N-Back Related ERPs Depend on Stimulus Type, Task Structure, Pre-processing, and Lab Factors

Mahsa Alizadeh Shalchy, Valentina Pergher, Anja Pahor, Marc M Van Hulle, Aaron R Seitz, Mahsa Alizadeh Shalchy, Valentina Pergher, Anja Pahor, Marc M Van Hulle, Aaron R Seitz

Abstract

The N-Back, a common working memory (WM) updating task, is increasingly used in basic and applied psychological research. As such, an increasing number of electroencephalogram (EEG) studies have sought to identify the electrophysiological signatures of N-Back task performance. However, stimulus type, task structure, pre-processing methods, and differences in the laboratory environment, including the EEG recording setup employed, greatly vary across studies, which in turn may introduce inconsistencies in the obtained results. Here we address this issue by conducting nine different variations of an N-Back task manipulating stimulus type and task structure. Furthermore, we explored the effect of the pre-processing method used and differences in the laboratory environment. Results reveal significant differences in behavioral and electrophysiological signatures in response to N-Back stimulus type, task structure, pre-processing method, and laboratory environment. In conclusion, we suggest that experimental factors, analysis pipeline, and laboratory differences, which are often ignored in the literature, need to be accounted for when interpreting findings and making comparisons across studies.

Keywords: ERPs; N-Back; cross-laboratory; experimental features; pre-processing; working memory.

Copyright © 2020 Alizadeh Shalchy, Pergher, Pahor, Van Hulle and Seitz.

Figures

Figure 1
Figure 1
Graphic rendition of N-Back task features for stimulus type, stimulus duration, and Inter-stimulus Interval (ISI) for Dataset I.
Figure 2
Figure 2
Mean accuracy and SEM for target trials in the University of California—Riverside (UCR) dataset. (A) Accuracy as a function of task type. (B) Accuracy as a function of stimulus type. *Indicates the significance of p < 0.05.
Figure 3
Figure 3
Grand average and SEM of ERP curve for UCR dataset at Cz electrode for target trials during variations of stimulus types (words, pictures, and colors). Gray shaded areas indicate significantly different data points (p < 0.05). P-values that are less than 0.0001 are thresholded to 0.0001 for viewing purposes, as shown by the black curve at the bottom of each graph where log p-values are reported.
Figure 4
Figure 4
Grand average and SEM of ERP curve for UCR dataset at Cz electrode for target trials during variations of task structure (task 1, task 2, and task 3). Gray shaded areas indicate significantly different data points (p < 0.05). P-values that are less than 0.0001 are thresholded to 0.0001 for viewing purposes.
Figure 5
Figure 5
Grand average and SEM of ERP curve for UCR dataset at Cz electrode as a function of N-back load (A) and performance metrics (B).
Figure 6
Figure 6
Grand average and SEM of ERP curve at Cz electrode for target trials for different pipelines (Pipeline I vs. Pipeline II) for the UCR dataset (see Supplementary Material for Fz and Pz, Supplementary Figures 7, 8). Gray shaded areas indicate significantly different data points (p < 0.05). P-values that are less than 0.0001 are thresholded to 0.0001 for viewing purposes. Data in Pipeline II was up-sampled to 512 to make the comparison possible.
Figure 7
Figure 7
Cross-laboratory accuracy comparison. (A) Accuracy for N-Back task 2 with pictures in the dataset I (UCR) and in dataset II (Ku Leuven). (B) Accuracy for N-Back task 1 with words in the dataset I (UCR) and in dataset III (University of Maribor, UM). *Indicates significance of p < 0.05.
Figure 8
Figure 8
ERP responses during task 2, only for target stimuli recorded at different laboratories. Gray shaded areas show significant differences at p < 0.05. Both datasets were pre-processed with pipeline I.
Figure 9
Figure 9
ERP responses during task 1 (mean and standard deviation of targets) recorded at different laboratories. Gray shaded areas show significant differences at p < 0.05. Both datasets were pre-processed with pipeline I.

