Caffeine Supplementation Improves Anaerobic Performance and Neuromuscular Efficiency and Fatigue in Olympic-Level Boxers

Alejandro F San Juan, Álvaro López-Samanes, Pablo Jodra, Pedro L Valenzuela, Javier Rueda, Pablo Veiga-Herreros, Alberto Pérez-López, Raúl Domínguez, Alejandro F San Juan, Álvaro López-Samanes, Pablo Jodra, Pedro L Valenzuela, Javier Rueda, Pablo Veiga-Herreros, Alberto Pérez-López, Raúl Domínguez

Abstract

Background: this study examined the effects of caffeine supplementation on anaerobic performance, neuromuscular efficiency and upper and lower extremities fatigue in Olympic-level boxers.

Methods: Eight male athletes, members of the Spanish National Olympic Team, were enrolled in the study. In a randomized double-blind, placebo-controlled, counterbalanced, crossover design, the athletes completed 2 test sessions after the intake of caffeine (6 mg·kg-1) or placebo. Sessions involved initial measures of lactate, handgrip and countermovement jump (CMJ) performance, followed by a 30-seconds Wingate test, and then final measures of the previous variables. During the sessions, electromiography (EMG) data were recorded on the gluteus maximus, biceps femoris, vastus lateralis, gastrocnemius lateral head and tibialis anterior.

Results: caffeine enhanced peak power (6.27%, p < 0.01; Effect Size (ES) = 1.26), mean power (5.21%; p < 0.01; ES = 1.29) and reduced the time needed to reach peak power (-9.91%, p < 0.01; ES = 0.58) in the Wingate test, improved jump height in the CMJ (+2.4 cm, p < 0.01), and improved neuromuscular efficiency at peak power in the vastus lateralis (ES = 1.01) and gluteus maximus (ES = 0.89), and mean power in the vastus lateralis (ES = 0.95) and tibialis anterior (ES = 0.83).

Conclusions: in these Olympic-level boxers, caffeine supplementation improved anaerobic performance without affecting EMG activity and fatigue levels in the lower limbs. Further benefits observed were enhanced neuromuscular efficiency in some muscles and improved reaction speed.

Keywords: CMJ; Wingate; anaerobic; caffeine; efficiency; electromyography; ergogenic aids; exercise; nutrition; sport supplement.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Experimental design. CMJ = countermovement jump test.
Figure 2
Figure 2
Blood lactate concentrations pre-post Wingate. * p < 0.05, significant differences compared to pre-Wingate values (PRE).

