Blood-Based Bioenergetic Profiling Reflects Differences in Brain Bioenergetics and Metabolism

Daniel J Tyrrell, Manish S Bharadwaj, Matthew J Jorgensen, Thomas C Register, Carol Shively, Rachel N Andrews, Bryan Neth, C. Dirk Keene, Akiva Mintz, Suzanne Craft, Anthony J A Molina, Daniel J Tyrrell, Manish S Bharadwaj, Matthew J Jorgensen, Thomas C Register, Carol Shively, Rachel N Andrews, Bryan Neth, C. Dirk Keene, Akiva Mintz, Suzanne Craft, Anthony J A Molina

Abstract

Blood-based bioenergetic profiling provides a minimally invasive assessment of mitochondrial health shown to be related to key features of aging. Previous studies show that blood cells recapitulate mitochondrial alterations in the central nervous system under pathological conditions, including the development of Alzheimer's disease. In this study of nonhuman primates, we focus on mitochondrial function and bioenergetic capacity assessed by the respirometric profiling of monocytes, platelets, and frontal cortex mitochondria. Our data indicate that differences in the maximal respiratory capacity of brain mitochondria are reflected by CD14+ monocyte maximal respiratory capacity and platelet and monocyte bioenergetic health index. A subset of nonhuman primates also underwent [18F] fluorodeoxyglucose positron emission tomography (FDG-PET) imaging to assess brain glucose metabolism. Our results indicate that platelet respiratory capacity positively correlates to measures of glucose metabolism in multiple brain regions. Altogether, the results of this study provide early evidence that blood-based bioenergetic profiling is related to brain mitochondrial metabolism. While these measures cannot substitute for direct measures of brain metabolism, provided by measures such as FDG-PET, they may have utility as a metabolic biomarker and screening tool to identify individuals exhibiting systemic bioenergetic decline who may therefore be at risk for the development of neurodegenerative diseases.

Figures

Figure 1
Figure 1
Associations of CD14+ monocyte (a) maximal respiration (pmol/min/250,000 cells) and (b) BHI with the maximal respiratory capacity of frontal cortex mitochondria (pmol/min/5 μg mitochondrial protein). Pearson's correlations and p values for each association are shown.
Figure 2
Figure 2
Association of platelet BHI with the maximal respiratory capacity of frontal cortex mitochondria (pmol/min/5 μg mitochondrial protein). Pearson's correlation and p value are shown.

