Caffeine and caffeine-containing pharmaceuticals as promising inhibitors for 3-chymotrypsin-like protease of SARS-CoV-2

Amin O Elzupir, Amin O Elzupir

Abstract

In December 2019, a new coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to the outbreak of a pulmonary disease called COVID-19, which killed thousands of people worldwide. Therefore, the necessity to find out the potential therapeutic pharmaceuticals is imperious. This study investigates the inhibitory effect of SARS-CoV-2 3-chymotrypsin-like protease (3CLpro) using caffeine and caffeine-containing pharmaceuticals (3CPs) based on molecular dynamics simulations and free energy calculations by means of molecular mechanics-Poisson-Boltzmann surface area (MMPBSA) and molecular mechanics-generalized-Born surface area (MMGBSA). Of these 3CPs, seven drugs approved by the US-Food and Drug Administration have shown a good binding affinity to the catalytic residues of 3CLpro of His41 and Cys145: caffeine, theophylline, dyphylline, pentoxifylline, linagliptin, bromotheophylline and istradefylline. Their binding affinity score ranged from -4.9 to -8.6 kcal/mol. The molecular dynamic simulation in an aqueous solution of docked complexes demonstrated that the 3CPs conformations bound to the active sites of 3CLpro during 200 ns molecular dynamics simulations. The free energy of binding also confirms the stability of the 3CPs-3CLpro complexes. To our knowledge, this in silico study shows for the first time very inexpensive drugs available in large quantities that can be potential inhibitors against 3CLpro. In particular, the repurposing of linagliptin, and caffeine are recommended for COVID-19 treatment after in vitro, in vivo and clinical trial validation.Communicated by Ramaswamy H. Sarma.

Keywords: 3-chymotrypsin-like protease; COVID-19; Coronavirus SARS-CoV-2; caffeine-containing pharmaceuticals; molecular dynamics.

Conflict of interest statement

The author declares that he has no conflict of interest.

Figures

Scheme 1.
Scheme 1.
Chemical structures of (a) pyridone and (b) 4-pyrimid-dione
Figure 1.
Figure 1.
Crystal structure of 3-chymotrypsin-like protease (3CLpro) of SARS-CoV-2 (PDB ID: 6Y2E) and ligands docked with 3CLpro and its contact sites with HIS41, CYS145 and GLU166. (a) Remdesivir; (b) linagliptin; (c) istradefylline; (d) dyphylline; (e) caffeine; (f) bromotheophylline; (g) pentoxifylline; (h) theophylline. Hydrocarbon skeleton cyan, nitrogen atoms are blue, oxygens red.
Figure 2.
Figure 2.
The RMSD values of the simulated complexes of 3CLpro and ligands throughout the 200 ns of production runs.
Figure 3.
Figure 3.
The RMSF values of the simulated complexes of 3CLpro and ligands throughout the 200 ns of production runs.
Figure 4.
Figure 4.
(a) Remdesivir, (b) linagliptin, (c) dyphylline, (d) caffeine, (e) istradefylline, (f) bromotheophylline, (g) pentoxifylline, and (h) theophylline at 1 ns, 133 ns, and 200 ns throughout the production runs.