References

    1. Maughan R.J., Burke L.M., Dvorák J., Larson-Meyer D.E., Peeling P., Phillips S.M., Rawson E.S., Walsh N.P., Garthe I., Geyer H., et al. IOC Consensus Statement: Dietary Supplements and the High-Performance Athlete. Int. J. Sport Nutr. Exerc. Metab. 2018;28:104–125. doi: 10.1123/ijsnem.2018-0020.
    1. Peeling P., Binnie M.J., Goods P.S., Sim M., Burke L.M. Evidence-Based Supplements for the Enhancement of Athletic Performance. Int. J. Sport Nutr. Exerc. Metab. 2018;28:178–187. doi: 10.1123/ijsnem.2017-0343.
    1. Australian Institute of Sport ABCD Classification System. [(accessed on 9 March 2018)]; Available online: .
    1. Graham T. Caffeine and exercise: Metabolism, endurance and performance. Sports Med. 2001;31:785–807. doi: 10.2165/00007256-200131110-00002.
    1. Einother S.J.L., Giesbrecht T. Caffeine as an attention enhancer: Reviewing existing assumptions. Psychopharmacology. 2013;225:251–274. doi: 10.1007/s00213-012-2917-4.
    1. McLellan T.M., Caldwell J.A., Lieberman H.R. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci. Biobehav. Rev. 2016;71:294–312. doi: 10.1016/j.neubiorev.2016.09.001.
    1. Williams J.H. Caffeine, neuromuscular function and high-intensity exercise performance. J. Sports Med. Phys. Fit. 1991;31:481–489.
    1. Magkos F., Kavouras S.A. Caffeine Use in Sports, Pharmacokinetics in Man, and Cellular Mechanisms of Action. Crit. Rev. Food Sci. Nutr. 2005;45:535–562. doi: 10.1080/1040-830491379245.
    1. Cornish R.S., Bolam K.A., Skiner T.L. Effect of Caffeine on Exercise Capacity and Function in Prostate Cancer Survivors. Med. Sci. Sports Exerc. 2015;47:468–475. doi: 10.1249/MSS.0000000000000429.
    1. Dean S., Braakhuis A., Paton C. The effects of ECG on fat oxidation and endurance performance in male cyclists. Int. J. Sport Nutr. Exerc. Metab. 2009;19:624–644. doi: 10.1123/ijsnem.19.6.624.
    1. Spriet L.L. Exercise and Sport Performance with Low Doses of Caffeine. Sports Med. 2014;44:175–184. doi: 10.1007/s40279-014-0257-8.
    1. Grgic J. Caffeine ingestion enhances Wingate performance: A meta-analysis. Eur. J. Sport Sci. 2018;18:219–225. doi: 10.1080/17461391.2017.1394371.
    1. Grgic J., Trexler E.T., Lazinica B., Pedisic Z. Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2018;15:11. doi: 10.1186/s12970-018-0216-0.
    1. Mata-Ordoñez F., Sanchez-Oliver A., Domínguez R. Importancia de la nutrición en las estrategias de pérdida de pérdida de peso en deportes de combate. J. Sport Health Res. 2018;10:1–12.
    1. Campos F.A., Bertuzzi R., Dourado A.C., Santos V.G.F., Franchini E. Energy demands in taekwondo athletes during combat simulation. Eur. J. Appl. Physiol. 2012;112:1221–1228. doi: 10.1007/s00421-011-2071-4.
    1. Bridge C.A., Santos J.F.D.S., Chaabene H., Pieter W., Franchini E. Physical and Physiological Profiles of Taekwondo Athletes. Sports Med. 2014;44:713–733. doi: 10.1007/s40279-014-0159-9.
    1. Franchini E., Artioli G.G., Brito C.J. Judo combat: Time-motion analysis and physiology. Int. J. Perform. Anal. Sport. 2013;13:624–641. doi: 10.1080/24748668.2013.11868676.
    1. García-Pallarés J., López-Gullón J.M., Muriel X., Diaz A., Izquierdo M. Physical fitness factors to predict male Olympic wrestling performance. Eur. J. Appl. Physiol. 2011;111:1747–1758. doi: 10.1007/s00421-010-1809-8.
    1. Ratamess N. Strength and Conditioning for Grappling Sports. Strength Cond. J. 2011;33:18–24. doi: 10.1519/SSC.0b013e31823732c5.
