Mastocytosis and Mast Cell Activation Disorders: Clearing the Air

Clayton Webster Jackson, Cristina Marie Pratt, Chase Preston Rupprecht, Debendra Pattanaik, Guha Krishnaswamy, Clayton Webster Jackson, Cristina Marie Pratt, Chase Preston Rupprecht, Debendra Pattanaik, Guha Krishnaswamy

Abstract

Mast cells are derived from hematopoietic stem cell precursors and are essential to the genesis and manifestations of the allergic response. Activation of these cells by allergens leads to degranulation and elaboration of inflammatory mediators, responsible for regulating the acute dramatic inflammatory response seen. Mast cells have also been incriminated in such diverse disorders as malignancy, arthritis, coronary artery disease, and osteoporosis. There has been a recent explosion in our understanding of the mast cell and the associated clinical conditions that affect this cell type. Some mast cell disorders are associated with specific genetic mutations (such as the D816V gain-of-function mutation) with resultant clonal disease. Such disorders include cutaneous mastocytosis, systemic mastocytosis (SM), its variants (indolent/ISM, smoldering/SSM, aggressive systemic mastocytosis/ASM) and clonal (or monoclonal) mast cell activation disorders or syndromes (CMCAS/MMAS). Besides clonal mast cell activations disorders/CMCAS (also referred to as monoclonal mast cell activation syndromes/MMAS), mast cell activation can also occur secondary to allergic, inflammatory, or paraneoplastic disease. Some disorders are idiopathic as their molecular pathogenesis and evolution are unclear. A genetic disorder, referred to as hereditary alpha-tryptasemia (HαT) has also been described recently. This condition has been shown to be associated with increased severity of allergic and anaphylactic reactions and may interact variably with primary and secondary mast cell disease, resulting in complex combined disorders. The role of this review is to clarify the classification of mast cell disorders, point to molecular aspects of mast cell signaling, elucidate underlying genetic defects, and provide approaches to targeted therapies that may benefit such patients.

Keywords: allergic reaction; anaphylactic shock; angioedema; histamine; hypotension; mast cell; mastocytosis; tryptase.

Conflict of interest statement

None of the authors report a conflict of interest relevant to the publication of this manuscript.

Figures

Figure 1
Figure 1
Activation of MCs occurs when allergen specific IgE is bound by the allergen and interacts with the high affinity receptor for immunoglobulin (IgE), referred to as FcεRI, carried on their surfaces in the presence of mutations and other molecular-genetic defects. This culminates in the release of preformed and newly synthesized mediators from mast cells and basophils that sets off a sequence of inflammatory events manifesting clinically as anaphylaxis and leading to shock. MC-derived cytokines, histamine, leukotrienes, prostanoids, and PAF regulate vascular instability and barrier dysfunction of endothelial cells and contribute to edema formation. Hypovolemia, angioedema, hypotension, and cardiorespiratory failure ensue. Inset shows examples of urticaria and angioedema.
Figure 2
Figure 2
(A) Stem cell factor (SCF) is a hematopoietic growth factor that binds to its receptor, KIT, a transmembrane tyrosine kinase-linked receptor on mast cells. Signaling downstream involves activation of key kinases (Phospholipase Cγ (PLCγ), protein kinase C (PKC), and linked signaling proteins: Janus kinase 2 (a non-receptor tyrosine kinase, JAK2), signal transducer and activator of transcription 1 (STAT1), and other signal transduction mediators). These lead to action of mitogen-activated protein kinases (MAP kinase). Somatic mutations in c-KIT that code for the KIT receptor have been linked to the development of systemic mastocytosis, a clonal hematological disorder. The most common of these mutations is the D816V mutation that leads to enhanced survival and proliferation of mast cells, a feature of clonal mast cell disorders including mastocytosis and mast cell activation disorders. (B) KIT is the cellular counterpart of the v-KIT oncogene derived from a feline leukemia virus. It is encoded in the W or c-KIT locus on human chromosome 4q11-q12. KIT is composed of an immunoglobulin-like extracellular domain (ILECD), that is involved in ligand binding (LBR), an anchoring transmembrane domain (TMD), a juxta-membranous domain (JMD), and intracellular domains (ICD). KID = kinase insert domain. Binding of stem cell factor to KIT results in receptor dimerization and activation of protein kinase activity.
Figure 3
Figure 3
Representative clinicopathological features of mastocytosis. Cutaneous mastocytosis is subcategorized as maculopapular cutaneous mastocytosis (MPCM), also known as urticaria pigmentosa or diffuse cutaneous mastocytosis (DCM), and mastocytoma of the skin. MPCM is the most common presentation of CM with hyperpigmented nodules, papules, or macules distributed randomly, and appearing most commonly on the trunk. The figure shows representative atypical mast cells, mast cell aggregates in the bone marrow (CD117 and tryptase staining), and CD25+ atypical mast cells on flow cytometry of bone marrow aspirate.
Figure 4
Figure 4
Criteria for diagnosis of mast cell activating syndrome (please refer to text for description). A = clinical criterion, B = laboratory criterion, C = treatment criterion. All three criteria need to be satisfied to confirm a diagnosis of mast cell activation syndrome (MCAS). The presence of clonality (KIT D816V mutation or surface expression of CD2 or CD25 clonal markers) would suggest a diagnosis of clonal (primary) mast cell activating syndrome also referred to as the monoclonal mast cell activation syndrome (MMAS). * Tryptase (total tryptase) is usually used as a surrogate marker for mast cell activation. PG = prostaglandin, LT-leukotriene, MCA = mast cell activation. bST = basal serum tryptase.

