Maternal prenatal immunity, neonatal trained immunity, and early airway microbiota shape childhood asthma development

Avery DeVries, Kathryn McCauley, Douglas Fadrosh, Kei E Fujimura, Debra A Stern, Susan V Lynch, Donata Vercelli, Avery DeVries, Kathryn McCauley, Douglas Fadrosh, Kei E Fujimura, Debra A Stern, Susan V Lynch, Donata Vercelli

Abstract

Background: The path to childhood asthma is thought to initiate in utero and be further promoted by postnatal exposures. However, the underlying mechanisms remain underexplored. We hypothesized that prenatal maternal immune dysfunction associated with increased childhood asthma risk (revealed by low IFN-γ:IL-13 secretion during the third trimester of pregnancy) alters neonatal immune training through epigenetic mechanisms and promotes early-life airway colonization by asthmagenic microbiota.

Methods: We examined epigenetic, immunologic, and microbial features potentially related to maternal prenatal immunity (IFN-γ:IL-13 ratio) and childhood asthma in a birth cohort of mother-child dyads sampled pre-, peri-, and postnatally (N = 155). Epigenome-wide DNA methylation and cytokine production were assessed in cord blood mononuclear cells (CBMC) by array profiling and ELISA, respectively. Nasopharyngeal microbiome composition was characterized at age 2-36 months by 16S rRNA sequencing.

Results: Maternal prenatal immune status related to methylome profiles in neonates born to non-asthmatic mothers. A module of differentially methylated CpG sites enriched for microbe-responsive elements was associated with childhood asthma. In vitro responsiveness to microbial products was impaired in CBMCs from neonates born to mothers with the lowest IFN-γ:IL-13 ratio, suggesting defective neonatal innate immunity in those who developed asthma during childhood. These infants exhibited a distinct pattern of upper airway microbiota development characterized by early-life colonization by Haemophilus that transitioned to a Moraxella-dominated microbiota by age 36 months.

Conclusions: Maternal prenatal immune status shapes asthma development in her child by altering the epigenome and trained innate immunity at birth, and is associated with pathologic upper airway microbial colonization in early life.

Keywords: DNA methylation; childhood asthma; maternal prenatal immunity; nasal microbiome; trained innate immunity.

Conflict of interest statement

ADV, KM, DAS, KEF, DF, and DV declare no competing interests. SVL is a co‐founder, board member and consultant of Siolta Therapeutics Inc., and holds stock in this company, she also consults for Solarea Bio.

© 2022 The Authors. Allergy published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.

