Associations between pathogens in the upper respiratory tract of young children: interplay between viruses and bacteria

Menno R van den Bergh, Giske Biesbroek, John W A Rossen, Wouter A A de Steenhuijsen Piters, Astrid A T M Bosch, Elske J M van Gils, Xinhui Wang, Chantal W B Boonacker, Reinier H Veenhoven, Jacob P Bruin, Debby Bogaert, Elisabeth A M Sanders, Menno R van den Bergh, Giske Biesbroek, John W A Rossen, Wouter A A de Steenhuijsen Piters, Astrid A T M Bosch, Elske J M van Gils, Xinhui Wang, Chantal W B Boonacker, Reinier H Veenhoven, Jacob P Bruin, Debby Bogaert, Elisabeth A M Sanders

Abstract

Background: High rates of potentially pathogenic bacteria and respiratory viruses can be detected in the upper respiratory tract of healthy children. Investigating presence of and associations between these pathogens in healthy individuals is still a rather unexplored field of research, but may have implications for interpreting findings during disease.

Methodology/principal findings: We selected 986 nasopharyngeal samples from 433 6- to 24-month-old healthy children that had participated in a randomized controlled trial. We determined the presence of 20 common respiratory viruses using real-time PCR. Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis and Staphylococcus aureus were identified by conventional culture methods. Information on risk factors was obtained by questionnaires. We performed multivariate logistic regression analyses followed by partial correlation analysis to identify the overall pattern of associations. S. pneumoniae colonization was positively associated with the presence of H. influenzae (adjusted odds ratio 1.60, 95% confidence interval 1.18-2.16), M. catarrhalis (1.78, 1.29-2.47), human rhinoviruses (1.63, 1.19-2.22) and enteroviruses (1.97, 1.26-3.10), and negatively associated with S. aureus presence (0.59, 0.35-0.98). H. influenzae was positively associated with human rhinoviruses (1.63, 1.22-2.18) and respiratory syncytial viruses (2.78, 1.06-7.28). M. catarrhalis colonization was positively associated with coronaviruses (1.99, 1.01-3.93) and adenoviruses (3.69, 1.29-10.56), and negatively with S. aureus carriage (0.42, 0.25-0.69). We observed a strong positive association between S. aureus and influenza viruses (4.87, 1.59-14.89). In addition, human rhinoviruses and enteroviruses were positively correlated (2.40, 1.66-3.47), as were enteroviruses and human bocavirus, WU polyomavirus, parainfluenza viruses, and human parechovirus. A negative association was observed between human rhinoviruses and coronaviruses.

Conclusions/significance: Our data revealed high viral and bacterial prevalence rates and distinct bacterial-bacterial, viral-bacterial and viral-viral associations in healthy children, hinting towards the complexity and potential dynamics of microbial communities in the upper respiratory tract. This warrants careful consideration when associating microbial presence with specific respiratory diseases.

Conflict of interest statement

Competing Interests: DB declares to have received consulting fees from Pfizer. EAMS declares to have received unrestricted research support from Pfizer and Baxter, consulting fees from Pfizer and GlaxoSmithKline, lecturing fees from Pfizer, and grant support for vaccine studies from Pfizer and GlaxoSmithKline. RHV declares to have received research support from GlaxoSmithKline and Pfizer for vaccine studies and consulting fees from GlaxoSmithKline. None of the fees or grants listed here were received for the research described in this paper. For all other authors no conflicts of interest were declared. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Graphical representation of interaction patterns.
Figure 1. Graphical representation of interaction patterns.
Visualization of the partial correlations between bacteria and viruses (A) and epidemiologic drivers (risk factors) of those interactions (B). The patterns depicted here result from partial correlation network analysis and are visualized by Cytoscape. Bacteria are shown in blue, respiratory viruses in orange and risk factors in grey boxes. The solid lines represent associations with a p-value less than 0.01, the dashed lines represent associations with a p-value between 0.01 and 0.05. Green lines indicate positively correlated variables; red lines indicate negative correlations. The thickness of the line indicates the magnitude of the correlation. Abbreviations: SP, S. pneumoniae; HI, H. influenzae; MC, M. catarrhalis; SA, S. aureus; HRV, human rhinovirus, EV, enterovirus; HBoV, human bocavirus; WUPyV, WU polyomavirus; HCoV, human coronavirus; PIV, parainfluenza virus; HAdV, human adenovirus; IV, influenza virus; HPeV, human parechovirus; RSV, respiratory syncytial virus; AB, antibiotic use within 2 months before sampling; ‘crowding’ was entered into the model as a variable combining the presence of siblings (yes/no) and day care attendance (yes/no); 0 = no siblings and no day care attendance, 1 = siblings present, but not attending day care, or vice versa, and 2 = siblings present and attending day care.