References

    1. Acunzo D. J., MacKenzie G., van Rossum M. C. (2012). Systematic biases in early ERP and ERF components as a result of high-pass filtering. J. Neurosci. Methods 209, 212–218. 10.1016/j.jneumeth.2012.06.011
    1. Anguera J. A., Bernard J. A., Jaeggi S. M., Buschkuehl M., Benson B. L., Jennett S., et al. . (2012). The effects of working memory resource depletion and training on sensorimotor adaptation. Behav. Brain Res. 228, 107–115. 10.1016/j.bbr.2011.11.040
    1. Baddeley A. (2012). Working memory: theories, models, and controversies. Annu. Rev. Psychol. 63, 1–29. 10.1146/annurev-psych-120710-100422
    1. Blacker K. J., Negoita S., Ewen J. B., Courtney S. M. (2017). N-back versus complex span working memory training. J. Cogn. Enhanc. 1, 434–454. 10.1007/s41465-017-0044-1
    1. Brainard D. H. (1997). The psychophysics toolbox. Spat. Vis. 10, 433–436. 10.1163/156856897x00357
    1. Brouwer A. M., Hogervorst M. A., Van Erp J. B., Heffelaar T., Zimmerman P. H., Oostenveld R. (2012). Estimating workload using EEG spectral power and ERPs in the N-back task. J. Neural Eng. 9:045008. 10.1088/1741-2560/9/4/045008
    1. Brunoni A. R., Vanderhasselt M. A. (2014). Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: a systematic review and meta-analysis. Brain Cogn. 86, 1–9. 10.1016/j.bandc.2014.01.008
    1. Busch N. A., Herrmann C. S., Müller M. M., Lenz D., Gruber T. (2006). A cross-laboratory study of event-related gamma activity in a standard object recognition paradigm. NeuroImage 33, 1169–1177. 10.1016/j.neuroimage.2006.07.034
    1. Buschkuehl M., Hernandez-Garcia L., Jaeggi S. M., Bernard J. A., Jonides J. (2014). Neural effects of short-term training on working memory. Cogn. Affect. Behav. Neurosci. 14, 147–160. 10.3758/s13415-013-0244-9
    1. Callaway E., Halliday R. (1982). The effect of attentional effort on visual evoked potential N1 latency. Psychiatry Res. 7, 299–308. 10.1016/0165-1781(82)90066-x
    1. Chen Y.-N., Mitra S. (2009). The spatial-verbal difference in the N-back task: an ERP study. Acta Neurol. Taiwan. 18, 170–179. Available online at: .
    1. Chen Y.-N., Mitra S., Schlaghecken F. (2008). Sub-processes of working memory in the N-back task: an investigation using ERPs. Clin. Neurophysiol. 119, 1546–1559. 10.1016/j.clinph.2008.03.003
    1. Cohen M. X. (2017). MATLAB for Brain and Cognitive Scientists. Cambridge, MA: MIT Press.
    1. Collingridge D. S. (2013). A primer on quantized data analysis and permutation testing. J. Mixed Methods Res. 7, 81–97. 10.1177/1558689812454457
    1. Croft R. J., Barry R. J. (2000). Removal of ocular artifact from the EEG: a review. Neurophysiol. Clin. 30, 5–19. 10.1016/S0987-7053(00)00055-1
    1. Danker J. F., Hwang G. M., Gauthier L., Geller A., Kahana M. J., Sekuler R. (2008). Characterizing the ERP old-new effect in a short-term memory task. Psychophysiology 45, 784–793. 10.1111/j.1469-8986.2008.00672.x
    1. De Ribaupierre A., Lecerf T. (2006). Relationships between working memory and intelligence from a developmental perspective: convergent evidence from a neo-Piagetian and a psychometric approach. Eur. J. Cogn. Psychol. 18, 109–137. 10.1080/09541440500216127
    1. Delorme A., Makeig S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21. 10.1016/j.jneumeth.2003.10.009