    1. Aedma M., Timpmann S., Ööpik V. Effect of Caffeine on Upper-Body Anaerobic Performance in Wrestlers in Simulated Competition-Day Conditions. Int. J. Sport Nutr. Exerc. Metab. 2013;23:601–609. doi: 10.1123/ijsnem.23.6.601.
    1. Drust B., Waterhouse J., Atkinson G., Edwards B., Reilly T. Circadian Rhythms in Sports Performance—An Update. Chrono-Int. 2005;22:21–44. doi: 10.1081/CBI-200041039.
    1. Lozano Estevan M.C., Martínez R.C. In: Manual de Tecnología Farmacéutica. Lozano M.C., Córdoba D., Córdoba M., editors. Elsevier; Barcelona, Spain: 2012. pp. 343–353. Chapter 5.
    1. Harland B.F. Caffeine and nutrition. Nutrition. 2000;16:522–526. doi: 10.1016/S0899-9007(00)00369-5.
    1. Bar-Or O. The Wingate anaerobic test. An update on methodology, reliability and validity. Sports Med. 1987;4:381–394. doi: 10.2165/00007256-198704060-00001.
    1. SENIAM project (Surface ElectroMyoGraphy for the Non-Invasive Assessment of Muscles) [(accessed on 1 March 2018)]; Available online:
    1. Moritani T., Muro M. Motor unit activity and surface electromyogram power spectrum during increasing force of contraction. Eur. J. Appl. Physiol. Occup. Physiol. 1987;56:260–265. doi: 10.1007/BF00690890.
    1. Lucia A., San Juan A.F., Montilla M., CaNete S., Santalla A., Earnest C., Pérez M. In professional road cyclists, low pedaling cadences are less efficient. Med. Sci. Sports Exerc. 2004;36:1048–1054. doi: 10.1249/01.MSS.0000128249.10305.8A.
    1. Hug F., Dorel S. Electromyographic analysis of pedaling: A review. J. Electromyogr. Kinesiol. 2009;19:182–198. doi: 10.1016/j.jelekin.2007.10.010.
    1. Gorostiaga E.M., Asiain X., Izquierdo M., Postigo A., Aguado R., Alonso J.M., Ibáñez J. Vertical Jump Performance and Blood Ammonia and Lactate Levels During Typical Training Sessions in Elite 400-m Runners. J. Strength Cond. Res. 2010;24:1138–1149. doi: 10.1519/JSC.0b013e3181cf769f.
    1. Sánchez-Medina L., González-Badillo J.J. Velocity Loss as an indicator of neuromuscular fatigue during resistance training. Med. Sci. Sports Exerc. 2011;43:1725–1734. doi: 10.1249/MSS.0b013e318213f880.
    1. López-Samanes Á., Moreno-Pérez D., Maté-Muñoz J.L., Domínguez R., Pallarés J.G., Mora-Rodriguez R., Ortega J.F. Circadian rhythm effect on physical tennis performance in trained male players. J. Sports Sci. 2017;35:2121–2128. doi: 10.1080/02640414.2016.1258481.
    1. Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013;4:863. doi: 10.3389/fpsyg.2013.00863.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Routledge, Lawrence Erlbaum Associates Publisher; New York, NY, USA: 1988.
    1. Ferguson C.J. An effect size primer: A guide for clinicians and researchers. Prof. Psychol. Res. Pract. 2009;40:532–538. doi: 10.1037/a0015808.
    1. Grgic J., Grgic I., Pickering C., Schoenfeld B.J., Bishop D.J., Pedisic Z. Wake up and smell the coffee: Caffeine supplementation and exercise performance—An umbrella review of 21 published meta-analyses. Br. J. Sports Med. 2019 doi: 10.3389/fpsyg.2013.00863. bjsports-2018.
    1. López-González L.M., Sánchez-Oliver A.J., Mata F., Jodra P., Antonio J., Domínguez R. Acute caffeine supplementation in combat sports: A systematic review. J. Int. Soc. Sports Nutr. 2018;15:60. doi: 10.1186/s12970-018-0267-2.
    1. Paton C.D., Hopkins W.G. Variation in performance of elite cyclists from race to race. Eur. J. Sport Sci. 2006;6:25–31. doi: 10.1080/17461390500422796.
    1. Domínguez R., Maté-Muñoz J.L., Cuenca E., García-Fernández P., Mata-Ordoñez F., Lozano-Estevan M.C., Veiga-Herreros P., Da Silva S.F., Garnacho-Castaño M.V. Effects of beetroot juice supplementation on intermittent high-intensity exercise efforts. J. Int. Soc. Sports Nutr. 2018;15:2. doi: 10.1186/s12970-017-0204-9.