Figures

FIGURE 1
FIGURE 1
Maternal prenatal IFN‐γ:IL‐13 relates to differences in the CBMC methylome. (A) Differentially methylated CBMC CpGs associated with Q1 versus Q2‐4. The x‐ and y‐axes represent the log2(fold change) and significance, respectively, for differential methylation at each CpG. The dashed line marks the threshold of significance [false discovery rate (FDR) < 0.05]. The most significant DMCs are annotated with their gene symbol (or CpG identifier). (B) Modules identified by hierarchical clustering of maternal prenatal IFN‐γ:IL‐13 Q1 vs. Q2‐4‐associated DMCs (n = 2316) using WGCNA. Distinct modules are denoted by colors represented in the bar below the dendrogram. Gray represents DMCs that did not cluster into a module. (C) Relationships between maternal prenatal IFN‐γ:IL‐13–associated methylation modules at birth and asthma‐related phenotypes in childhood. The table shows Spearman correlation coefficients and p‐values for relationships between module eigengene vectors and asthma‐associated clinical traits. Only modules with >10 CpGs are shown. Bolded associations remained significant after Bonferroni correction (p = .05/14 = .0036). (D) Asthma risk among children with high or low TRQ module eigenvalues at birth (divided at “0”), as determined by logistic regression.
FIGURE 2
FIGURE 2
Asthma‐associated differential methylation in the TRQ module co‐localizes with microbe‐responsive elements. Heatmap of TRQ module DMCs (rows) that mapped to promoters/enhancers (as assessed by Roadmap Epigenomics consortium chromatin state annotations) and were significantly (p < .05) associated with asthma. The color bar at the top denotes individual neonates (columns) who did or did not develop asthma during childhood. Microbe‐responsive elements (purple text in the right side legend) were defined as DMCs mapping to genes exhibiting dynamic expression, or putative enhancers exhibiting dynamic changes in chromatin marks (DNaseI/ATAC accessibility, H3K27ac, H3K4me1) in response to microbes or their products., , , , , , Statistics and annotations for these DMCs are provided in Table S5.
FIGURE 3
FIGURE 3
CBMC TRQ module and LPS‐stimulated IL‐6 production co‐associate with childhood asthma development. (A) CBMC TRQ eigengene values and IL‐6 responses to LPS stimulation at birth are significantly correlated. Red and black dots represent neonates with or without a diagnosis of asthma during childhood, respectively. (B) Interaction between TRQ module methylation (eigengene value), LPS‐induced IL‐6 responses at birth, and prevalence of asthma during childhood. p for interaction was assessed using logistic regression. (C) The risk of childhood asthma is related to CBMC TRQ methylation status and IL‐6 responses. Odds ratios were calculated by logistic regression. For panels B and C, TRQ eigengene vector and z‐scored LPS‐stimulated IL‐6 production were each categorized into “High” and “Low” values, divided at zero.
FIGURE 4
FIGURE 4
Early‐life upper airway microbiota development is influenced by maternal IFN‐γ:IL‐13 and asthma‐associated DNA methylation in the TRQ module. (A) Upper airway microbiota development over the first three years of life relates to maternal IFN‐γ:IL‐13 status. Lines indicate the slopes from linear mixed effects models. Background represents directionality from panel B. (B) Variance in principal coordinate (PC) 3 is driven by Haemophilus (Spearman's ρ > 0.25), and Dolosigranulum and Moraxella (ρ < −0.25; dotted lines represent ρ of 0.5 or − 0.5, respectively). (C) Weighted UniFrac PC1 correlates with the TRQ eigengene at 24 months, but not 36 months of age (line represents linear model and standard error). (D) Weighted UniFrac PC1 is primarily driven by differences in Moraxella decreases (ρ < −0.25) and Staphylococcus and Corynebacterium (ρ > 0.25) abundances.