References

    1. Ghably J., Saleh H., Vyas H., Peiris E., Misra N., Krishnaswamy G. Paul Ehrlich’s mastzellen: A historical perspective of relevant developments in mast cell biology. Methods Mol. Biol. 2015;1220:3–10.
    1. Krishnaswamy G., Kelley J., Johnson D., Chi D.S. The human mast cell: Functions in physiology and disease. Front. Biosci. 2001;6:D1109–D1127. doi: 10.2741/krishnas.
    1. Krishnaswamy G., Ajitawi O., Chi D.S. The human mast cell: An overview. Methods Mol. Biol. 2006;315:13–34.
    1. Elieh Ali K.D., WÃhrl S., Bielory L. Mast Cell Biology at Molecular Level: A Comprehensive Review. Clin. Rev. Allergy Immunol. 2020;58:342–365. doi: 10.1007/s12016-019-08769-2.
    1. Nguyen S.M.T., Rupprecht C.P., Haque A., Pattanaik D., Yusin J., Krishnaswamy G. Mechanisms Governing Anaphylaxis: Inflammatory Cells, Mediators, Endothelial Gap Junctions and Beyond. Int. J. Mol. Sci. 2021;22:7785. doi: 10.3390/ijms22157785.
    1. Bonadonna P., Bonifacio M., Lombardo C., Zanotti R. Hymenoptera Allergy and Mast Cell Activation Syndromes. Curr. Allergy Asthma Rep. 2016;16:5. doi: 10.1007/s11882-015-0582-5.
    1. Bonadonna P., Bonifacio M., Zanotti R. Mast Cell Disorders in Drug Hypersensitivity. Curr. Pharm. Des. 2016;22:6862–6869. doi: 10.2174/1381612822666160928121857.
    1. Butterfield J.H., Ravi A., Pongdee T. Mast Cell Mediators of Significance in Clinical Practice in Mastocytosis. Immunol. Allergy Clin. N. Am. 2018;38:397–410. doi: 10.1016/j.iac.2018.04.011.
    1. Krystel-Whittemore M., Dileepan K.N., Wood J.G. Mast Cell: A Multi-Functional Master Cell. Front. Immunol. 2015;6:620. doi: 10.3389/fimmu.2015.00620.
    1. Gehlen M., Schmidt N., Pfeifer M. Osteoporosis Caused by Systemic Mastocytosis: Prevalence in a Cohort of 8392 Patients with Osteoporosis. Calcif. Tissue Int. 2021 doi: 10.1007/s00223-021-00887-4.
    1. da Silva E.Z., Jamur M.C., Oliver C. Mast cell function: A new vision of an old cell. J. Histochem. Cytochem. 2014;62:698–738. doi: 10.1369/0022155414545334.
    1. Prussin C., Metcalfe D.D. 5. IgE, mast cells, basophils, and eosinophils. J. Allergy Clin. Immunol. 2006;117:S450–S456. doi: 10.1016/j.jaci.2005.11.016.
    1. Matito A., Escribese M.M., Longo N. Clinical Approach to Mast Cell Activation Syndromes: A Practical Overview. J. Investig. Allergol Clin. Immunol. 2021 doi: 10.18176/jiaci.0675.
    1. Sabato V., Michel M., Blank U., Ebo D.G., Vitte J. Mast cell activation syndrome: Is anaphylaxis part of the phenotype? A systematic review. Curr. Opin. Allergy Clin. Immunol. 2021;21:426–434. doi: 10.1097/ACI.0000000000000768.
    1. Niedoszytko M., Valent P., Nedoszytko B. Mastocytosis, MCAS, and Related Disorders-Diagnosis, Classification, and Therapy. Int. J. Mol. Sci. 2021;22:5024. doi: 10.3390/ijms22095024.
    1. Valent P., Akin C. Doctor, I Think I Am Suffering from MCAS: Differential Diagnosis and Separating Facts from Fiction. J. Allergy Clin. Immunol. Pract. 2019;7:1109–1114. doi: 10.1016/j.jaip.2018.11.045.
    1. Yu Y., Blokhuis B.R., Garssen J., Redegeld F.A. Non-IgE mediated mast cell activation. Eur. J. Pharmacol. 2016;778:33–43. doi: 10.1016/j.ejphar.2015.07.017.
    1. Mukai K., Tsai M., Saito H., Galli S.J. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol. Rev. 2018;282:121–150. doi: 10.1111/imr.12634.
    1. Leone A., Criscuolo M., Gullà C., Petrosino A., Carlo B.N., Colosimo C. Systemic mastocytosis revisited with an emphasis on skeletal manifestations. Radiol. Med. 2021;126:585–598. doi: 10.1007/s11547-020-01306-8.
    1. Gangireddy M., Ciofoaia G.A. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2019. Systemic Mastocytosis.
    1. Afrin L.B., Ackerley M.B., Bluestein L.S., Brewer J.H., Brook J.B., Buchanan A.D., Cuni J.R., Davey W.P., Dempsey T.T., Dorff S.R., et al. Diagnosis of mast cell activation syndrome: A global “consensus-2”. Diagnosis. 2021;8:137–152. doi: 10.1515/dx-2020-0005.
