Working-memory training in younger and older adults: training gains, transfer, and maintenance

Yvonne Brehmer, Helena Westerberg, Lars Bäckman, Yvonne Brehmer, Helena Westerberg, Lars Bäckman

Abstract

Working memory (WM), a key determinant of many higher-order cognitive functions, declines in old age. Current research attempts to develop process-specific WM training procedures, which may lead to general cognitive improvement. Adaptivity of the training as well as the comparison of training gains to performance changes of an active control group are key factors in evaluating the effectiveness of a specific training program. In the present study, 55 younger adults (20-30 years of age) and 45 older adults (60-70 years of age) received 5 weeks of computerized training on various spatial and verbal WM tasks. Half of the sample received adaptive training (i.e., individually adjusted task difficulty), whereas the other half-worked on the same task material but on a low task difficulty level (active controls). Performance was assessed using criterion, near-transfer, and far-transfer tasks before training, after 5 weeks of intervention, as well as after a 3-month follow-up interval. Results indicate that (a) adaptive training generally led to larger training gains than low-level practice, (b) training and transfer gains were somewhat greater for younger than for older adults in some tasks, but comparable across age groups in other tasks, (c) far-transfer was observed to a test on sustained attention and for a self-rating scale on cognitive functioning in daily life for both young and old, and (d) training gains and transfer effects were maintained across the 3-month follow-up interval across age.

Keywords: active control group; aging; maintenance; training; transfer; working memory.

Figures

Figure 1
Figure 1
Mean working-memory (WM) performance across 4 weeks of adaptive training. Error bars represent standard errors around the means.