References

    1. Martinez FD, Vercelli D. Asthma. Lancet. 2013;382(9901):1360‐1372. doi:10.1016/s0140-6736(13)61536-6
    1. Lim RH, Kobzik L, Dahl M. Risk for asthma in offspring of asthmatic mothers versus fathers: a meta‐analysis. PLoS One. 2010;5(4):e10134. doi:10.1371/journal.pone.0010134
    1. Hylkema MN, Blacquiere MJ. Intrauterine effects of maternal smoking on sensitization, asthma, and chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2009;6(8):660‐662. doi:10.1513/pats.200907-065DP
    1. Neuman A, Hohmann C, Orsini N, et al. Maternal smoking in pregnancy and asthma in preschool children: a pooled analysis of eight birth cohorts. Am J Respir Crit Care Med. 2012;186(10):1037‐1043. doi:10.1164/rccm.201203-0501OC
    1. Chatzi L, Torrent M, Romieu I, et al. Mediterranean diet in pregnancy is protective for wheeze and atopy in childhood. Thorax. 2008;63(6):507‐513. doi:10.1136/thx.2007.081745
    1. Stensballe LG, Simonsen J, Jensen SM, Bonnelykke K, Bisgaard H. Use of antibiotics during pregnancy increases the risk of asthma in early childhood. Research Support, Non‐U.S. Gov't. J Pediatr. 2013;162(4):832‐838.e3. doi:10.1016/j.jpeds.2012.09.049
    1. Calvani M, Alessandri C, Sopo SM, et al. Infectious and uterus related complications during pregnancy and development of atopic and nonatopic asthma in children. Allergy. 2004;59(1):99‐106.
    1. Xu B, Pekkanen J, Jarvelin MR, Olsen P, Hartikainen AL. Maternal infections in pregnancy and the development of asthma among offspring. Int J Epidemiol. 1999;28(4):723‐727.
    1. Stokholm J, Thorsen J, Blaser MJ, et al. Delivery mode and gut microbial changes correlate with an increased risk of childhood asthma. Sci Transl Med. 2020;12(569):eaax9929. doi:10.1126/scitranslmed.aax9929
    1. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222‐227. doi:10.1038/nature11053
    1. Kindlund K, Thomsen SF, Stensballe LG, et al. Birth weight and risk of asthma in 3‐9‐year‐old twins: exploring the fetal origins hypothesis. Thorax. 2010;65(2):146‐149. doi:10.1136/thx.2009.117101
    1. Martino D, Prescott S. Epigenetics and prenatal influences on asthma and allergic airways disease. Research Support, Non‐U S Gov't Review. Chest. 2011;139(3):640‐647.
    1. Ober C, Vercelli D. Gene‐environment interactions in human disease: nuisance or opportunity? Trends Genet. 2011;27(3):107‐115. doi:10.1016/j.tig.2010.12.004
    1. Prescott SL. Early origins of allergic disease: a review of processes and influences during early immune development. Curr Opin Allergy Clin Immunol. 2003;3(2):125‐132. doi:10.1097/00130832-200304000-00006
    1. Su Y, Rothers J, Stern DA, Halonen M, Wright AL. Relation of early antibiotic use to childhood asthma: confounding by indication? Clin Exp Allergy. 2010;40(8):1222‐1229. doi:10.1111/j.1365-2222.2010.03539.x
    1. Rothers J, Stern DA, Lohman IC, et al. Maternal cytokine profiles during pregnancy predict asthma in children of mothers without asthma. Am J Respir Cell Mol Biol. 2018;59(5):592‐600. doi:10.1165/rcmb.2017-0410OC
    1. DeVries A, Wlasiuk G, Miller SJ, et al. Epigenome‐wide analysis links SMAD3 methylation at birth to asthma in children of asthmatic mothers. J Allergy Clin Immunol. 2017;140(2):534‐542. doi:10.1016/j.jaci.2016.10.041
    1. DeVries A, Vercelli D. The neonatal methylome as a gatekeeper in the trajectory to childhood asthma. Epigenomics. 2017;9(4):585‐593. doi:10.2217/epi-2016-0149
    1. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016;352(6285):539‐544. doi:10.1126/science.aad9378
    1. Martin R, Nauta AJ, Ben Amor K, Knippels LM, Knol J, Garssen J. Early life: gut microbiota and immune development in infancy. Benef Microbes. 2010;1(4):367‐382. doi:10.3920/bm2010.0027
    1. Jain N. The early life education of the immune system: Moms, microbes and (missed) opportunities. Gut Microbes. 2020;12(1):1824564. doi:10.1080/19490976.2020.1824564