    1. Weinstock L.B., Pace L.A., Rezaie A., Afrin L.B., Molderings G.J. Mast Cell Activation Syndrome: A Primer for the Gastroenterologist. Dig. Dis. Sci. 2021;66:965–982. doi: 10.1007/s10620-020-06264-9.
    1. Schaffer J.V. Pediatric Mastocytosis: Recognition and Management. Am. J. Clin. Dermatol. 2021;22:205–220. doi: 10.1007/s40257-020-00581-5.
    1. Sandru F., Petca R.-C., Costescu M., Dumitrașcu M., Popa A., Petca A., Miulescu R.-G. Cutaneous Mastocytosis in Childhood-Update from the Literature. J. Clin. Med. 2021;10:1474. doi: 10.3390/jcm10071474.
    1. Khokhar D., Akin C. Mast Cell Activation: When the Whole Is Greater than the Sum of Its Parts. Med. Clin. N. Am. 2020;104:177–187. doi: 10.1016/j.mcna.2019.09.002.
    1. Valent P., Akin C., Bonadonna P., Hartmann K., Brockow K., Niedoszytko M., Nedoszytko B., Siebenhaar F., Sperr W.R., Oude Elberink J.N.G., et al. Proposed Diagnostic Algorithm for Patients with Suspected Mast Cell Activation Syndrome. J. Allergy Clin. Immunol. Pract. 2019;7:1125–1133. doi: 10.1016/j.jaip.2019.01.006.
    1. Akin C. Mast cell activation syndromes. J. Allergy Clin. Immunol. 2017;140:349–355. doi: 10.1016/j.jaci.2017.06.007.
    1. Weiler C.R. Mast Cell Activation Syndrome: Tools for Diagnosis and Differential Diagnosis. J. Allergy Clin. Immunol. Pract. 2020;8:498–506. doi: 10.1016/j.jaip.2019.08.022.
    1. Valent P., Akin C., Metcalfe D.D. Mastocytosis: 2016 updated WHO classification and novel emerging treatment concepts. Blood. 2017;129:1420–1427. doi: 10.1182/blood-2016-09-731893.
    1. Li Z. New Insights into the Pathogenesis of Systemic Mastocytosis. Int. J. Mol. Sci. 2021;22:4900. doi: 10.3390/ijms22094900.
    1. Pardanani A. Systemic mastocytosis in adults: 2021 Update on diagnosis, risk stratification and management. Am. J. Hematol. 2021;96:508–525. doi: 10.1002/ajh.26118.
    1. Konnikova L., Robinson T.O., Owings A.H., Shirley J.F., Davis E., Tang Y., Wall S., Li J., Hasan M.H., Gharaibeh R.Z., et al. Small intestinal immunopathology and GI-associated antibody formation in hereditary alpha-tryptasemia. J. Allergy Clin. Immunol. 2021;148:813–821.e7. doi: 10.1016/j.jaci.2021.04.004.
    1. Dahlin J.S., Maurer M., Metcalfe D.D., Pejler G., Sagi-Eisenberg R., Nilsson G. The ingenious mast cell: Contemporary insights into mast cell behavior and function. Allergy. 2021 doi: 10.1111/all.14881.
    1. Krishnaswamy G., Lakshman T., Miller A., Srikanth S., Hall K., Huang S.-K., Suttles J., Smith J., Stout R. Multifunctional cytokine expression by human mast cells: Regulation by T cell membrane contact and glucocorticoids. J. Interferon Cytokine Res. 1997;17:167–176. doi: 10.1089/jir.1997.17.167.
    1. Shakoory B., Fitzgerald S.M., Lee S.A., Chi D.S., Krishnaswamy G. The role of human mast cell-derived cytokines in eosinophil biology. J. Interferon Cytokine Res. 2004;24:271–281. doi: 10.1089/107999004323065057.
    1. Brazzelli V., Grassi S., Merante S., Grasso V., Ciccocioppo R., Bossi G., Borroni G. Narrow-band UVB phototherapy and psoralen-ultraviolet A photochemotherapy in the treatment of cutaneous mastocytosis: A study in 20 patients. Photodermatol. Photoimmunol. Photomed. 2016;32:238–246. doi: 10.1111/phpp.12248.
    1. Jensen R.T. Gastrointestinal abnormalities and involvement in systemic mastocytosis. Hematol. Oncol. Clin. N. Am. 2000;14:579–623. doi: 10.1016/S0889-8588(05)70298-7.
    1. Nedoszytko B., Arock M., Lyons J., Bachelot G., Schwartz L., Reiter A., Jawhar M., Schwaab J., Lange M., Greiner G., et al. Clinical Impact of Inherited and Acquired Genetic Variants in Mastocytosis. Int. J. Mol. Sci. 2021;22:411. doi: 10.3390/ijms22010411.
    1. Valent P., Bonadonna P., Hartmann K., Broesby-Olsen S., Brockow K., Butterfield J.H., Triggiani M., Lyons J.J., Elberink J.N.O., Arock M., et al. Why the 20% + 2 Tryptase Formula Is a Diagnostic Gold Standard for Severe Systemic Mast Cell Activation and Mast Cell Activation Syndrome. Int. Arch. Allergy Immunol. 2019;180:44–51. doi: 10.1159/000501079.