    1. Derrick B., White P., Toher D. (2019). Parametric and non-parametric tests for the comparison of two samples which both include paired and unpaired observations. J. Mod. Appl. Stat. Methods 18, 2–23. 10.22237/jmasm/1556669520
    1. Dong L., Liu X., Zhao L., Lai Y., Gong D., Liu T., et al. . (2019). A comparative study of different EEG reference choices for event-related potentials extracted by independent component analysis. Front. Neurosci. 13:1068. 10.3389/fnins.2019.01068
    1. Dong S., Reder L. M., Yao Y., Liu Y., Chen F. (2015). Individual differences in working memory capacity are reflected in different ERP and EEG patterns to task difficulty. Brain Res. 1616, 146–156. 10.1016/j.brainres.2015.05.003
    1. Efron B., RJ T. (1993). An Introduction to the Bootstrap. New York, NY: Chapman and Hall.
    1. Farrell J. M., Johnston M. E., Twynam G. D. (1998). Volunteer motivation, satisfaction, and management at an elite sporting competition. J. Sport Manag. 12, 288–300. 10.1123/jsm.12.4.288
    1. Esposito F., Aragri A., Piccoli T., Tedeschi G., Goebel R., Di Salle F. (2009). Distributed analysis of simultaneous EEG-fMRI time-series: modeling and interpretation issues. Magn. Reson. Imaging 27, 1120–1130. 10.1016/j.mri.2009.01.007
    1. Folstein J. R., Van Petten C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology 45, 152–170. 10.1111/j.1469-8986.2007.00602.x
    1. Fox M. D., Snyder A. Z., Vincent J. L., Raichle M. E. (2007). Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron 56, 171–184. 10.1016/j.neuron.2007.08.023
    1. Glahn D. C., Ragland J. D., Abramoff A., Barrett J., Laird A. R., Bearden C. E., et al. . (2005). Beyond hypofrontality: a quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Hum. Brain Mapp. 25, 60–69. 10.1002/hbm.20138
    1. Green C. S., Bavelier D., Kramer A. F., Vinogradov S., Ansorge U., Ball K. K., et al. (2019). Improving methodological standards in behavioral interventions for cognitive enhancement. J. Cogn. Enhanc. 3, 2–29. 10.1007/s41465-018-0115-y
    1. Groppe D. M., Makeig S., Kutas M. (2009). Identifying reliable independent components via split-half comparisons. NeuroImage 45, 1199–1211.
    1. Guo B., Yuan Y. (2017). A comparative review of methods for comparing means using partially paired data. Stat. Methods Med. Res. 26, 1323–1340. 10.1177/0962280215577111
    1. Heishman S. J., Kleykamp B. A., Singleton E. G. (2010). Meta-analysis of the acute effects of nicotine and smoking on human performance. Psychopharmacology 210, 453–469. 10.1007/s00213-010-1848-1
    1. Herff C., Heger D., Fortmann O., Hennrich J., Putze F., Schultz T. (2014). Mental workload during n-back task—quantified in the prefrontal cortex using fNIRS. Front. Hum. Neurosci. 7:935. 10.3389/fnhum.2013.00935
    1. Hillyard S. A., Vogel E. K., Luck S. J. (1998). Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353, 1257–1270. 10.1098/rstb.1998.0281
    1. Jaeggi S. M., Buschkuehl M., Jonides J., Perrig W. J. (2008). Improving fluid intelligence with training on working memory. Proc. Natl. Acad. Sci. U S A 105, 6829–6833. 10.1073/pnas.0801268105
    1. Jaeggi S. M., Buschkuehl M., Perrig W. J., Meier B. (2010). The concurrent validity of the N-back task as a working memory measure. Memory 18, 394–412. 10.1080/09658211003702171