References

    1. Shi C., Guo K., Yew D. T., et al. Effects of ageing and Alzheimer’s disease on mitochondrial function of human platelets. Experimental Gerontology. 2008;43(6):589–594. doi: 10.1016/j.exger.2008.02.004.
    1. Avila C., Huang R. J., Stevens M. V., et al. Platelet mitochondrial dysfunction is evident in type 2 diabetes in association with modifications of mitochondrial anti-oxidant stress proteins. Experimental and Clinical Endocrinology & Diabetes. 2012;120(4):248–251. doi: 10.1055/s-0031-1285833.
    1. Japiassu A. M., Santiago A. P., d'Avila J. C., et al. Bioenergetic failure of human peripheral blood monocytes in patients with septic shock is mediated by reduced F1Fo adenosine-5′-triphosphate synthase activity. Critical Care Medicine. 2011;39(5):1056–1063. doi: 10.1097/CCM.0b013e31820eda5c.
    1. Hartman M. L., Shirihai O. S., Holbrook M., et al. Relation of mitochondrial oxygen consumption in peripheral blood mononuclear cells to vascular function in type 2 diabetes mellitus. Vascular Medicine. 2014;19(1):67–74. doi: 10.1177/1358863X14521315.
    1. Widlansky M. E., Wang J., Shenouda S. M., et al. Altered mitochondrial membrane potential, mass, and morphology in the mononuclear cells of humans with type 2 diabetes. Translational Research. 2010;156(1):15–25. doi: 10.1016/j.trsl.2010.04.001.
    1. Cordero M. D., de MM M. F. A. M., Carmona Lopez I. M., et al. Mitochondrial dysfunction and mitophagy activation in blood mononuclear cells of fibromyalgia patients: implications in the pathogenesis of the disease. Arthritis Research & Therapy. 2010;12(1, article R17) doi: 10.1186/ar2918.
    1. Tyrrell D. J., Bharadwaj M. S., Van Horn C. G., Kritchevsky S. B., Nicklas B. J., Molina A. J. Respirometric profiling of muscle mitochondria and blood cells are associated with differences in gait speed among community-dwelling older adults. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences. 2014;70(11):1394–1399. doi: 10.1093/gerona/glu096.
    1. Tyrrell D. J., Bharadwaj M. S., Van Horn C. G., Marsh A. P., Nicklas B. J., Molina A. J. Blood-cell bioenergetics are associated with physical function and inflammation in overweight/obese older adults. Experimental Gerontology. 2015;70:84–91. doi: 10.1016/j.exger.2015.07.015.
    1. Tyrrell D. J., Bharadwaj M. S., Jorgensen M. J., Register T. C., Molina A. J. Blood cell respirometry is associated with skeletal and cardiac muscle bioenergetics: implications for a minimally invasive biomarker of mitochondrial health. Redox Biology. 2016;10:65–77. doi: 10.1016/j.redox.2016.09.009.
    1. Chacko B. K., Kramer P. A., Ravi S., et al. The bioenergetic health index: a new concept in mitochondrial translational research. Clinical Science. 2014;127(6):367–373.
    1. Clarke D. D., Sokoloff L. Circulation and energy metabolism of the brain. Basic neurochemistry: molecular, cellular and medical aspects. 1999;6:637–669. doi: 10.1042/CS20140101.
    1. Berg J. M., Tymoczko J. L., Stryer L. Each Organ has a Unique Metabolic Profile. New York, NY, USA: W H Freeman; 2002.
    1. Swerdlow R. H., Khan S. M. A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Medical Hypotheses. 2004;63(1):8–20. doi: 10.1016/j.mehy.2003.12.045.
    1. Gibson G. E., Shi Q. A mitocentric view of Alzheimer’s disease suggests multi-faceted treatments. Journal of Alzheimer's Disease. 2010;20(Supplement 2):S591–S607. doi: 10.3233/JAD-2010-100336.
    1. Cardoso S. M., Santana I., Swerdlow R. H., Oliveira C. R. Mitochondria dysfunction of Alzheimer’s disease cybrids enhances Aβ toxicity. Journal of Neurochemistry. 2004;89(6):1417–1426. doi: 10.1111/j.1471-4159.2004.02438.x.
    1. Galindo M. F., Ikuta I., Zhu X., Casadesus G., Jordán J. Mitochondrial biology in Alzheimer’s disease pathogenesis. Journal of Neurochemistry. 2010;114(4) doi: 10.1111/j.1471-4159.2010.06814.x.
    1. Reddy P. H., Beal M. F. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends in Molecular Medicine. 2008;14(2):45–53. doi: 10.1016/j.molmed.2007.12.002.
    1. Wilkins H. M., Swerdlow R. H. Amyloid precursor protein processing and bioenergetics. Brain Research Bulletin. 2016;133:71–79. doi: 10.1016/j.brainresbull.2016.08.009.
    1. Devi L., Prabhu B. M., Galati D. F., Avadhani N. G., Anandatheerthavarada H. K. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. The Journal of Neuroscience. 2006;26(35):9057–9068. doi: 10.1523/JNEUROSCI.1469-06.2006.
    1. Dragicevic N., Mamcarz M., Zhu Y., et al. Mitochondrial amyloid-beta levels are associated with the extent of mitochondrial dysfunction in different brain regions and the degree of cognitive impairment in Alzheimer’s transgenic mice. Journal of Alzheimer's Disease. 2010;20(Supplement 2):S535–S550. doi: 10.3233/JAD-2010-100342.