    1. Gulen T., Akin C., Bonadonna P., Siebenhaar F., Broesby-Olsen S., Brockow K., Niedoszytko M., Nedoszytko B., Oude Elberink H.N.G., Butterfield J.H., et al. Selecting the Right Criteria and Proper Classification to Diagnose Mast Cell Activation Syndromes: A Critical Review. J. Allergy Clin. Immunol. Pract. 2021 doi: 10.1016/j.jaip.2021.06.011.
    1. Atiakshin D., Buchwalow I., Horny P., Tiemann M. Protease profile of normal and neoplastic mast cells in the human bone marrow with special emphasis on systemic mastocytosis. Histochem. Cell Biol. 2021;155:561–580. doi: 10.1007/s00418-021-01964-3.
    1. Dougherty R.H., Sidhu S.S., Raman K., Solon M., Solberg O.D., Caughey G.H., Woodruff P.G., Fahy J.V. Accumulation of intraepithelial mast cells with a unique protease phenotype in T(H)2-high asthma. J. Allergy Clin. Immunol. 2010;125:1046–1053. doi: 10.1016/j.jaci.2010.03.003.
    1. Dvorak A.M. Ultrastructural studies of human basophils and mast cells. J. Histochem. Cytochem. 2005;53:1043–1070. doi: 10.1369/jhc.5R6647.2005.
    1. Kinet J.P. High Affinity IgE Receptor: From Physiology to Pathology. Annu. Rev. Immunol. 1999;17:931–972. doi: 10.1146/annurev.immunol.17.1.931.
    1. Ando T., Kitaura J. Tuning IgE: IgE-Associating Molecules and Their Effects on IgE-Dependent Mast Cell Reactions. Cells. 2021;10:1697. doi: 10.3390/cells10071697.
    1. Paivandy A., Pejler G. Novel Strategies to Target Mast Cells in Disease. J. Innate Immun. 2021;13:131–147. doi: 10.1159/000513582.
    1. Moon T.C., Befus A.D., Kulka M. Mast cell mediators: Their differential release and the secretory pathways involved. Front. Immunol. 2014;5:569. doi: 10.3389/fimmu.2014.00569.
    1. Atiakshin D., Buchwalow I., Samoilova V., Tiemann M. Tryptase as a polyfunctional component of mast cells. Histochem. Cell Biol. 2018;149:461–477. doi: 10.1007/s00418-018-1659-8.
    1. Atiakshin D., Buchwalow I., Tiemann M. Mast cell chymase: Morphofunctional characteristics. Histochem. Cell Biol. 2019;152:253–269. doi: 10.1007/s00418-019-01803-6.
    1. Atiakshin D., Samoilova V., Buchwalow I., Boecker W., Tiemann M. Characterization of mast cell populations using different methods for their identification. Histochem. Cell Biol. 2017;147:683–694. doi: 10.1007/s00418-017-1547-7.
    1. Sprinzl B., Greiner G., Uyanik G., Arock M., Haferlach T., Sperr W., Valent P., Hoermann G. Genetic Regulation of Tryptase Production and Clinical Impact: Hereditary Alpha Tryptasemia, Mastocytosis and Beyond. Int. J. Mol. Sci. 2021;22:2458. doi: 10.3390/ijms22052458.
    1. Valent P., Akin C., Nedoszytko B., Bonadonna P., Hartmann K., Niedoszytko M., Brockow K., Siebenhaar F., Triggiani M., Arock M., et al. Diagnosis, Classification and Management of Mast Cell Activation Syndromes (MCAS) in the Era of Personalized Medicine. Int. J. Mol. Sci. 2020;21:9030. doi: 10.3390/ijms21239030.
    1. Martinez-Anton A., Gras D., Bourdin A., Dubreuil P., Chanez P. KIT as a therapeutic target for non-oncological diseases. Pharmacol. Ther. 2019;197:11–37. doi: 10.1016/j.pharmthera.2018.12.008.
    1. Esteban-Villarrubia J., Soto-Castillo J.J., Pozas J., Román-Gil M.S., Orejana-Martín I., Torres-Jiménez J., Carrato A., Alonso-Gordoa T., Molina-Cerrillo J. Tyrosine Kinase Receptors in Oncology. Int. J. Mol. Sci. 2020;21:8529. doi: 10.3390/ijms21228529.
    1. Valent P., Akin C., Hartmann K., Nilsson G., Reiter A., Hermine O., Sotlar K., Sperr W.R., Escribano L., George T., et al. Advances in the Classification and Treatment of Mastocytosis: Current Status and Outlook toward the Future. Cancer Res. 2017;77:1261–1270. doi: 10.1158/0008-5472.CAN-16-2234.
    1. Horny H.P., Parwaresch M.R., Lennert K. Bone marrow findings in systemic mastocytosis. Hum. Pathol. 1985;16:808–814. doi: 10.1016/S0046-8177(85)80252-5.
    1. Hartmann K., Escribano L., Grattan C., Brockow K., Carter M.C., Alvarez-Twose I., Matito A., Broesby-Olsen S., Siebenhaar F., Lange M., et al. Cutaneous manifestations in patients with mastocytosis: Consensus report of the European Competence Network on Mastocytosis; the American Academy of Allergy, Asthma & Immunology; and the European Academy of Allergology and Clinical Immunology. J. Allergy Clin. Immunol. 2016;137:35–45.