    1. Jaeggi S. M., Buschkuehl M., Shah P., Jonides J. (2014). The role of individual differences in cognitive training and transfer. Mem. Cogn. 42, 464–480. 10.3758/s13421-013-0364-z
    1. Jasper H. H. (1958). The 10-20 electrode system of the international federation. Electroencephalogr. Clin. Neurophysiol. 10, 371–375.
    1. Jiang X., Bian G.-B., Tian Z. (2019). Removal of artifacts from EEG signals: a review. Sensors 19:987. 10.3390/s19050987
    1. Kane M. J., Conway A. R. A., Miura T. K., Colflesh G. J. (2007). Working memory, attention control, and the N-back task: a question of construct validity. J. Exp. Psychol. Learn. Mem. Cogn. 33, 615–622. 10.1037/0278-7393.33.3.615
    1. Kanske P., Plitschka J., Kotz S. A. (2011). Attentional orienting towards emotion: P2 and N400 ERP effects. Neuropsychologia 49, 3121–3129. 10.1016/j.neuropsychologia.2011.07.022
    1. Kleiner M., Brainard D., Pelli D., Ingling A., Murray R., Broussard C. (2007). What’s new in psychtoolbox-3? Perception 36, 1–16. 10.1068/v070821
    1. Krause C. M., Sillanmäki L., Koivisto M., Saarela C., Häggqvist A., Laine M., et al. . (2000). The effects of memory load on event-related EEG desynchronization and synchronization. Clin. Neurophysiol. 111, 2071–2078. 10.1016/s1388-2457(00)00429-6
    1. Kunimi M. (2016). Effects of age, gender, and stimulus presentation period on visual short-term memory. J. Women Aging 28, 24–33. 10.1080/08952841.2014.950499
    1. Kutas M., Federmeier K. D. (2011). Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annu. Rev. Psychol. 62, 621–647. 10.1146/annurev.psych.093008.131123
    1. Levene H. (1960). “Robust test for equality of variances,” in Contributions to Probability and Statistics. Essays in Honor of Harold Hotelling, ed. Olkin I. (Palo Alto, CA: Stanford University Press; ), 278–292.
    1. Liu Y., Zhang D., Ma J., Li D., Yin H., Luo Y. (2013). The attention modulation on timing: an event-related potential study. PLoS One 8:e66190. 10.1371/journal.pone.0066190
    1. Lu Z. L., Williamson S. J., Kaufman L. (1992). Behavioral lifetime of human auditory sensory memory predicted by physiological measures. Science 258, 1668–1670. 10.1126/science.1455246
    1. Luck S. J. (2014). An Introduction to the Event-Related Potential Technique. Cambridge, MA: MIT Press.
    1. Luck S. J., Heinze H. J., Mangun G. R., Hillyard S. A. (1990). Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalogr. Clin. Neurophysiol. 75, 528–542. 10.1016/0013-4694(90)90139-b
    1. Mecklinger A. (2000). Interfacing mind and brain: a neurocognitive model of recognition memory. Psychophysiology 37, 565–582. 10.1111/1469-8986.3750565
    1. Mecklinger A., Pfeifer E. (1996). Event-related potentials reveal topographical and temporal distinct neuronal activation patterns for spatial and object working memory. Cogn. Brain Res. 4, 211–224. 10.1016/s0926-6410(96)00034-1
    1. Mencarelli L., Neri F., Momi D., Menardi A., Rossi S., Rossi A., et al. . (2019). Stimuli, presentation modality, and load-specific brain activity patterns during N-back task. Hum. Brain Mapp. 40, 3810–3831. 10.1002/hbm.24633
    1. Minear M., Brasher F., Guerrero C. B., Brasher M., Moore A., Sukeena J. (2016). A simultaneous examination of two forms of working memory training: evidence for near transfer only. Mem. Cogn. 44, 1014–1037. 10.3758/s13421-016-0616-9