References

    1. Baltes P. B., Sowarka D., Kliegl R. (1989). Cognitive training research on fluid intelligence in old age: what can older adults achieve by themselves? Psychol. Aging 4, 217–221 10.1037/0882-7974.4.2.217
    1. Bellander M., Brehmer Y., Westerberg H., Karlsson S., Furth D., Bergman O., Eriksson E., Bäckman L. (2011). Preliminary evidence that allelic variation in the LMX1A gene influences training-related working memory improvement. Neuropsychologia 49, 1938–1942 10.1016/j.neuropsychologia.2011.03.021
    1. Bherer L., Kramer A. F., Peterson M. S., Colcombe S., Erickson K., Becic E. (2006). Testing the limits of cognitive plasticity in older adults: application to attentional control. Acta Psychol. (Amst.) 123, 261–278 10.1016/j.actpsy.2006.01.005
    1. Bopp K. L., Verhaeghen P. (2005). Aging and verbal memory span: a meta-analysis. J. Gerontol. B Psychol. Sci. Soc. Sci. 60, P223–P233
    1. Borella E., Carretti B., De Beni R. (2008). Working memory and inhibition across the adult life-span. Acta Psychol. (Amst.) 128, 33–44 10.1016/j.actpsy.2007.09.008
    1. Borella E., Carretti B., Riboldi F., De Beni R. (2010). Working memory training in older adults: evidence of transfer and maintenance effects. Psychol. Aging 25, 767–778 10.1037/a0020683
    1. Brehmer Y., Li S. C., Müller V., Von Oertzen T., Lindenberger U. (2007). Memory plasticity across the life span: uncovering children's latent potential. Dev. Psychol. 43, 465–478 10.1037/0012-1649.43.2.465
    1. Brehmer Y., Rieckmann A., Bellander M., Westerberg H., Fischer H., Bäckman L. (2011). Neural correlates of training-related working-memory gains in old age. Neuroimage 58, 1110–1120 10.1016/j.neuroimage.2011.06.079
    1. Brehmer Y., Westerberg H., Bellander M., Furth D., Karlsson S., Bäckman L. (2009). Working memory plasticity modulated by dopamine transporter genotype. Neurosci. Lett. 467, 117–120 10.1016/j.neulet.2009.10.018
    1. Broadbent D. F., Cooper P. F., Fitzgerald P., Parkes K. R. (1982). The cognitive failures questionnaire (CFQ) and its correlates. Br. J. Clin. Psychol. 21, 1–16
    1. Buschkuehl M., Jaeggi S. M., Hutchison S., Perrig-Chiello P., Dapp C., Muller M., Breil F., Hoppeler H., Perrig W. J. (2008). Impact of working memory training on memory performance in old-old adults. Psychol. Aging 23, 743–753 10.1037/a0014342
    1. Carretti B., Borella E., De Beni R. (2007). Does strategic memory training improve the working memory performance of younger and older adults? Exp. Psychol. 54, 311–320
    1. Chein J. M., Morrison A. B. (2010). Expanding the mind's workspace: training and transfer effects with a complex working memory span task. Psychon. Bull. Rev. 17, 193–199 10.3758/PBR.17.2.193
    1. Dahlin E., Neely A. S., Larsson A., Bäckman L., Nyberg L. (2008a). Transfer of learning after updating training mediated by the striatum. Science 320, 1510–1512 10.1126/science.1155466
    1. Dahlin E., Nyberg L., Bäckman L., Neely A. S. (2008b). Plasticity of executive functioning in young and older adults: immediate training gains, transfer, and long-term maintenance. Psychol. Aging 23, 720–730 10.1037/a0014296
    1. Dodrill C. (1978). Neuropsychological battery for epilepsy. Epilepsia 19, 611–623
    1. Engle R. W. (2002). Working memory capacity as executive attention. Curr. Dir. Psychol. Sci. 11, 19–23
    1. Gronwall D. (1977). Paced auditory serial-addition task - Measure of recovery from concussion. Percept. Mot. Skills 44, 367–373
    1. Hertzog C., Kramer A. F., Wilson R. S., Lindenberger U. (2009). Enrichment effects on adult cognitive development. Psychol. Sci. Public Interest 9, 1–65
    1. Holmes J., Gathercole S. E., Dunning D. L. (2009). Adaptive training leads to sustained enhancement of poor working memory in children. Dev. Sci. 12, F9–F15 10.1111/j.1467-7687.2009.00848.x
    1. Jaeggi S. M., Buschkuehl M., Jonides J., Perrig W. J. (2008). Improving fluid intelligence with training on working memory. Proc. Natl. Acad. Sci. U.S.A. 105, 6829–6833 10.1073/pnas.0801268105
    1. Jolles D. D., Grol M. J., Van Buchem M. A., Rombouts S. A., Crone E. A. (2010). Practice effects in the brain: changes in cerebral activation after working memory practice depend on task demands. Neuroimage 52, 658–668 10.1016/j.neuroimage.2010.04.028
    1. Karbach J., Kray J. (2009). How useful is executive control training? Age differences in near and far transfer of task-switching training. Dev. Sci. 12, 978–990 10.1111/j.1467-7687.2009.00846.x
    1. Klingberg T. (2010). Training and plasticity of working memory. Trends Cogn. Sci. 14, 317–324 10.1016/j.tics.2010.05.002
    1. Klingberg T., Fernell E., Olesen P. J., Johnson M., Gustafsson P., Dahlstrom K., Gillberg C. G., Forssberg H., Westerberg H. (2005). Computerized training of working memory in children with ADHD-a randomized, controlled trial. J. Am. Acad. Child Adolesc. Psychiatry 44, 177–186 10.1097/00004583-200502000-00010