    1. Gaitanos G.C., Williams C., Boobis L.H., Brooks S. Human muscle metabolism during intermittent maximal exercise. J. Appl. Physiol. 1993;75:712–719. doi: 10.1152/jappl.1993.75.2.712.
    1. Parolin M.L., Chesley A., Matsos M.P., Spriet L.L., Jones N.L., Heigenhauser G.J.F. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am. J. Physiol. Metab. 1999;277:E890–E990. doi: 10.1152/ajpendo.1999.277.5.E890.
    1. Del Coso J., Salinero J.J., González-Millán C., Abian-Vicen J., Pérez-González B. Dose response effects of a caffeine-containing energy drink on muscle performance: A repeated measures design. J. Int. Soc. Sports Nutr. 2012;9:21. doi: 10.1186/1550-2783-9-21.
    1. Faina I.E. Energy expenditure, aerodynamics and medical problems in cycling: An update. Sports Med. 1992;14:43–63.
    1. Simmonds M.J., Minahan C.L., Sabapathy S. Caffeine improves supramaximal cycling but not the rate of anaerobic energy release. Eur. J. Appl. Physiol. 2010;109:287–295. doi: 10.1007/s00421-009-1351-8.
    1. Coswig V.S., Gentil P., Irigon F., Del Vecchio F.B. Caffeine ingestion changes time-motion and technical-tactical aspects in simulated boxing matches: A randomized double-blind PLA-controlled crossover study. Eur. J. Sport Sci. 2018;18:975–983. doi: 10.1080/17461391.2018.1465599.
    1. Greer F., Morales J., Coles M. Wingate performance and surface EMG frequency variables are not affected by caffeine ingestion. Appl. Physiol. Nutr. Metab. 2006;31:597–603. doi: 10.1139/h06-030.
    1. Crowe M.J., Leicht A.S., Spinks W.L. Physiological and cognitive responses to caffeine during repeated, high-intensity exercise. Int. J. Sport Nutr. Exerc. Metab. 2006;16:528–544. doi: 10.1123/ijsnem.16.5.528.
    1. Keisler B.D., Armsey T.D. Caffeine as an ergogenic aid. Curr. Sports Med. Rep. 2006;5:215–219. doi: 10.1097/01.CSMR.0000306510.57644.a7.
    1. Woolf K., Bidwell W.K., Carlson A.G. The effect of caffeine as an ergogenic aid in anaerobic exercise. Int. J. Sport Nutr. Exerc. Metab. 2008;18:412–429. doi: 10.1123/ijsnem.18.4.412.
    1. Lamina S., Musa D.I. Efecto ergogénico de diversas dosis de cafeína en café sobre la potencia aeróbica máxima de jóvenes africanos. Afr. Health Sci. 2009;10:270–274.
    1. MacIntosh B.R., Neptune R.R., Horton J.F. Cadence, power, and muscle activation in cycle ergometry. Med. Sci. Sports Exerc. 2000;32:1281–1287. doi: 10.1097/00005768-200007000-00015.
    1. Cortez L., Mackay K., Contreras E., Peñailillo L. Efecto agudo de la investigación de cafeína sobre el tiempo de reacción y la actividad electromiográfica de la patada circular Dollyo Chagi en taekwondistas. Rev. Int. Cienc. Del Deport. 2017;13:52–62. doi: 10.5232/ricyde2017.04704.
    1. Santos V.G.F., Santos V.R.F., Felippe L.J.C., Almeida J.W., Bertuzzi R., Kiss M.A.P.D.M., Lima-Silva A.E. Caffeine Reduces Reaction Time and Improves Performance in Simulated-Contest of Taekwondo. Nutrients. 2014;6:637–649. doi: 10.3390/nu6020637.
    1. Souissi M., Abedelmalek S., Chtourou H., Boussita A., Hakim A., Sahnoun Z. Effects of time-of-day and caffeine ingestion on mood states, simple reaction time, and short-term maximal performance in elite judoists. Boil. Rhythm. Res. 2013;44:897–907. doi: 10.1080/09291016.2013.780700.
    1. Kalmar J.M. The Influence of Caffeine on Voluntary Muscle Activation. Med. Sci. Sports Exerc. 2005;37:2113–2119. doi: 10.1249/01.mss.0000178219.18086.9e.
    1. Bishop D. Dietary supplements and team-sport performance. Sports Med. 2010;40:995–1017. doi: 10.2165/11536870-000000000-00000.