References

    1. Rivers TM (1937) Viruses and Koch’s postulates. J Bacteriol 33: 1–12.
    1. Huebner RJ (1957) Criteria for etiologic association of prevalent viruses with prevalent diseases; the virologist’s dilemma. Ann N Y Acad Sci 67: 430–438.
    1. Fredericks DN, Relman DA (1996) Sequence-based identification of microbial pathogens: a reconsideration of Koch’s postulates. Clin Microbiol Rev 9: 18–33.
    1. Brogden KA, Guthmiller JM, Taylor CE (2005) Human polymicrobial infections. Lancet 365: 253–255.
    1. Klugman KP, Madhi SA (2007) Pneumococcal vaccines and flu preparedness. Science 316: 49c–50c.
    1. Bogaert D, de Groot R, Hermans P (2004) Streptococcus pneumoniae colonization: the key to pneumococcal disease. Lancet Infect Dis 4: 144–154.
    1. Blaser MJ, Falkow S (2009) What are the consequences of the disappearing human microbiota? Nat Rev Microbiol 7: 887–894.
    1. Jacoby P, Watson K, Bowman J, Taylor A, Riley TV, et al. (2007) Modelling the co-occurrence of Streptococcus pneumoniae with other bacterial and viral pathogens in the upper respiratory tract. Vaccine 25: 2458–2464.
    1. Singleton RJ, Bulkow LR, Miernyk K, DeByle C, Pruitt L, et al. (2010) Viral respiratory infections in hospitalized and community control children in Alaska. J Med Virol 82: 1282–1290.
    1. Wiertsema SP, Chidlow GR, Kirkham L-AS, Corscadden KJ, Mowe EN, et al. (2011) High detection rates of nucleic acids of a wide range of respiratory viruses in the nasopharynx and the middle ear of children with a history of recurrent acute otitis media. J Med Virol 83: 2008–2017.
    1. van Gils EJM, Veenhoven RH, Hak E, Rodenburg GD, Bogaert D, et al. (2009) Effect of reduced-dose schedules with 7-valent pneumococcal conjugate vaccine on nasopharyngeal pneumococcal carriage in children: a randomized controlled trial. JAMA 302: 159–167.
    1. van Gils EJM, Hak E, Veenhoven RH, Rodenburg GD, Bogaert D, et al. (2011) Effect of seven-valent pneumococcal conjugate vaccine on Staphylococcus aureus colonization in a randomized controlled trial. PLoS One 6: e20229.
    1. van Gils EJ, Veenhoven RH, Rodenburg GD, Hak E, Sanders EA, et al. (2011) Effect of 7-valent pneumococcal conjugate vaccine on nasopharyngeal carriage with Haemophilus influenzae and Moraxella catarrhalis in a randomized controlled trial. Vaccine 29: 7595–7598.
    1. O’Brien KL, Nohynek H, World Health Organization Pneumococcal Vaccine Trials Carriage Working Group (2003) Report from a WHO Working Group: standard method for detecting upper respiratory carriage of Streptococcus pneumoniae . Pediatr Infect Dis J 22: e1–11.
    1. van de Pol AC, Wolfs TFW, Jansen NJG, Kimpen JLL, van Loon AM, et al. (2009) Human bocavirus and KI/WU polyomaviruses in pediatric intensive care patients. Emerging Infect Dis 15: 454–457.
    1. van de Pol AC, Wolfs TFW, Jansen NJG, van Loon AM, Rossen JWA (2006) Diagnostic value of real-time polymerase chain reaction to detect viruses in young children admitted to the paediatric intensive care unit with lower respiratory tract infection. Crit Care 10; R61.
    1. van de Pol AC, van Loon AM, Wolfs TFW, Jansen NJG, Nijhuis M, et al. (2007) Increased detection of respiratory syncytial virus, influenza viruses, parainfluenza viruses, and adenoviruses with real-time PCR in samples from patients with respiratory symptoms. J Clin Microbiol 45: 2260–2262.
    1. Donders ART, van der Heijden GJMG, Stijnen T, Moons KGM (2006) Review: A gentle introduction to imputation of missing values. J Clin Epidemiol 59: 1087–1091.
    1. Zeger SL, Liang KY, Albert PS (1988) Models for longitudinal data: a generalized estimating equation approach. Biometrics 44: 1049–1060.
    1. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, et al. (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2: 2366–2382.