    1. Arrieta MC, Arevalo A, Stiemsma L, et al. Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. J Allergy Clin Immunol. 2018;142(2):424‐434.e10. doi:10.1016/j.jaci.2017.08.041
    1. Arrieta MC, Stiemsma LT, Dimitriu PA, et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med. 2015;7(307):307ra152. doi:10.1126/scitranslmed.aab2271
    1. Fujimura KE, Sitarik AR, Havstad S, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22(10):1187‐1191. doi:10.1038/nm.4176
    1. Durack J, Kimes NE, Lin DL, et al. Delayed gut microbiota development in high‐risk for asthma infants is temporarily modifiable by Lactobacillus supplementation. Nat Commun. 2018;9(1):707. doi:10.1038/s41467-018-03157-4
    1. Teo SM, Mok D, Pham K, et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe. 2015;17(5):704‐715. doi:10.1016/j.chom.2015.03.008
    1. Teo SM, Tang HHF, Mok D, et al. Airway microbiota dynamics uncover a critical window for interplay of pathogenic bacteria and allergy in childhood respiratory disease. Cell Host Microbe. 2018;24(3):341‐352.e5. doi:10.1016/j.chom.2018.08.005
    1. Moran S, Arribas C, Esteller M. Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics. 2016;8(3):389‐399. doi:10.2217/epi.15.114
    1. Pidsley R, Zotenko E, Peters TJ, et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole‐genome DNA methylation profiling. Genome Biol. 2016;17(1):208. doi:10.1186/s13059-016-1066-1
    1. Aryee MJ, Jaffe AE, Corrada‐Bravo H, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363‐1369. doi:10.1093/bioinformatics/btu049
    1. Maksimovic J, Gordon L, Oshlack A. SWAN: Subset‐quantile within array normalization for illumina infinium HumanMethylation450 BeadChips. Genome Biol. 2012;13(6):R44. doi:10.1186/gb-2012-13-6-r44
    1. Bakulski KM, Feinberg JI, Andrews SV, et al. DNA methylation of cord blood cell types: Applications for mixed cell birth studies. Epigenetics. 2016;11(5):1‐9. doi:10.1080/15592294.2016.1161875
    1. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118‐127. doi:10.1093/biostatistics/kxj037
    1. McKennan C, Nicolae D. Accounting for unobserved covariates with varying degrees of estimability in high‐dimensional biological data. Biometrika. 2019;106(4):823‐840. doi:10.1093/biomet/asz037
    1. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. doi:10.1186/1471-2105-9-559
    1. Morin A, McKennan CG, Pedersen CT, et al. Epigenetic landscape links upper airway microbiota in infancy with allergic rhinitis at 6 years of age. J Allergy Clin Immunol. 2020;146(6):1358‐1366. doi:10.1016/j.jaci.2020.07.005
    1. Nicodemus‐Johnson J, Myers RA, Sakabe NJ, et al. DNA methylation in lung cells is associated with asthma endotypes and genetic risk. JCI Insight. 2016;1(20):e90151. doi:10.1172/jci.insight.90151
    1. Nicodemus‐Johnson J, Naughton KA, Sudi J, et al. Genome‐Wide Methylation Study Identifies an IL‐13‐induced Epigenetic Signature in Asthmatic Airways. Am J Respir Crit Care Med. 2016;193(4):376‐385. doi:10.1164/rccm.201506-1243OC
    1. Tang WB, Ling GH, Sun L, Liu FY. Smad anchor for receptor activation (SARA) in TGF‐beta signaling. Front Biosci (Elite Ed). 2010;2:857‐860. doi:10.2741/e147
    1. Reed SG. TGF‐beta in infections and infectious diseases. Microbes Infect. 1999;1(15):1313‐1325. doi:10.1016/s1286-4579(99)00252-x
    1. Rand JH, Wu X‐X, Lin EY, Griffel A, Gialanella P, McKitrick JC. Annexin A5 binds to lipopolysaccharide and reduces its endotoxin activity. mBio. 2012;3(2):e00292‐11. doi:10.1128/mBio.00292-11
    1. Sokol CL, Luster AD. The chemokine system in innate immunity. Cold Spring Harb Perspect Biol. 2015;7(5):a016303. doi:10.1101/cshperspect.a016303