    1. Mohr M., Bangsbo J., Nielsen J.J. Caffeine intake improves intense intermittent exercise performance and reduces muscle interstitial potassium accumulation. J. Appl. Physiol. 2011;111:1372–1379. doi: 10.1152/japplphysiol.01028.2010.
    1. Glaister M., Muniz-Pumares D., Patterson S.D., Foley P., McInnes G. Caffeine supplementation and peak anaerobic power output. Eur. J. Sport Sci. 2015;15:400–406. doi: 10.1080/17461391.2014.962619.
    1. Lopes-Silva J.P., Felippe L.J.C., Silva-Cavalcante M.D., Bertuzzi R., Lima-Silva A.E. Caffeine Ingestion after Rapid Weight Loss in Judo Athletes Reduces Perceived Effort and Increases Plasma Lactate Concentration without Improving Performance. Nutrients. 2014;6:2931–2945. doi: 10.3390/nu6072931.
    1. Lopes-Silva J.P., Santos J.F.D.S., Branco B.H.M., Abad C.C.C., De Oliveira L.F., LoTurco I., Franchini E. Caffeine Ingestion Increases Estimated Glycolytic Metabolism during Taekwondo Combat Simulation but Does Not Improve Performance or Parasympathetic Reactivation. PLoS ONE. 2015;10:e0142078. doi: 10.1371/journal.pone.0142078.
    1. Diaz-Lara F.J., Del Coso J., García J.M., Portillo L.J., Areces F., Abian-Vicen J. Caffeine improves muscular performance in elite Brazilian Jiu-jitsu athletes. Eur. J. Sport Sci. 2016;16:1–8. doi: 10.1080/17461391.2016.1143036.
    1. Esbjörnsson-Liljedahl M., Sundberg C.J., Norman B., Jansson E. Metabolic response in type I and type II muscle fibers during a 30-s cycle sprint in men and women. J. Appl. Physiol. 1999;87:1326–1332. doi: 10.1152/jappl.1999.87.4.1326.
    1. Domínguez R., Garnacho-Castaño M.V., Cuenca E., García-Fernández P., Muñoz-González A., de Jesús F., Lozano-Estevan M.D.C., Fernandes da Silva S., Veiga-Herreros P., Maté-Muñoz J.L. Effects of beetroot juice supplementation on a 30-s high-intensity inertial cycle ergometer test. Nutrients. 2017;9:1360. doi: 10.3390/nu9121360.
    1. Cuenca E., Jodra P., Pérez-López A., González-Rodríguez L.G., Fernandes da Silva S., Veiga-Herreros P., Domínguez R. Effects of Beetroot Juice Supplementation on Performance and Fatigue in a 30-s All-Out Sprint Exercise: A Randomized, Double-Blind Cross-Over Study. Nutrients. 2018;10:1222. doi: 10.3390/nu10091222.
    1. Mora-Rodriguez R., Pallares J.G., López-Samanes Á., Ortega J.F., Fernandez-Elias V.E. Caffeine Ingestion Reverses the Circadian Rhythm Effects on Neuromuscular Performance in Highly Resistance-Trained Men. PLoS ONE. 2012;7:e33807. doi: 10.1371/journal.pone.0033807.
    1. Del Coso J., Pérez-López A., Abian-Vicen L., Salinero J.J., Lara B., Valadés D. Enhancing physical performance in male volleyball players with a caffeine-containing energy drink. Int. J. Sports Physiol. Perform. 2014;9:1013–1018. doi: 10.1123/ijspp.2013-0448.
    1. Astley C., Souza D.B., Polito M.D. Acute Specific Effects of Caffeine-containing Energy Drink on Different Physical Performances in Resistance-trained Men. Int. J. Exerc. Sci. 2018;11:260–268.
    1. Warren G.L., Park N.D., Marexca R.D., McKibans K.I., Millard-Stafford M.L. Effect of caffeine ingestion on muscular strength and endurance: A meta-analysis. Med. Sci. Sports Exerc. 2010;42:1375–1387. doi: 10.1249/MSS.0b013e3181cabbd8.
    1. Negaresh R., Del Coso J., Mokhtarzade M., Lima-Silva A.E., Baker J.S., Willems M.E.T., Talebvand S., Khodadoost M., Farhani F. Effects of different dosages of caffeine administration on wrestling performance during a simulated tournament. Eur. J. Sport Sci. 2019;19:499–507. doi: 10.1080/17461391.2018.1534990.

Source: PubMed

3
Prenumerera