    1. Klingberg T., Forssberg H., Westerberg H. (2002). Training of working memory in children with ADHD. J. Clin. Exp. Neuropsychol. 24, 781–791 10.1076/jcen.24.6.781.8395
    1. Lezak M. D. (1983). Neuropsychological Assessment. New York, NY: Oxford U.P
    1. Li S. C., Schmiedek F., Huxhold O., Rocke C., Smith J., Lindenberger U. (2008). Working memory plasticity in old age: practice gain, transfer, and maintenance. Psychol. Aging 23, 731–742 10.1037/a0014343
    1. Lövden M., Bäckman L., Lindenberger U., Schaefer S., Schmiedek F. (2010). A theoretical framework for the study of adult cognitive plasticity. Psychol. Bull. 136, 659–676 10.1037/a0020080
    1. Mahncke H. W., Connor B. B., Appelman J., Ahsanuddin O. N., Hardy J. L., Wood R. A., Joyce N. M., Boniske T., Atkins S. M., Merzenich M. M. (2006). Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study. Proc. Natl. Acad. Sci. U.S.A. 103, 12523–12528 10.1073/pnas.0605194103
    1. Morrison A. B., Chein J. M. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychon. Bull. Rev. 18, 46–60 10.3758/s13423-010-0034-0
    1. Mozolic J. L., Hayasaka S., Laurienti P. J. (2010). A cognitive training intervention increases resting cerebral blood flow in healthy older adults. Front. Hum. Neurosci. 4:16 10.3389/neuro.09.016.2010
    1. Mozolic J. L., Long A. B., Morgan A. R., Rawley-Payne M., Laurienti P. J. (2011). A cognitive training intervention improves modality-specific attention in a randomized controlled trial of healthy older adults. Neurobiol. Aging 32, 655–668 10.1016/j.neurobiolaging.2009.04.013
    1. Nettelbeck T., Burns N. R. (2010). Processing speed, working memory and reasoning ability from childhood to old age. Pers. Individ. Dif. 48, 379–384
    1. Olesen P. J., Westerberg H., Klingberg T. (2004). Increased prefrontal and parietal activity after training of working memory. Nat. Neurosci. 7, 75–79 10.1038/nn1165
    1. Owen A. M., Hampshire A., Grahn J. A., Stenton R., Dajani S., Burns A. S., Howard R. J., Ballard C. G. (2010). Putting brain training to the test. Nature 465, 775–778 10.1038/nature09042
    1. Park D. C., Lautenschlager G., Hedden T., Davidson N. S., Smith A. D., Smith P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychol. Aging 17, 299–320 10.1037/0882-7974.17.2.299
    1. Park S., Kim M. S., Chun M. M. (2007). Concurrent working memory load can facilitate selective attention: evidence for specialized load. J. Exp. Psychol. Hum. Percept. Perform. 33, 1062–1075 10.1037/0096-1523.33.5.1062
    1. Payer D., Marshuetz C., Sutton B., Hebrank A., Welsh R. C., Park D. C. (2006). Decreased neural specialization in old adults on a working memory task. Neuroreport 17, 487–491 10.1097/01.wnr.0000209005.40481.31
    1. Raven J. C. (1995). Standard Progressive Matrices Sets A–E. Oxford, UK: Oxford Psychologists Press Ltd
    1. Richmond L. L., Morrison A. B., Chein J. M., Olson I. R. (2011). Working memory training and transfer in older adults. Psychol. Aging 26, 813–822 10.1037/a0023631
    1. Schmiedek F., Lovden M., Lindenberger U. (2010). Hundred days of cognitive training enhance broad cognitive abilities in adulthood: findings from the COGITO study. Front. Aging Neurosci. 2:27 10.3389/fnagi.2010.00027
    1. Shipstead Z., Redick T. S., Engle R. W. (2010). Does working memory training generalize? Psychol. Belg. 50, 245–276
    1. Takeuchi H., Taki Y., Kawashima R. (2010). Effects of working memory training on cognitive functions and neural systems. Rev. Neurosci. 21, 427–449
    1. Thorell L. B., Lindqvist S., Nutley S. B., Bohlin G., Klingberg T. (2009). Training and transfer effects of executive functions in preschool children. Dev. Sci. 12, 106–113 10.1111/j.1467-7687.2008.00745.x
    1. Thorndike E. L., Woodworth R. S. (1901). The influence of improvement in one mental function upon the efficiency of other functions. Psychol. Rev. 8, 247–261
    1. Wechsler D. (1981). WAIS-R Manual. New York, NY: The Psychological Corporation
    1. Westerberg H., Jacobaeus H., Hirvikoski T., Clevberger P., Ostensson M. L., Bartfai A., Klingberg T. (2007). Computerized working memory training after stroke - A pilot study. Brain Inj. 21, 21–29 10.1080/02699050601148726
    1. Zehnder F., Martin M., Altgassen M., Clare L. (2009). Memory training effects in old age as markers of plasticity: a meta-analysis. Restor. Neurol. Neurosci. 27, 507–520 10.3233/RNN-2009-0491
    1. Zinke K., Zeintl M., Eschen A., Herzog C., Kliegel M. (2012). Potentials and limits of plasticity induced by working memory training in old-old age. Gerontology 58, 79–87 10.1159/000324240

Source: PubMed

3
Prenumerera