    1. Fuhrman JA (2009) Microbial community structure and its functional implications. Nature 459: 193–199.
    1. Jansen RR, Wieringa J, Koekkoek SM, Visser CE, Pajkrt D, et al. (2011) Frequent detection of respiratory viruses without symptoms: toward defining clinically relevant cutoff values. J Clin Microbiol 49: 2631–2636.
    1. Koon K (2010) Co-detection of pandemic (H1N1) 2009 virus and other respiratory pathogens. Emerging Infect Dis 16: 1976–1978.
    1. Iverson AR, Boyd KL, McAuley JL, Plano LR, Hart ME, et al. (2011) Influenza virus primes mice for pneumonia from Staphylococcus aureus . J Infect Dis 203: 880–888.
    1. Bogaert D, van Belkum A, Sluijter M, Luijendijk A, de Groot R, et al. (2004) Colonisation by Streptococcus pneumoniae and Staphylococcus aureus in healthy children. Lancet 363: 1871–1872.
    1. Regev-Yochay G, Dagan R, Raz M, Carmeli Y, Shainberg B, et al. (2004) Association between carriage of Streptococcus pneumoniae and Staphylococcus aureus in children. JAMA 292: 716–720.
    1. Prokhorov AV (2001), “Partial correlation coefficient”. In: Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978–1556080104.
    1. Ishizuka S, Yamaya M, Suzuki T, Takahashi H, Ida S, et al. (2003) Effects of rhinovirus infection on the adherence of Streptococcus pneumoniae to cultured human airway epithelial cells. J Infect Dis 188: 1928–1939.
    1. Avadhanula V, Rodriguez CA, Devincenzo JP, Wang Y, Webby RJ, et al. (2006) Respiratory viruses augment the adhesion of bacterial pathogens to respiratory epithelium in a viral species- and cell type-dependent manner. J Virol 80: 1629–1636.
    1. Peltola V, Heikkinen T, Ruuskanen O, Jartti T, Hovi T, et al. (2011) Temporal association between rhinovirus circulation in the community and invasive pneumococcal disease in children. Pediatr Infect Dis J 30: 456–461.
    1. Jansen AGSC, Sanders EAM, van der Ende A, van Loon AM, Hoes AW, et al. (2008) Invasive pneumococcal and meningococcal disease: association with influenza virus and respiratory syncytial virus activity? Epidemiol Infect 136: 1448–1454.
    1. Selva L, Viana D, Regev-Yochay G, Trzcinski K, Corpa JM, et al. (2009) Killing niche competitors by remote-control bacteriophage induction. Proc Natl Acad Sci U S A 106: 1234–1238.
    1. Willing BP, Russell SL, Finlay BB (2011) Shifting the balance: antibiotic effects on host–microbiota mutualism. Nat Rev Microbiol 9: 233–243.
    1. Margolis E, Yates A, Levin BR (2010) The ecology of nasal colonization of Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus: the role of competition and interactions with host’s immune response. BMC Microbiol 10: 59.
    1. Pericone CD, Overweg K, Hermans PW, Weiser JN (2000) Inhibitory and bactericidal effects of hydrogen peroxide production by Streptococcus pneumoniae and other habitants of the upper respiratory tract. Infect Immun 68: 3990–3997.
    1. Madhi SA, Klugman KP (2004) The Vaccine Trialist Group (2004) A role for Streptococcus pneumoniae in virus-associated pneumonia. Nat Med 10: 811–813.
    1. Kane M, Case LK, Kopaskie K, Kozlova A, MacDearmid C, et al. (2011) Successful transmission of a retrovirus depends on the commensal microbiota. Science 334: 245–249.
    1. Kuss SK, Best GT, Etheredge CA, Pruijssers AJ, Frierson JM, et al. (2011) Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 334: 249–252.
    1. Bogaert D, Keijser B, Huse S, Rossen J, Veenhoven R, et al. (2011) Variability and diversity of nasopharyngeal microbiota in children: a metagenomic analysis. PLoS One 2011 6: e17035.
    1. Biesbroek G, Sanders EA, Roeselers G, Wang X, Caspers MP, et al. (2012) Deep sequencing analyses of low density microbial communities: working at the boundry of accurate microbiota detection. PLoS One 7: e32942.

Source: PubMed

3
Prenumerera