    1. Cirovic B, de Bree LCJ, Groh L, et al. BCG vaccination in humans elicits trained immunity via the hematopoietic progenitor compartment. Cell Host Microbe. 2020;28(2):322‐334.e5. doi:10.1016/j.chom.2020.05.014
    1. Fong ON, Chan KY, Leung KT, et al. Expression profile of cord blood neutrophils and dysregulation of HSPA1A and OLR1 upon challenge by bacterial peptidoglycan. J Leukoc Biol. 2014;95(1):169‐178. doi:10.1189/jlb.0413219
    1. Jesus Iglesias M, Reilly S‐J, Emanuelsson O, et al. Combined chromatin and expression analysis reveals specific regulatory mechanisms within cytokine genes in the macrophage early immune response. PLoS One. 2012;7(2):e32306. doi:10.1371/journal.pone.0032306
    1. Kariuki SN, Blischak JD, Nakagome S, Witonsky DB, Di Rienzo A. Patterns of transcriptional response to 1,25‐dihydroxyvitamin D3 and bacterial lipopolysaccharide in primary human monocytes. G3 (Bethesda). 2016;6(5):1345‐1355. doi:10.1534/g3.116.028712
    1. Luan L, Patil NK, Guo Y, et al. Comparative transcriptome profiles of human blood in response to the toll‐like receptor 4 ligands lipopolysaccharide and monophosphoryl lipid A. Sci Rep. 2017;7(1):40050. doi:10.1038/srep40050
    1. Novakovic B, Habibi E, Wang SY, et al. β‐glucan reverses the epigenetic state of LPS‐induced immunological tolerance. Cell. 2016;167(5):1354‐1368.e14. doi:10.1016/j.cell.2016.09.034
    1. Saeed S, Quintin J, Kerstens HHD, et al. Epigenetic programming of monocyte‐to‐macrophage differentiation and trained innate immunity. Science (New York, NY). 2014;345(6204):1251086. doi:10.1126/science.1251086
    1. Netea MG, Domínguez‐Andrés J, Barreiro LB, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol. 2020;20(6):375‐388. doi:10.1038/s41577-020-0285-6
    1. Durack J, Huang YJ, Nariya S, et al. Bacterial biogeography of adult airways in atopic asthma. Microbiome. 2018;6(1):104. doi:10.1186/s40168-018-0487-3
    1. McCauley K, Durack J, Valladares R, et al. Distinct nasal airway bacterial microbiotas differentially relate to exacerbation in pediatric patients with asthma. J Allergy Clin Immunol. 2019;144(5):1187‐1197. doi:10.1016/j.jaci.2019.05.035
    1. Tang HHF, Lang A, Teo SM, et al. Developmental patterns in the nasopharyngeal microbiome during infancy are associated with asthma risk. J Allergy Clin Immunol. 2021;147(5):1683‐1691. doi:10.1016/j.jaci.2020.10.009
    1. Conrad LA, Cabana MD, Rastogi D. Defining pediatric asthma: phenotypes to endotypes and beyond. Pediatr Res. 2021;90(1):45‐51. doi:10.1038/s41390-020-01231-6
    1. Netea MG, Joosten LAB, Latz E, et al. Trained immunity: a program of innate immune memory in health and disease. Science (New York, NY). 2016;352(6284):aaf1098. doi:10.1126/science.aaf1098
    1. Fanucchi S, Dominguez‐Andres J, Joosten LAB, Netea MG, Mhlanga MM. The Intersection of Epigenetics and Metabolism in Trained Immunity. Immunity. 2021;54(1):32‐43. doi:10.1016/j.immuni.2020.10.011
    1. Das J, Verma D, Gustafsson M, Lerm M. Identification of DNA methylation patterns predisposing for an efficient response to BCG vaccination in healthy BCG‐naive subjects. Epigenetics. 2019;14(6):589‐601. doi:10.1080/15592294.2019.1603963
    1. Verma D, Parasa VR, Raffetseder J, et al. Anti‐mycobacterial activity correlates with altered DNA methylation pattern in immune cells from BCG‐vaccinated subjects. Sci Rep. 2017;7(1):12305. doi:10.1038/s41598-017-12110-2
    1. Apostol AC, Jensen KDC, Beaudin AE. Training the fetal immune system through maternal inflammation‐A layered hygiene hypothesis. Front Immunol. 2020;11:123. doi:10.3389/fimmu.2020.00123
    1. Katzmarski N, Domínguez‐Andrés J, Cirovic B, et al. Transmission of trained immunity and heterologous resistance to infections across generations. Nat Immunol. 2021;22(11):1382‐1390. doi:10.1038/s41590-021-01052-7
    1. Mawa PA, Webb EL, Filali‐Mouhim A, et al. Maternal BCG scar is associated with increased infant proinflammatory immune responses. Vaccine. 2017;35(2):273‐282. doi:10.1016/j.vaccine.2016.11.079