    1. Du H., Guo L., Yan S., Sosunov A. A., McKhann G. M., ShiDu Y. S. Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proceedings of the National Academy of Sciences. 2010;107(43):18670–18675. doi: 10.1073/pnas.1006586107.
    1. Caspersen C., Wang N., Yao J., et al. Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. The FASEB Journal. 2005;19(14):2040–2041. doi: 10.1096/fj.05-3735fje.
    1. Hansson Petersen C. A., Alikhani N., Behbahani H., et al. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(35):13145–13150. doi: 10.1073/pnas.0806192105.
    1. Manczak M., Anekonda T. S., Henson E., Park B. S., Quinn J., Reddy P. H. Mitochondria are a direct site of a beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Human Molecular Genetics. 2006;15(9):1437–1449. doi: 10.1093/hmg/ddl066.
    1. Mosconi L., Mistur R., Switalski R., et al. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. European Journal of Nuclear Medicine and Molecular Imaging. 2009;36(5):811–822. doi: 10.1007/s00259-008-1039-z.
    1. Minoshima S., Giordani B., Berent S., Frey K. A., Foster N. L., Kuhl D. E. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Annals of Neurology. 1997;42(1):85–94. doi: 10.1002/ana.410420114.
    1. Marcus C., Mena E., Subramaniam R. M. Brain PET in the diagnosis of Alzheimer’s disease. Clinical Nuclear Medicine. 2014;39(10):e413–e422. doi: 10.1097/RLU.0000000000000547.
    1. Bloudek L. M., Spackman D. E., Blankenburg M., Sullivan S. D. Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer’s disease. Journal of Alzheimer's Disease. 2011;26(4):627–645. doi: 10.3233/JAD-2011-110458.
    1. Lunnon K., Ibrahim Z., Proitsi P., et al. Mitochondrial dysfunction and immune activation are detectable in early Alzheimer’s disease blood. Journal of Alzheimer's Disease. 2012;30(3):685–710. doi: 10.3233/JAD-2012-111592.
    1. Leuner K., Pantel J., Frey C., et al. Enhanced apoptosis, oxidative stress and mitochondrial dysfunction in lymphocytes as potential biomarkers for Alzheimer’s disease. Journal of Neural Transmission. Supplementa. 2007;72:207–215. doi: 10.1007/978-3-211-73574-9_27.
    1. Kadioglu E., Sardas S., Aslan S., Isik E., Esat K. A. Detection of oxidative DNA damage in lymphocytes of patients with Alzheimer’s disease. Biomarkers. 2004;9(2):203–209. doi: 10.1080/13547500410001728390.
    1. Mecocci P., Polidori M. C., Ingegni T., et al. Oxidative damage to DNA in lymphocytes from AD patients. Neurology. 1998;51(4):1014–1017. doi: 10.1212/WNL.51.4.1014.
    1. Valla J., Schneider L., Niedzielko T., et al. Impaired platelet mitochondrial activity in Alzheimer’s disease and mild cognitive impairment. Mitochondrion. 2006;6(6):323–330. doi: 10.1016/j.mito.2006.10.004.
    1. Fišar Z., Hroudová J., Hansíková H., et al. Mitochondrial respiration in the platelets of patients with Alzheimer’s disease. Current Alzheimer research. 2016;13(8):930–941. doi: 10.2174/1567205013666160314150856.
    1. Borroni B., Perani D., Broli M., et al. Pre-clinical diagnosis of Alzheimer disease combining platelet amyloid precursor protein ratio and rCBF spect analysis. Journal of Neurology. 2005;252(11):1359–1362. doi: 10.1007/s00415-005-0867-z.
    1. Colciaghi F., Borroni B., Pastorino L., et al. [alpha]-secretase ADAM10 as well as [alpha]APPs is reduced in platelets and CSF of Alzheimer disease patients. Molecular medicine (Cambridge, Mass) 2002;8(2):67–74.
    1. Coskun P. E., Wyrembak J., Derbereva O., et al. Systemic mitochondrial dysfunction and the etiology of Alzheimer’s disease and Down syndrome dementia. Journal of Alzheimer's Disease. 2010;20(Supplement 2):S293–S310. doi: 10.3233/JAD-2010-100351.
    1. Chacko B. K., Kramer P. A., Ravi S., et al. The bioenergetic health index: a new concept in mitochondrial translational research. Clinical Science (London, England) 2014;127(6):367–373. doi: 10.1042/CS20140101.
    1. Tyrrell D. J., Bharadwaj M. S., Jorgensen M. J., Register T. C., Molina A. J. Blood cell respirometry is associated with skeletal and cardiac muscle bioenergetics: implications for a minimally invasive biomarker of mitochondrial health. Redox Biology. 2016;10:65–77. doi: 10.1016/j.redox.2016.09.009.
    1. Dranka B. P., Benavides G. A., Diers A. R., et al. Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radical Biology & Medicine. 2011;51(9):1621–1635. doi: 10.1016/j.freeradbiomed.2011.08.005.
    1. Desler C., Hansen T. L., Frederiksen J. B., Marcker M. L., Singh K. K., Juel R. L. Is there a link between mitochondrial reserve respiratory capacity and aging? Journal of Aging Research. 2012;2012:9. doi: 10.1155/2012/192503.192503