    1. Miyake A., Shah P. (Eds). (1999). Models of Working Memory: Mechanisms of Active Maintenance and Executive Control. Cambridge, MA: Cambridge University Press.
    1. Mohammed S., Flores L., Deveau J., Hoffing R. C., Phung C., Parlett C. M., et al. . (2017). The benefits and challenges of implementing motivational features to boost cognitive training outcome. J. Cogn. Enhanc. 1, 491–507. 10.1007/s41465-017-0047-y
    1. Nystrom L. E., Braver T. S., Sabb F. W., Delgado M. R., Noll D. C., Cohen J. D. (2000). Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex. NeuroImage 11, 424–446. 10.1006/nimg.2000.0572
    1. Oberauer K. (2005). Binding and inhibition in working memory: individual and age differences in short-term recognition. J. Exp. Psychol. Gen. 134, 368–387. 10.1037/0096-3445.134.3.368
    1. Olichney J. M., Van Petten C., Paller K. A., Salmon D. P., Iragui V. J., Kutas M. (2000). Word repetition in amnesia: electrophysiological measures of impaired and spared memory. Brain 123, 1948–1963. 10.1093/brain/123.9.1948
    1. Owen A. M., McMillan K. M., Laird A. R., Bullmore E. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum. Brain Mapp. 25, 46–59. 10.1002/hbm.20131
    1. Pahor A., Jaušovec N. (2018). The effects of theta and gamma tACS on working memory and electrophysiology. Front. Hum. Neurosci. 11:651. 10.3389/fnhum.2017.00651
    1. Patel S. H., Azzam P. N. (2005). Characterization of N200 and P300: selected studies of the event-related potential. Int. J. Med. Sci. 2, 147–154. 10.7150/ijms.2.147
    1. Pergher V., Shalchy M. A., Pahor A., Van Hulle M. M., Jaeggi S. M., Seitz A. R. (2019a). Divergent research methods limit understanding of working memory training. J. Cogn. Enhanc. 4, 100–120. 10.1007/s41465-019-00134-7
    1. Pergher V., Wittevrongel B., Tournoy J., Schoenmakers B., Van Hulle M. M. (2019b). Mental workload of young and older adults gauged with ERPs and spectral power during N-Back task performance. Biol. Psychol. 146:107726. 10.1016/j.biopsycho.2019.107726
    1. Pergher V., Wittevrongel B., Tournoy J., Schoenmakers B., Van Hulle M. M. (2018). N-back training and transfer effects revealed by behavioral responses and EEG. Brain Behav. 8:e01136. 10.1002/brb3.1136
    1. Pesonen M., Hämäläinen H., Krause C. M. (2007). Brain oscillatory 4–30 Hz responses during a visual N-back memory task with varying memory load. Brain Res. 1138, 171–177. 10.1016/j.brainres.2006.12.076
    1. Picton T. W. (1992). The P300 wave of the human event-related potential. J. Clin. Neurophysiol. 9, 456–479. 10.1097/00004691-199210000-00002
    1. Pliatsikas C., Veríssimo J., Babcock L., Pullman M. Y., Glei D. A., Weinstein M., et al. . (2019). Working memory in older adults declines with age, but is modulated by sex and education. Q. J. Exp. Psychol. 72, 1308–1327. 10.1177/1747021818791994
    1. Polich J. (2007). Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. 118, 2128–2148. 10.1016/j.clinph.2007.04.019
    1. Polich J., Kok A. (1995). Cognitive and biological determinants of P300: an integrative review. Biol. Psychol. 41, 103–146. 10.1016/0301-0511(95)05130-9
    1. Redick T. S., Lindsey D. R. (2013). Complex span and n-back measures of working memory: a meta-analysis. Psychon. Bull. Rev. 20, 1102–1113. 10.3758/s13423-013-0453-9