References

    1. Ahmad, S., Abbasi, H. W., Shahid, S., Gul, S., & Abbasi, S. W. (in press). Molecular docking, simulation and MM-PBSA studies of Nigella sativa compounds: A computational quest to identify potential natural antiviral for COVID-19 treatment. Journal of Biomolecular Structure and Dynamics.
    1. Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R., & Hilgenfeld, R. (2003). Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs. Science (New York, N.Y.), 300(5626), 1763–1767.
    1. Aranda, J. V., Gorman, W., Bergsteinsson, H., & Gunn, T. (1977). Efficacy of caffeine in treatment of apnea in the low-birth-weight infant. The Journal of Pediatrics, 90(3), 467–472.
    1. Beck, B. R., Shin, B., Choi, Y., Park, S., & Kang, K. (2020). Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Computational and Structural Biotechnology Journal, 18, 784–790.
    1. Case, D. A., Darden, T. A., Cheatham, T. E., III, Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., Merz, K. M., Pearlman, D. A., Crowley, M., & Walker, R. C. (2006). AMBER 9 (p. 45). University of California.
    1. Chang, D., Lin, M., Wei, L., Xie, L., Zhu, G., Cruz, C. S. D., & Sharma, L. (2020). Epidemiologic and clinical characteristics of novel coronavirus infections involving 13 patients outside Wuhan, China. JAMA, 323(11), 1092–1093.
    1. Chang, Y.-C., Tung, Y.-A., Lee, K.-H., Chen, T.-F., Hsiao, Y.-C., Chang, H.-C., Hsieh, T.-T., Su, C.-H., Wang, S.-S., & Yu, J.-Y. (2020). Potential therapeutic agents for COVID-19 based on the analysis of protease and RNA polymerase docking.
    1. Cooper, A., Mikhail, A., Lethbridge, M. W., Kemeny, D. M., & Macdougall, I. C. (2004). Pentoxifylline improves hemoglobin levels in patients with erythropoietin-resistant anemia in renal failure. Journal of the American Society of Nephrology, 15(7), 1877–1882.
    1. Da Silva, A. W. S., & Vranken, W. F. (2012). ACPYPE – AnteChamber PYthon Parser interfacE. BMC Research Notes, 5(1), 367.
    1. Das, S., Sarmah, S., Lyndem, S., & Singha Roy, A. (in press). An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. Journal of Biomolecular Structure and Dynamics.
    1. Deacon, C. F., & Holst, J. J. (2010). Linagliptin, a xanthine-based dipeptidyl peptidase-4 inhibitor with an unusual profile for the treatment of type 2 diabetes. Expert Opin Investig Drugs, 19(1), 133–140.
    1. de Leeuw, S. W., Perram, J. W., & Smith, E. R. (1980). Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants. Proceedings of the Royal Society of London A: Mathematical and Physical Sciences, 373(1752), 27–56.
    1. Duan, Y., Zhu, H.-L., & Zhou, C. (2020). Advance of promising targets and agents against COVID-19 in China. Drug Discovery Today, 25(5), 810–812.
    1. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics (Oxford, England), 27(16), 2194–2200.
    1. El-Said, Y., & Hashem, F. (1991). In-vitro evaluation of sustained-release dyphylline tablets. Drug Development and Industrial Pharmacy, 17(2), 281–293.
    1. Elzupir, A. O. (2020). Inhibition of SARS-CoV-2 main protease 3CLpro by means of α-ketoamide and pyridone-containing pharmaceuticals using in silico molecular docking. Journal of Molecular Structure, 1222, 128878.
    1. Enayatkhani, M., Hasaniazad, M., Faezi, S., Guklani, H., Davoodian, P., Ahmadi, N., Einakian, M. A., Karmostaji, A., & Ahmadi, K. (in press). Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: An in silico study. Journal of Biomolecular Structure and Dynamics.
    1. Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593.
    1. Furukawa, C. T., Shapiro, G. G., Pierson, W. E., & Bierman, C. W. (1983). Dyphylline versus theophylline: A double-blind comparative evaluation. Journal of Clinical Pharmacology, 23(10), 414–418.
    1. Hauser, R. A., Hubble, J. P., Truong, D. D., & Group, I. U.-S.; Istradefylline US-001 Study Group (2003). Randomized trial of the adenosine A(2A) receptor antagonist istradefylline in advanced PD. Neurology, 61(3), 297–303.
    1. Herten-Crabb, A., & Davies, S. E. (2020). Why WHO needs a feminist economic agenda. The Lancet, 395(10229), 1018–1020.
    1. Heymann, D. L., & Shindo, N. (2020). COVID-19: What is next for public health? The Lancet, 395(10224), 542–545.
    1. Holbert, J., Grote, I., & Smith, H. (1955). Some new soluble salts of 8-bromotheophylline. Journal of the American Pharmaceutical Association, 44(6), 355–357.
    1. Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38.
    1. Jilani, T. N., Preuss, C. V., & Sharma, S. (2019). Theophylline. In StatPearls [Internet ]. StatPearls Publishing.
    1. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935.
    1. Lai, C.-C., Shih, T.-P., Ko, W.-C., Tang, H.-J., & Hsueh, P.-R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial Agents, 55(3), 105924.
    1. Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. The Lancet, 395(10224), 565–574.
    1. Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713.
