound-healing dressing containing chitosan nanoparticles. Int. J. Biol. Macromol. 2019;121:936–946. doi: 10.1016/j.ijbiomac.2018.10.125.
    1. Chen Y., Dan N., Dan W., Liu X., Cong L. A novel antibacterial acellular porcine dermal matrix cross-linked with oxidized chitosan oligosaccharide and modified by in situ synthesis of silver nanoparticles for wound healing applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2019;94:1020–1036. doi: 10.1016/j.msec.2018.10.036.
    1. Hajji S., Ben Khedir S., Hamza-Mnif I., Hamdi M., Jedidi I., Kallel R., Boufi S., Nasri M. Biomedical potential of chitosan-silver nanoparticles with special reference to antioxidant, antibacterial, hemolytic and in vivo cutaneous wound healing effects. Biochim. Biophys. Acta Gen. Subj. 2019;1863:241–254. doi: 10.1016/j.bbagen.2018.10.010.
    1. Holban A.M., Grumezescu V., Grumezescu A.M., Vasile B.S., Trusca R., Cristescu R., Socol G., Iordache F. Antimicrobial nanospheres thin coatings prepared by advanced pulsed laser technique. Beilstein J. Nanotechnol. 2014;5:872–880. doi: 10.3762/bjnano.5.99.
    1. Gao G., Jiang Y.-W., Jia H.-R., Wu F.-G. Near-infrared light-controllable on-demand antibiotics release using thermo-sensitive hydrogel-based drug reservoir for combating bacterial infection. Biomaterials. 2019;188:83–95. doi: 10.1016/j.biomaterials.2018.09.045.
    1. Hernandez Martinez S.P., Rivera González T., Franco Molina M., Bollain y Goytia J., Martínez Sanmiguel J., Zárate Triviño D., Rodríguez Padilla C. A Novel Gold Calreticulin Nanocomposite Based on Chitosan for Wound Healing in a Diabetic Mice Model. Nanomaterials. 2019;9:75. doi: 10.3390/nano9010075.
    1. Sun T., Zhan B., Zhang W., Qin D., Xia G., Zhang H., Peng M., Li S.-A., Zhang Y., Gao Y., et al. Carboxymethyl chitosan nanoparticles loaded with bioactive peptide OH-CATH30 benefit nonscar wound healing. Int. J. Nanomed. 2018;13:5771–5786. doi: 10.2147/IJN.S156206.
    1. Tayeb A.H., Amini E., Ghasemi S., Tajvidi M. Cellulose Nanomaterials-Binding Properties and Applications: A Review. Molecules. 2018;23:2684. doi: 10.3390/molecules23102684.
    1. Fu L., Zhang J., Yang G. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr. Polym. 2013;92:1432–1442. doi: 10.1016/j.carbpol.2012.10.071.
    1. Khalid A., Khan R., Ul-Islam M., Khan T., Wahid F. Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydr. Polym. 2017;164:214–221. doi: 10.1016/j.carbpol.2017.01.061.
    1. Moniri M., Moghaddam A.B., Azizi S., Rahim R.A., Zuhainis S.W., Navaderi M., Mohamad R. In vitro molecular study of wound healing using biosynthesized bacteria nanocellulose/silver nanocomposite assisted by bioinformatics databases. Int. J. Nanomed. 2018;13:5097–5112. doi: 10.2147/IJN.S164573.
    1. Nurhasni H., Cao J., Choi M., Kim I., Lee B.L., Jung Y., Yoo J.-W. Nitric oxide-releasing poly(lactic-co-glycolic acid)-polyethylenimine nanoparticles for prolonged nitric oxide release, antibacterial efficacy, and in vivo wound healing activity. Int. J. Nanomed. 2015;10:3065–3080.
    1. Wang T., Zheng Y., Shi Y., Zhao L. pH-responsive calcium alginate hydrogel laden with protamine nanoparticles and hyaluronan oligosaccharide promotes diabetic wound healing by enhancing angiogenesis and antibacterial activity. Drug Deliv. Transl. Res. 2019;9:227–239. doi: 10.1007/s13346-018-00609-8.
    1. Krausz A.E., Adler B.L., Cabral V., Navati M., Doerner J., Charafeddine R.A., Chandra D., Liang H., Gunther L., Clendaniel A., et al. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomed. Nanotechnol. Biol. Med. 2015;11:195–206. doi: 10.1016/j.nano.2014.09.004.