    1. Robbins K. A., Touryan J., Mullen T., Kothe C., Bigdely-Shamlo N. (2020). How sensitive are EEG results to preprocessing methods: a benchmarking study. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 1081–1090. 10.1109/TNSRE.2020.2980223
    1. Ross P., Segalowitz S. J. (2000). An EEG coherence test of the frontal dorsal versus ventral hypothesis in N-back working memory. Brain Cogn. 43, 375–379. Available online at: .
    1. Rossion B., Joyce C. A., Cottrell G. W., Tarr M. J. (2003). Early lateralization and orientation tuning for face, word, and object processing in the visual cortex. NeuroImage 20, 1609–1624. 10.1016/j.neuroimage.2003.07.010
    1. Ruchkin D. S., Johnson R., Jr., Grafman J., Canoune H., Ritter W. (1992). Distinctions and similarities among working memory processes: an event-related potential study. Cogn. Brain Res. 1, 53–66. 10.1016/0926-6410(92)90005-c
    1. Scharinger C., Soutschek A., Schubert T., Gerjets P. (2015). When flanker meets the N-back: what EEG and pupil dilation data reveal about the interplay between the two central-executive working memory functions inhibition and updating. Psychophysiology 52, 1293–1304. 10.1111/psyp.12500
    1. Scharinger C., Soutschek A., Schubert T., Gerjets P. (2017). Comparison of the working memory load in n-back and working memory span tasks by means of eeg frequency band power and p300 amplitude. Front. Hum. Neurosci. 11:6. 10.3389/fnhum.2017.00006
    1. Shapiro S. S., Francia R. S. (1972). An approximate analysis of variance test for normality. J. Am. Stat. Assoc. 67, 215–216. 10.1080/01621459.1972.10481232
    1. Smith N. J., Kutas M. (2015). Regression-based estimation of ERP waveforms: II. Nonlinear effects, overlap correction, and practical considerations. Psychophysiology 52, 169–181. 10.1111/psyp.12320
    1. Van Petten C., Kutas M. (1990). Interactions between sentence context and word frequencyinevent-related brainpotentials. Mem. Cogn. 18, 380–393. 10.3758/bf03197127
    1. van Vliet M., Manyakov N. V., Storms G., Fias W., Wiersema J. R., Van Hulle M. M. (2014). Response-related potentials during semantic priming: the effect of a speeded button response task on ERPs. PLoS One 9:e87650. 10.1371/journal.pone.0087650
    1. van Vliet M., Chumerin N., De Deyne S., Wiersema J. R., Fias W., Storms G., et al. . (2015). Single-trial ERP component analysis using a spatiotemporal lcmv beamformer. IEEE Trans. Biomed. Eng. 63, 55–66. 10.1109/TBME.2015.2468588
    1. Vogel E. K., Luck S. J. (2000). The visual N1 component as an index of a discrimination process. Psychophysiology 37, 190–203. 10.1111/1469-8986.3720190
    1. Watter S., Geffen G. M., Geffen L. B. (2001). The N-back as a dual-task: P300 morphology under divided attention. Psychophysiology 38, 998–1003. 10.1111/1469-8986.3860998
    1. Wittevrongel B., Van Hulle M. M. (2016). Faster p300 classifier training using spatiotemporal beamforming. Int. J. Neural Syst. 26:1650014. 10.1142/S0129065716500143
    1. Yao D., Qin Y., Hu S., Dong L., Vega M. L. B., Sosa P. A. V. (2019). Which reference should we use for EEG and ERP practice? Brain Topogr. 32, 530–549. 10.1007/s10548-019-00707-x
    1. Zimmer H. D., Cohen R. L., Foley M. A., Guynn M. J., Engelkamp J., Kormi-Nouri R. (2001). Memory for Action: A Distinct form of Episodic Memory? New York, NY: Oxford University Press on Demand.

Source: PubMed

3
Prenumerera