    1. Méni C., Bruneau J., Georgin-Lavialle S., Peufeilhoux L.L.S.D., Damaj G., Hadj-Rabia S., Fraitag S., Dubreuil P., Hermine O., Bodemer C. Paediatric mastocytosis: A systematic review of 1747 cases. Br. J. Dermatol. 2015;172:642–651. doi: 10.1111/bjd.13567.
    1. Ben-Amitai D., Metzker A., Cohen H.A. Pediatric cutaneous mastocytosis: A review of 180 patients. Isr. Med. Assoc. J. 2005;7:320–322.
    1. Kiszewski A.E., Durán-Mckinster C., Orozco-Covarrubias L., Gutiérrez-Castrellón P., Ruiz-Maldonado R. Cutaneous mastocytosis in children: A clinical analysis of 71 cases. J. Eur. Acad. Dermatol. Venereol. 2004;18:285–290. doi: 10.1111/j.1468-3083.2004.00830.x.
    1. Scherber R.M., Borate U. How we diagnose and treat systemic mastocytosis in adults. Br. J. Haematol. 2018;180:11–23. doi: 10.1111/bjh.14967.
    1. Arber D.A., Orazi A., Hasserjian R., Thiele J., Borowitz M.J., Le Beau M.M., Bloomfield C.D., Cazzola M., Vardiman J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–2405. doi: 10.1182/blood-2016-03-643544.
    1. Lim K.-H., Tefferi A., Lasho T.L., Finke C., Patnaik M., Butterfield J.H., McClure R.F., Li C.-Y., Pardanani A. Systemic mastocytosis in 342 consecutive adults: Survival studies and prognostic factors. Blood. 2009;113:5727–5736. doi: 10.1182/blood-2009-02-205237.
    1. Rossini M., Zanotti R., Viapiana O., Tripi G., Orsolini G., Idolazzi L., Bonadonna P., Schena D., Escribano L., Adami S., et al. Bone involvement and osteoporosis in mastocytosis. Immunol. Allergy Clin. N. Am. 2014;34:383–396. doi: 10.1016/j.iac.2014.01.011.
    1. Georgin-Lavialle S., Gaillard R., Moura D., Hermine O. Mastocytosis in adulthood and neuropsychiatric disorders. Transl. Res. 2016;174:77–85. doi: 10.1016/j.trsl.2016.03.013.
    1. Brockow K., Jofer C., Behrendt H., Ring J. Anaphylaxis in patients with mastocytosis: A study on history, clinical features and risk factors in 120 patients. Allergy. 2008;63:226–232. doi: 10.1111/j.1398-9995.2007.01569.x.
    1. Pardanani A. How I treat patients with indolent and smoldering mastocytosis (rare conditions but difficult to manage) Blood. 2013;121:3085–3094. doi: 10.1182/blood-2013-01-453183.
    1. Reiter A., George T.I., Gotlib J. New developments in diagnosis, prognostication, and treatment of advanced systemic mastocytosis. Blood. 2020;135:1365–1376. doi: 10.1182/blood.2019000932.
    1. Nagata H., Worobec A.S., Oh C.K., Chowdhury B.A., Tannenbaum S., Suzuki Y., Metcalfe D.D. Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc. Natl. Acad. Sci. USA. 1995;92:10560–10564. doi: 10.1073/pnas.92.23.10560.
    1. Arock M., Sotlar K., Akin C., Broesby-Olsen S., Hoermann G., Escribano L., Kluin-Nelemans H.C., Hermine O., Du-breuil P., Sperr W.R., et al. KIT mutation analysis in mast cell neoplasms: Recommendations of the European Competence Network on Mastocytosis. Leukemia. 2015;29:1223–1232. doi: 10.1038/leu.2015.24.
    1. Schwaab J., Schnittger S., Sotlar K., Walz C., Fabarius A., Pfirrmann M., Kohlmann A., Grossmann V., Meggendorfer M., Horny H.-P., et al. Comprehensive mutational profiling in advanced systemic mastocytosis. Blood. 2013;122:2460–2466. doi: 10.1182/blood-2013-04-496448.
    1. Pardanani A., Lasho T., Elala Y., Wassie E., Finke C., Reichard K.K., Chen D., Hanson C.A., Ketterling R.P., Tefferi A. Next-generation sequencing in systemic mastocytosis: Derivation of a mutation-augmented clinical prognostic model for survival. Am. J. Hematol. 2016;91:888–893. doi: 10.1002/ajh.24426.
    1. Jawhar M., Schwaab J., Schnittger S., Meggendorfer M., Pfirrmann M., Sotlar K., Horny H.-P., Metzgeroth G., Kluger S., Naumann N., et al. Additional mutations in SRSF2, ASXL1 and/or RUNX1 identify a high-risk group of patients with KIT D816V(+) advanced systemic mastocytosis. Leukemia. 2016;30:136–143. doi: 10.1038/leu.2015.284.