    1. Miller, B. R. III, McGee, T. D. Jr., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). : An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321.
    1. Msimanga, H. Z., Charles, M. J., & Martin, N. W. (1997). Simultaneous determination of aspirin, salicylamide, and caffeine in pain relievers by target factor analysis. Journal of Chemical Education, 74(9), 1114.
    1. Muir, W. W. III, & McGuirk, S. (1987). Cardiovascular drugs: Their pharmacology and use in horses. The Veterinary Clinics of North America. Equine Practice, 3(1), 37–57.
    1. Nair, K. P. (in press). The caffeine, methylxanthines, and behavior linkages. In Food and human responses.
    1. Ndikuryayo, F., Kang, W.-M., Wu, F.-X., Yang, W.-C., & Yang, G.-F. (2019). Hydrophobicity-oriented drug design (HODD) of new human 4-hydroxyphenylpyruvate dioxygenase inhibitors. European Journal of Medicinal Chemistry, 166, 22–31.
    1. Nelson, M. T., Humphrey, W., Gursoy, A., Dalke, A., Kalé, L. V., Skeel, R. D., & Schulten, K. (1996). NAMD: A parallel, object-oriented molecular dynamics program. The International Journal of Supercomputer Applications and High Performance Computing, 10(4), 251–268.
    1. Numata, J., Wan, M., & Knapp, E. W. (2007). Conformational entropy of biomolecules: Beyond the quasi-harmonic approximation. Genome Informatics, 18, 192–205.
    1. Petimar, J., O’Reilly, É., Adami, H. O., Brandt, P. A., Buring, J., English, D. R., Freedman, D. M., Giles, G. G., Håkansson, N., Kurth, T., Larsson, S. C., Robien, K., Schouten, L. J., Weiderpass, E., Wolk, A., & Smith-Warner, S. A. (2019). Coffee, tea, and caffeine intake and amyotrophic lateral sclerosis mortality in a pooled analysis of eight prospective cohort studies. European Journal of Neurology, 26(3), 468–475.
    1. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera – A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.
    1. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802.
    1. Risner, C. H. (2008). Simultaneous determination of theobromine,(+)-catechin, caffeine, and (−)-epicatechin in standard reference material baking chocolate 2384, cocoa, cocoa beans, and cocoa butter. Journal of Chromatographic Science, 46(10), 892–899.
    1. Roe, D. R., & Cheatham, T. E. III. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095.
    1. Rothan, H. A., & Byrareddy, S. N. (2020). The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity, 109, 102433.
    1. Sabino-Silva, R., Jardim, A. C. G., & Siqueira, W. L. (2020). Coronavirus COVID-19 impacts to dentistry and potential salivary diagnosis. Clinical Oral Investigations, 24(4), 1619–1621.
    1. Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 24, 91–98.
    1. Sk, M. F., Roy, R., Jonniya, N. A., Poddar, S., & Kar, P. (in press). Elucidating biophysical basis of binding of inhibitors to SARS-CoV-2 main protease by using molecular dynamics simulations and free energy calculations. Journal of Biomolecular Structure and Dynamic. .
    1. Speer, E. M., Dowling, D. J., Ozog, L. S., Xu, J., Yang, J., Kennady, G., & Levy, O. (2017). Pentoxifylline inhibits TLR- and inflammasome-mediated in vitro inflammatory cytokine production in human blood with greater efficacy and potency in newborns. Pediatric Research, 81(5), 806–816.
    1. Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
    1. Ul Qamar, M. T., Alqahtani, S. M., Alamri, M. A., & Chen, L.-L. (2020). Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Journal of Pharmaceutical Analysis, 10(4), 313–319.
    1. US-Food & drug Administration. (2020). Fact sheet for health care providers: Emergency use authorization (EUA) of Remdesivir (GS-5734™). US-Food & Drug Administration.
    1. Velavan, T. P., & Meyer, C. G. (2020). The COVID-19 epidemic. Tropical Medicine & International Health, 25(3), 278–280.
    1. Wahedi, H. M., Ahmad, S., & Abbasi, S. W. (in press). Stilbene-based natural compounds as promising drug candidates against COVID-19. Journal of Biomolecular Structure and Dynamics. 10.1080/07391102.2020.1762743
    1. Wang, J. (2020). Fast identification of possible drug treatment of Coronavirus disease-19 (COVID-19) through computational drug repurposing study. Journal of Chemical Information and Modeling, 60(6), 3277–3286.
    1. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174.
    1. World Health Organization. (2020). Coronavirus disease 2019 (COVID-19): Situation report (p. 67). World Health Organization.
    1. Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., & Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica. B, 10(5), 766–788.
    1. Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (in press). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science.
    1. Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273.
    1. Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W., China Novel Coronavirus Investigating and Research Team . (2020). A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine, 382(8), 727–733.

Source: PubMed

3
Prenumerera