    1. Ghaffari S., Alihosseini F., Sorkhabadi S.M.R., Bidgoli S.A., Mousavi S.E., Haghighat S., Nasab A.A., Kianvash N. Nanotechnology in Wound Healing; Semisolid Dosage Forms Containing Curcumin-Ampicillin Solid Lipid Nanoparticles, in-Vitro, Ex-Vivo and in-Vivo Characteristics. Adv. Pharm. Bull. 2018;8:395–400. doi: 10.15171/apb.2018.046.
    1. Moradi A., Kheirollahkhani Y., Fatahi P., Abdollahifar M.-A., Amini A., Naserzadeh P., Ashtari K., Ghoreishi S.K., Chien S., Rezaei F., et al. An improvement in acute wound healing in mice by the combined application of photobiomodulation and curcumin-loaded iron particles. Lasers Med. Sci. 2018;34:779–791. doi: 10.1007/s10103-018-2664-9.
    1. Abdel-Sayed P., Kaeppeli A., Siriwardena T., Darbre T., Perron K., Jafari P., Reymond J.-L., Pioletti D.P., Applegate L.A., Kaeppli A. Anti-Microbial Dendrimers against Multidrug-Resistant P. aeruginosa Enhance the Angiogenic Effect of Biological Burn-wound Bandages. Sci. Rep. 2016;6:22020. doi: 10.1038/srep22020.
    1. Haik J., Kornhaber R., Blal B., Harats M. The Feasibility of a Handheld Electrospinning Device for the Application of Nanofibrous Wound Dressings. Adv. Wound Care. 2017;6:166–174. doi: 10.1089/wound.2016.0722.
    1. Gholipour-Kanani A., Bahrami S.H., Rabbani S. Effect of novel blend nanofibrous scaffolds on diabetic wounds healing. IET Nanobiotechnol. 2016;10:1–7. doi: 10.1049/iet-nbt.2014.0066.
    1. Dong R.H., Jia Y.-X., Qin C.-C., Zhan L., Yan X., Cui L., Zhou Y., Jiang X., Long Y.-Z. In situ deposition of a personalized nanofibrous dressing via a handy electrospinning device for skin wound care. Nanoscale. 2016;8:3482–3488. doi: 10.1039/C5NR08367B.
    1. Fu S.Z., Meng X.H., Fan J., Yang L.L., Wen Q.L., Ye S.J., Lin S., Wang B.Q., Chen L.L., Wu J.B., et al. Acceleration of dermal wound healing by using electrospun curcumin-loaded poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) fibrous mats. J. Biomed. Mater. Res. B Appl. Biomater. 2014;102:533–542. doi: 10.1002/jbm.b.33032.
    1. Chu Y., Yu D., Wang P., Xu J., Li D., Ding M. Nanotechnology promotes the full-thickness diabetic wound healing effect of recombinant human epidermal growth factor in diabetic rats. Wound Repair Regen. 2010;18:499–505. doi: 10.1111/j.1524-475X.2010.00612.x.
    1. Zhang X., Kang X., Jin L., Bai J., Liu W., Wang Z., Ji L. Stimulation of wound healing using bioinspired hydrogels with basic fibroblast growth factor (bFGF) Int. J. Nanomed. 2018;13:3897–3906. doi: 10.2147/IJN.S168998.
    1. Wang S., Yan C., Zhang X., Shi D., Chi L., Luo G., Deng J. Antimicrobial peptide modification enhances the gene delivery and bactericidal efficiency of gold nanoparticles for accelerating diabetic wound healing. Biomater. Sci. 2018;6:2757–2772. doi: 10.1039/C8BM00807H.
    1. Zgheib C., Hilton S.A., Dewberry L.C., Hodges M.M., Ghatak S., Xu J., Singh S., Roy S., Sen C.K., Seal S., et al. Use of Cerium Oxide Nanoparticles Conjugated with MicroRNA-146a to Correct the Diabetic Wound Healing Impairment. Lasers Med. Sci. 2019;228:107–115. doi: 10.1016/j.jamcollsurg.2018.09.017.
    1. Moura J., Borsheim E., Carvalho E. The Role of MicroRNAs in Diabetic Complications-Special Emphasis on Wound Healing. Genes. 2014;5:926–956. doi: 10.3390/genes5040926.
    1. Tartarini D., Mele E. Adult Stem Cell Therapies for Wound Healing: Biomaterials and Computational Models. Front. Bioeng. Biotechnol. 2015;3:206. doi: 10.3389/fbioe.2015.00206.

Source: PubMed

3
Prenumerera