    1. Naumann N., Jawhar M., Schwaab J., Kluger S., Lübke J., Metzgeroth G., Popp H.D., Khaled N., Horny H.-P., Sotlar K., et al. Incidence and prognostic impact of cytogenetic aberrations in patients with systemic mastocytosis. Genes Chromosomes Cancer. 2018;57:252–259. doi: 10.1002/gcc.22526.
    1. Muñoz-González J.I., Jara-Acevedo M., Alvarez-Twose I., Merker J.D., Teodosio C., Hou Y., Henriques A., Roskin K.M., Sanchez-Muñoz L., Tsai A., et al. Impact of somatic and germline mutations on the outcome of systemic mastocytosis. Blood Adv. 2018;2:2814–2828. doi: 10.1182/bloodadvances.2018020628.
    1. Traina F., Visconte V., Jankowska A.M., Makishima H., O’Keefe C.L., Elson P., Han Y., Hsieh F.H., Sekeres M.A., Mali R.S., et al. Single nucleotide polymorphism array lesions, TET2, DNMT3A, ASXL1 and CBL mutations are present in systemic mastocytosis. PLoS ONE. 2012;7:e43090. doi: 10.1371/journal.pone.0043090.
    1. Jawhar M., Schwaab J., Naumann N., Horny H.-P., Sotlar K., Haferlach T., Metzgeroth G., Fabarius A., Valent P., Hofmann W.-K., et al. Response and progression on midostaurin in advanced systemic mastocytosis: KIT D816V and other molecular markers. Blood. 2017;130:137–145. doi: 10.1182/blood-2017-01-764423.
    1. Leguit R., Hebeda K., Kremer M., Van Der Walt J., Gianelli U., Tzankov A., Orazi A. The Spectrum of Aggressive Mastocytosis: A Workshop Report and Literature Review. Pathobiology. 2020;87:2–19. doi: 10.1159/000504099.
    1. Monnier J., Georgin-Lavialle S., Canioni D., Lhermitte L., Soussan M., Arock M., Bruneau J., Dubreuil P., Bodemer C., Chandesris M.-O., et al. Mast cell sarcoma: New cases and literature review. Oncotarget. 2016;7:66299–66309. doi: 10.18632/oncotarget.11812.
    1. Weiler C.R., Austen K.F., Akin C., Barkoff M.S., Bernstein J.A., Bonadonna P., Butterfield J.H., Carter M., Fox C.C., Maitland A., et al. AAAAI Mast Cell Disorders Committee Work Group Report: Mast cell activation syndrome (MCAS) diagnosis and management. J. Allergy Clin. Immunol. 2019;144:883–896. doi: 10.1016/j.jaci.2019.08.023.
    1. Giannetti A., Filice E., Caffarelli C., Ricci G., Pession A. Mast Cell Activation Disorders. Medicina. 2021;57:124. doi: 10.3390/medicina57020124.
    1. Krishnaswamy G. Critical Care Management of the Patient with Anaphylaxis: A Concise Definitive Review. Crit. Care Med. 2021;49:838–857. doi: 10.1097/CCM.0000000000004893.
    1. LoVerde D., Iweala O.I., Eginli A., Krishnaswamy G. Anaphylaxis. Chest. 2018;153:528–543. doi: 10.1016/j.chest.2017.07.033.
    1. Gotlib J., George T.I., Carter M.C., Austen K.F., Bochner B., Dwyer D.F., Lyons J.J., Hamilton M.J., Butterfield J., Bonadonna P., et al. Proceedings from the Inaugural American Initiative in Mast Cell Diseases (AIM) Investigator Conference. J. Allergy Clin. Immunol. 2021;147:2043–2052. doi: 10.1016/j.jaci.2021.03.008.
    1. Ravi A., Butterfield J., Weiler C.R. Mast cell activation syndrome: Improved identification by combined determinations of serum tryptase and 24-h urine 11β-prostaglandin2α. J. Allergy Clin. Immunol. Pract. 2014;2:775–778. doi: 10.1016/j.jaip.2014.06.011.
    1. Gulen T., Akin C. Idiopathic Anaphylaxis: A Perplexing Diagnostic Challenge for Allergists. Curr. Allergy Asthma Rep. 2021;21:11. doi: 10.1007/s11882-021-00988-y.
    1. Giannetti M.P., Akin C., Castells M. Idiopathic Anaphylaxis: A Form of Mast Cell Activation Syndrome. J. Allergy Clin. Immunol. Pract. 2020;8:1196–1201. doi: 10.1016/j.jaip.2019.10.048.
    1. Grammer L.C., Shaughnessy M.A., Harris K.E., Goolsby C.L. Lymphocyte subsets and activation markers in patients with acute episodes of idiopathic anaphylaxis. Ann. Allergy Asthma Immunol. 2000;85:368–371. doi: 10.1016/S1081-1206(10)62547-1.
    1. Ditto A.M., Harris K.E., Krasnick J., Miller M.A., Patterson R. Idiopathic anaphylaxis: A series of 335 cases. Ann. Allergy Asthma Immunol. 1996;77:285–291. doi: 10.1016/S1081-1206(10)63322-4.
    1. Vos B.J.P.R., van Anrooij B., van Doormaal J.J., Dubois A.E.J., Oude Elberink J.N.G. Fatal Anaphylaxis to Yellow Jacket Stings in Mastocytosis: Options for Identification and Treatment of At-Risk Patients. J. Allergy Clin. Immunol. Pract. 2017;5:1264–1271. doi: 10.1016/j.jaip.2017.03.019.