    1. Ferrick D. A., Neilson A., Beeson C. Advances in measuring cellular bioenergetics using extracellular flux. Drug Discovery Today. 2008;13(5-6):268–274. doi: 10.1016/j.drudis.2007.12.008.
    1. Jekabsons M. B., Nicholls D. G. In situ respiration and bioenergetic status of mitochondria in primary cerebellar granule neuronal cultures exposed continuously to glutamate. The Journal of Biological Chemistry. 2004;279(31):32989–33000. doi: 10.1074/jbc.M401540200.
    1. Willard S. L., Uberseder B., Clark A., et al. Long term sertraline effects on neural structures in depressed and nondepressed adult female nonhuman primates. Neuropharmacology. 2015;99:369–378. doi: 10.1016/j.neuropharm.2015.06.011.
    1. Styner M., Knickmeyer R., Joshi S., Coe C., Short S. J., Gilmore J., editors. Automatic Brain Segmentation in Rhesus Monkeys. Medical Imaging. San Diego, CA, USA: International Society for Optics and Photonics; 2007.
    1. Maldjian J. A., Shively C. A., Nader M. A., Friedman D. P., Whitlow C. T. Multi-atlas library for eliminating normalization failures in non-human primates. Neuroinformatics. 2015;14(2):183–190. doi: 10.1007/s12021-015-9291-4.
    1. Bharadwaj M. S., Tyrrell D. J., Lyles M. F., Demons J. L., Rogers G. W., Molina A. J. Preparation and respirometric assessment of mitochondria isolated from skeletal muscle tissue obtained by percutaneous needle biopsy. Journal of Visualized Experiments. 2015;(96) doi: 10.3791/52350.
    1. Rogers G. W., Brand M. D., Petrosyan S., et al. High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PLoS One. 2011;6(7, article e21746) doi: 10.1371/journal.pone.0021746.
    1. Crouch P. J., Blake R., Duce J. A., et al. Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-β1–42. The Journal of Neuroscience. 2005;25(3):672–679. doi: 10.1523/JNEUROSCI.4276-04.2005.
    1. Wang X., Su B., Lee H.-G., et al. Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. The Journal of Neuroscience. 2009;29(28):9090–9103. doi: 10.1523/JNEUROSCI.1357-09.2009.
    1. Wang X., Su B., Zheng L., Perry G., Smith M. A., Zhu X. The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. Journal of Neurochemistry. 2009;109:153–159. doi: 10.1111/j.1471-4159.2009.05867.x.
    1. Wang X., Su B., Siedlak S. L., et al. Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(49):19318–19323. doi: 10.1073/pnas.0804871105.
    1. Wang X., Su B., Fujioka H., Zhu X. Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients. The American Journal of Pathology. 2008;173(2):470–482. doi: 10.2353/ajpath.2008.071208.
    1. Chen H., Chan D. C. Mitochondrial dynamics – fusion, fission, movement, and mitophagy – in neurodegenerative diseases. Human Molecular Genetics. 2009;18(R2):R169–R176. doi: 10.1093/hmg/ddp326.
    1. Chen H., McCaffery J. M., Chan D. C. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell. 2007;130(3):548–562. doi: 10.1016/j.cell.2007.06.026.
    1. Narendra D., Tanaka A., Suen D.-F., Youle R. J. Parkin-induced mitophagy in the pathogenesis of Parkinson disease. Autophagy. 2009;5(5):706–708. doi: 10.4161/auto.5.5.8505.
    1. Lin M. T., Beal M. F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787–795. doi: 10.1038/nature05292.
    1. Tranah G. J., Yokoyama J. S., Katzman S. M., et al. Mitochondrial DNA sequence associations with dementia and amyloid-β in elderly African Americans. Neurobiology of Aging. 2014;35(2):442.e1–442.e8. doi: 10.1016/j.neurobiolaging.2013.05.023.
    1. Ridge P. G., Maxwell T. J., Corcoran C. D., et al. Mitochondrial genomic analysis of late onset Alzheimer’s disease reveals protective haplogroups H6A1A/H6A1B: the Cache County Study on Memory in Aging. PLoS One. 2012;7(9, article e45134-e) doi: 10.1371/journal.pone.0045134.
    1. Ridge P. G., Koop A., Maxwell T. J., et al. Mitochondrial haplotypes associated with biomarkers for Alzheimer’s disease. PLoS One. 2013;8(9, article e74158-e) doi: 10.1371/journal.pone.0074158.
    1. Santoro A., Balbi V., Balducci E., et al. Evidence for sub-haplogroup h5 of mitochondrial DNA as a risk factor for late onset Alzheimer’s disease. PLoS One. 2010;5(8, article e12037-e) doi: 10.1371/journal.pone.0012037.
    1. Keogh M. J., Chinnery P. F. Mitochondrial DNA mutations in neurodegeneration. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2015;1847(11):1401–1411. doi: 10.1016/j.bbabio.2015.05.015.
    1. Reynolds L. M., Ding J., Taylor J. R., et al. Transcriptomic profiles of aging in purified human immune cells. BMC Genomics. 2015;16:p. 333. doi: 10.1186/s12864-015-1522-4.

Source: PubMed

3
Prenumerera