    1. Halkias J, Rackaityte E, Hillman SL, et al. CD161 contributes to prenatal immune suppression of IFNgamma‐producing PLZF+ T cells. J Clin Invest. 2019;129(9):3562‐3577. doi:10.1172/JCI125957
    1. Rackaityte E, Halkias J, Fukui EM, et al. Viable bacterial colonization is highly limited in the human intestine in utero. Nat Med. 2020;26(4):599‐607. doi:10.1038/s41591-020-0761-3
    1. Thorburn AN, McKenzie CI, Shen S, et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun. 2015;6:7320. doi:10.1038/ncomms8320
    1. Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20(2):159‐166. doi:10.1038/nm.3444
    1. Kimura I, Miyamoto J, Ohue‐Kitano R, et al. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice. Science. 2020;367(6481):eaaw. doi:10.1126/science.aaw8429
    1. van Dijk SJ, Zhou J, Peters TJ, et al. Effect of prenatal DHA supplementation on the infant epigenome: results from a randomized controlled trial. Clin Epigenetics. 2016;8:114. doi:10.1186/s13148-016-0281-7
    1. Ege MJ, Bieli C, Frei R, et al. Prenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in school‐age children. J Allergy Clin Immunol. 2006;117(4):817‐823. doi:10.1016/j.jaci.2005.12.1307
    1. Pfefferle PI, Buchele G, Blumer N, et al. Cord blood cytokines are modulated by maternal farming activities and consumption of farm dairy products during pregnancy: the PASTURE Study. J Allergy Clin Immunol. 2010;125(1):108‐115.e1‐3. doi:10.1016/j.jaci.2009.09.019
    1. Ober C, Sperling AI, von Mutius E, Vercelli D. Immune development and environment: lessons from Amish and Hutterite children. Curr Opin Immunol. 2017;48:51‐60. doi:10.1016/j.coi.2017.08.003
    1. von Mutius E, Smits HH. Primary prevention of asthma: from risk and protective factors to targeted strategies for prevention. Lancet. 2020;396(10254):854‐866. doi:10.1016/S0140-6736(20)31861-4
    1. Holt PG, Strickland DH, Custovic A. Targeting maternal immune function during pregnancy for asthma prevention in offspring: Harnessing the “farm effect”? J Allergy Clin Immunol. 2020;146(2):270‐272. doi:10.1016/j.jaci.2020.04.008
    1. Lynch SV, Vercelli D. Microbiota, epigenetics, and trained immunity. convergent drivers and mediators of the asthma trajectory from pregnancy to childhood. Am J Respir Crit Care Med. 2021;203(7):802‐808. doi:10.1164/rccm.202010-3779PP
    1. Zhou Y, Jackson D, Bacharier LB, et al. The upper‐airway microbiota and loss of asthma control among asthmatic children. Nat Commun. 2019;10(1):5714. doi:10.1038/s41467-019-13698-x
    1. Morey P, Cano V, Martí‐Lliteras P, et al. Evidence for a non‐replicative intracellular stage of nontypable Haemophilus influenzae in epithelial cells. Microbiology (Reading). 2011;157(Pt 1):234‐250. doi:10.1099/mic.0.040451-0
    1. Craig JE, Nobbs A, High NJ. The extracytoplasmic sigma factor, final sigma(E), is required for intracellular survival of nontypeable Haemophilus influenzae in J774 macrophages. Infect Immun. 2002;70(2):708‐715. doi:10.1128/iai.70.2.708-715.2002
    1. Slevogt H, Seybold J, Tiwari KN, et al. Moraxella catarrhalis is internalized in respiratory epithelial cells by a trigger‐like mechanism and initiates a TLR2‐ and partly NOD1‐dependent inflammatory immune response. Cell Microbiol. 2007;9(3):694‐707. doi:10.1111/j.1462-5822.2006.00821.x
    1. Spaniol V, Heiniger N, Troller R, Aebi C. Outer membrane protein UspA1 and lipooligosaccharide are involved in invasion of human epithelial cells by Moraxella catarrhalis . Microbes Infect. 2008;10(1):3‐11. doi:10.1016/j.micinf.2007.09.014
    1. de Vries SP, Bootsma HJ, Hays JP, Hermans PW. Molecular aspects of Moraxella catarrhalis pathogenesis. Microbiol Mol Biol Rev. 2009;73(3):389‐406. doi:10.1128/mmbr.00007-09

Source: PubMed

3
Prenumerera