    1. Bonadonna P., Scaffidi L. Hymenoptera Anaphylaxis as a Clonal Mast Cell Disorder. Immunol. Allergy Clin. N. Am. 2018;38:455–468. doi: 10.1016/j.iac.2018.04.010.
    1. Frieri M. Mast Cell Activation Syndrome. Clin. Rev. Allergy Immunol. 2018;54:353–365. doi: 10.1007/s12016-015-8487-6.
    1. Bonadonna P., Perbellini O., Passalacqua G., Caruso B., Colarossi S., Dal Fior D., Castellani L., Bonetto C., Frattini F., Dama A., et al. Clonal mast cell disorders in patients with systemic reactions to Hymenoptera stings and increased serum tryptase levels. J. Allergy Clin. Immunol. 2009;123:680–686. doi: 10.1016/j.jaci.2008.11.018.
    1. Rueff F., Placzek M., Przybilla B. Mastocytosis and Hymenoptera venom allergy. Curr. Opin. Allergy Clin. Immunol. 2006;6:284–288. doi: 10.1097/01.all.0000235903.10548.63.
    1. Blank S., Grosch J., Ollert M., Bilo M.B. Precision Medicine in Hymenoptera Venom Allergy: Diagnostics, Biomarkers, and Therapy of Different Endotypes and Phenotypes. Front. Immunol. 2020;11:579409. doi: 10.3389/fimmu.2020.579409.
    1. Kosnik M., Korosec P. Importance of basophil activation testing in insect venom allergy. Allergy Asthma Clin. Immunol. 2009;5:11. doi: 10.1186/1710-1492-5-11.
    1. Zanotti R., Tanasi I., Bernardelli A., Orsolini G., Bonadonna P. Bone Marrow Mastocytosis: A Diagnostic Challenge. J. Clin. Med. 2021;10:1420. doi: 10.3390/jcm10071420.
    1. Reichard K.K., Chen D., Pardanani A., McClure R.F., Howard M.T., Kurtin P.J., Wood A.J., Ketterling R.P., King R.L., He R., et al. Morphologically occult systemic mastocytosis in bone marrow: Clinicopathologic features and an algorithmic approach to diagnosis. Am. J. Clin. Pathol. 2015;144:493–502. doi: 10.1309/AJCPSGQ71GJQQACL.
    1. Luskin K.T., White A.A., Lyons J.J. The Genetic Basis and Clinical Impact of Hereditary Alpha-Tryptasemia. J. Allergy Clin. Immunol. Pract. 2021;9:2235–2242. doi: 10.1016/j.jaip.2021.03.005.
    1. Wu R., Lyons J.J. Hereditary Alpha-Tryptasemia: A Commonly Inherited Modifier of Anaphylaxis. Curr. Allergy Asthma Rep. 2021;21:33. doi: 10.1007/s11882-021-01010-1.
    1. Guilarte M., Sala-Cunill A., Luengo O., Labrador-Horrillo M., Cardona V. The Mast Cell, Contact, and Coagulation System Connection in Anaphylaxis. Front. Immunol. 2017;8:846. doi: 10.3389/fimmu.2017.00846.
    1. Cunill A.S., Björkqvist J., Senter R., Guilarte M., Cardona V., Labrador-Horrillo M., Nickel K.F., Butler L., Luengo O., Kumar P., et al. Plasma contact system activation drives anaphylaxis in severe mast cell-mediated allergic reactions. J. Allergy Clin. Immunol. 2015;135:1031–1043. doi: 10.1016/j.jaci.2014.07.057.
    1. Elieh Ali K.D., Shafaghat F., Kovanen P.T., Meri S. Mast cells and complement system: Ancient interactions between components of innate immunity. Allergy. 2020;75:2818–2828. doi: 10.1111/all.14413.
    1. Giannetti M.P., Weller E., Bormans C., Novak P., Hamilton M.J., Castells M. Hereditary alpha-tryptasemia in 101 patients with mast cell activation-related symptomatology including anaphylaxis. Ann. Allergy Asthma Immunol. 2021;126:655–660. doi: 10.1016/j.anai.2021.01.016.
    1. Berry R., Hollingsworth P., Lucas M. Successful treatment of idiopathic mast cell activation syndrome with low-dose Omalizumab. Clin. Transl. Immunol. 2019;8:e01075. doi: 10.1002/cti2.1075.
    1. Cafarotti A., Fiocchi A., Arasi S. Biologics as treatment options for anaphylaxis. Curr. Opin. Allergy Clin. Immunol. 2021;21:455–464. doi: 10.1097/ACI.0000000000000779.
    1. Carter M.C., Robyn J.A., Bressler P.B., Walker J.C., Shapiro G.G., Metcalfe D.D. Omalizumab for the treatment of unprovoked anaphylaxis in patients with systemic mastocytosis. J. Allergy Clin. Immunol. 2007;119:1550–1551. doi: 10.1016/j.jaci.2007.03.032.
    1. Constantine G.M., Bressler P.B., Petroni D., Metcalfe D.D., Carter M.C. Twelve-year follow-up of omalizumab therapy for anaphylaxis in 2 patients with systemic mastocytosis. J. Allergy Clin. Immunol. Pract. 2019;7:1314–1316. doi: 10.1016/j.jaip.2018.07.041.
    1. Broesby-Olsen S., Vestergaard H., Mortz C.G., Jensen B., Havelund T., Hermann A.P., Siebenhaar F., Møller M.B., Kris-tensen T.K., Bindslev-Jensen C. Omalizumab prevents anaphylaxis and improves symptoms in systemic mastocytosis: Efficacy and safety observations. Allergy. 2018;73:230–238. doi: 10.1111/all.13237.
    1. Giannetti M., Silver J., Hufdhi R., Castells M. One-day ultrarush desensitization for Hymenoptera venom anaphylaxis in patients with and without mast cell disorders with adjuvant omalizumab. J. Allergy Clin. Immunol. Pract. 2020;8:1431–1435. doi: 10.1016/j.jaip.2019.10.022.
    1. Kaminsky L.W., Aukstuolis K., Petroni D.H., Al-Shaikhly T. Use of omalizumab for management of idiopathic anaphylaxis: A systematic review and retrospective case series. Ann. Allergy Asthma Immunol. 2021;127:481–487. doi: 10.1016/j.anai.2021.06.017.
    1. Lemal R., Fouquet G., Terriou L., Vaes M., Livideanu C.B., Frenzel L., Barete S., Canioni D., Lhermitte L., Rossignol J., et al. Omalizumab Therapy for Mast Cell-Mediator Symptoms in Patients with ISM, CM, MMAS, and MCAS. J. Allergy Clin. Immunol. Pract. 2019;7:2387–2395. doi: 10.1016/j.jaip.2019.03.039.
    1. Alvarez L.B.M., Barker R., Nelson C., DiMaggio T., Stone K.D., Milner J.D., Rosenthal J., Petroni D.H., Glover S.C., Lyons J.J. Clinical response to omalizumab in patients with hereditary α-tryptasemia. Ann. Allergy Asthma Immunol. 2020;124:99–100. doi: 10.1016/j.anai.2019.09.026.
    1. Carter M.C., Metcalfe D.D., Komarow H.D. Mastocytosis. Immunol. Allergy Clin. N. Am. 2014;34:181–196. doi: 10.1016/j.iac.2013.09.001.
    1. Castells M., Butterfield J. Mast Cell Activation Syndrome and Mastocytosis: Initial Treatment Options and Long-Term Management. J. Allergy Clin. Immunol. Pract. 2019;7:1097–1106. doi: 10.1016/j.jaip.2019.02.002.
    1. Butterfield J.H. Survey of aspirin administration in systemic mastocytosis. Prostaglandins Other Lipid Mediat. 2009;88:122–124. doi: 10.1016/j.prostaglandins.2009.01.001.
    1. Lyons J.J., Metcalfe D.D. Targeting Mast Cells with Biologics. Immunol. Allergy Clin. N. Am. 2020;40:667–685. doi: 10.1016/j.iac.2020.06.007.
    1. Bose P., Verstovsek S. Avapritinib for Systemic Mastocytosis. Expert Rev. Hematol. 2021;14:687–696. doi: 10.1080/17474086.2021.1959315.
    1. Lee H., Li T., Wisell J., Schowinsky J., Robinson W.A. Avapritinib for Cutaneous Mastocytosis. Acta Derm. Venereol. 2021;101:adv00362.
    1. Gilreath J.A., Tchertanov L., Deininger M.W. Novel approaches to treating advanced systemic mastocytosis. Clin. Pharmacol. 2019;11:77–92. doi: 10.2147/CPAA.S206615.
    1. Gotlib J., Kluin-Nelemans J.C., George T.I., Akin C., Sotlar K., Hermine O., Awan F.T., Hexner E., Mauro M.J., Sternberg D.W., et al. Efficacy and Safety of Midostaurin in Advanced Systemic Mastocytosis. N. Engl. J. Med. 2016;374:2530–2541. doi: 10.1056/NEJMoa1513098.
    1. Shomali W., Gotlib J. Response Criteria in Advanced Systemic Mastocytosis: Evolution in the Era of KIT Inhibitors. Int. J. Mol. Sci. 2021;22:2983. doi: 10.3390/ijms22062983.
    1. Piris-Villaespesa M., Alvarez-Twose I. Systemic Mastocytosis: Following the Tyrosine Kinase Inhibition Roadmap. Front. Pharmacol. 2020;11:443. doi: 10.3389/fphar.2020.00443.
    1. Hochhaus A., Baccarani M., Giles F.J., Le Coutre P.D., Müller M.C., Reiter A., Santanastasio H., Leung M., Novick S., Kantarjian H.M. Nilotinib in patients with systemic mastocytosis: Analysis of the phase 2, open-label, single-arm nilotinib registration study. J. Cancer Res. Clin. Oncol. 2015;141:2047–2060. doi: 10.1007/s00432-015-1988-0.
    1. Verstovsek S., Tefferi A., Cortes J., O’Brien S., Garcia-Manero G., Pardanani A., Akin C., Faderl S., Manshouri T., Thomas D., et al. Phase II study of dasatinib in Philadelphia chromosome-negative acute and chronic myeloid diseases, including systemic mastocytosis. Clin. Cancer Res. 2008;14:3906–3915. doi: 10.1158/1078-0432.CCR-08-0366.

Source: PubMed

3
Prenumerera