Accuracy of 3-Dimensionally Printed Full-Arch Dental Models: A Systematic Review

Yasaman Etemad-Shahidi, Omel Baneen Qallandar, Jessica Evenden, Frank Alifui-Segbaya, Khaled Elsayed Ahmed, Yasaman Etemad-Shahidi, Omel Baneen Qallandar, Jessica Evenden, Frank Alifui-Segbaya, Khaled Elsayed Ahmed

Abstract

The use of additive manufacturing in dentistry has exponentially increased with dental model construction being the most common use of the technology. Henceforth, identifying the accuracy of additively manufactured dental models is critical. The objective of this study was to systematically review the literature and evaluate the accuracy of full-arch dental models manufactured using different 3D printing technologies. Seven databases were searched, and 2209 articles initially identified of which twenty-eight studies fulfilling the inclusion criteria were analysed. A meta-analysis was not possible due to unclear reporting and heterogeneity of studies. Stereolithography (SLA) was the most investigated technology, followed by digital light processing (DLP). Accuracy of 3D printed models varied widely between <100 to >500 μm with the majority of models deemed of clinically acceptable accuracy. The smallest (3.3 μm) and largest (579 μm) mean errors were produced by SLA printers. For DLP, majority of investigated printers (n = 6/8) produced models with <100 μm accuracy. Manufacturing parameters, including layer thickness, base design, postprocessing and storage, significantly influenced the model's accuracy. Majority of studies supported the use of 3D printed dental models. Nonetheless, models deemed clinically acceptable for orthodontic purposes may not necessarily be acceptable for the prosthodontic workflow or applications requiring high accuracy.

Keywords: 3-dimensional printing; accuracy; additive manufacturing; dental models; full-arch; systematic review.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow chart for the selection of studies.
Figure 2
Figure 2
Reported trueness in microns for material jetting (MJ, green), digital light processing (DLP, orange) and stereolithography (SLA, blue) 3D printed full-arch dental models. * Asterisk denotes lowest mean error identified from different studies—other results in microns reported include: Form 2 = 59, 64 and −80; Zenith series = 138; Projet 6000 = 190; Juell 3D = 44, 70; Vida = 56; Objet Eden 260 series = 74, 80 and 85; Projet 3500 HD Max = 129. Data from studies that did not report details of 3D printer used or trueness data were not included in the figure.

References

    1. Dawood A., Marti B.M., Sauret-Jackson V. 3D printing in dentistry. Br. Dent. J. 2015;219:521–529. doi: 10.1038/sj.bdj.2015.914.
    1. Ender A., Mehl A. Accuracy of complete-arch dental impressions: A new method of measuring trueness and precision. J. Prosthet. Dent. 2013;109:121–128. doi: 10.1016/S0022-3913(13)60028-1.
    1. Ahmed K.E., Whitters J., Ju X., Pierce S.G., MacLeod C.N., Murray C.A. A Proposed Methodology to Assess the Accuracy of 3D Scanners and Casts and Monitor Tooth Wear Progression in Patients. Int. J. Prosthodont. 2016;29:514–521. doi: 10.11607/ijp.4685.
    1. Choi J.-W., Ahn J.-J., Son K., Huh J.-B. Three-Dimensional Evaluation on Accuracy of Conventional and Milled Gypsum Models and 3D Printed Photopolymer Models. Materials. 2019;12:3499. doi: 10.3390/ma12213499.
    1. Patzelt S.B., Bishti S., Stampf S., Att W. Accuracy of computer-aided design/computer-aided manufacturing–generated dental casts based on intraoral scanner data. J. Am. Dent. Assoc. 2014;145:1133–1140. doi: 10.14219/jada.2014.87.
    1. Jin S.-J., Kim D.-Y., Kim J.-H., Kim W.-C. Accuracy of Dental Replica Models Using Photopolymer Materials in Additive Manufacturing: In Vitro Three-Dimensional Evaluation. J. Prosthodont. 2018;28:e557–e562. doi: 10.1111/jopr.12928.
    1. Joda T., Matthisson L., Zitzmann N.U. Impact of Aging on the Accuracy of 3D-Printed Dental Models: An In Vitro Investigation. J. Clin. Med. 2020;9:1436. doi: 10.3390/jcm9051436.
    1. Oberoi G., Nitsch S., Edelmayer M., Janjić K., Müller A.S., Agis H. 3D Printing—Encompassing the Facets of Dentistry. Front. Bioeng. Biotechnol. 2018;6:172. doi: 10.3389/fbioe.2018.00172.
    1. Alifui-Segbaya F. Biomedical photopolymers in 3D printing. Rapid Prototyp. J. 2019;26:437–444. doi: 10.1108/RPJ-10-2018-0268.
    1. Ligon S.C., Liska R., Stampfl J., Gurr M., Mülhaupt R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017;117:10212–10290. doi: 10.1021/acs.chemrev.7b00074.
    1. Stansbury J.W., Idacavage M.J. 3D printing with polymers: Challenges among expanding options and opportunities. Dent. Mater. 2016;32:54–64. doi: 10.1016/j.dental.2015.09.018.
    1. Quan H., Zhang T., Xu H., Luo S., Nie J., Zhu X. Photo-curing 3D printing technique and its challenges. Bioact. Mater. 2020;5:110–115. doi: 10.1016/j.bioactmat.2019.12.003.
    1. International Organization for Standardization . Accuracy (Trueness and Precision) of Measurement Methods and Results—Part 1: General Principles and Definitions (ISO 5725-1) International Organization for Standardization; Geneva, Switzerland: 1994. [(accessed on 25 July 2020)]. Available online: .
    1. Sayers A. Tips and tricks in performing a systematic review. Br. J. Gen. Pract. 2008;58:136. doi: 10.3399/bjgp08X277168.
    1. Moher D., Liberati A., Tetzlaff J., Altman D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. J. Clin. Epidemiol. 2009;62:1006–1012. doi: 10.1016/j.jclinepi.2009.06.005.
    1. McGowan J., Sampson M., Salzwedel D.M., Cogo E., Foerster V., Lefebvre C. PRESS Peer Review of Electronic Search Strategies: 2015 Guideline Statement. J. Clin. Epidemiol. 2016;75:40–46. doi: 10.1016/j.jclinepi.2016.01.021.
    1. Whiting P.F., Rutjes A.W., Westwood M.E., Mallett S., Deeks J.J., Reitsma J.B., Leeflang M.M., Sterne J.A., Bossuyt P.M.M. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann. Intern. Med. 2011;155:529–536. doi: 10.7326/0003-4819-155-8-201110180-00009.
    1. Jeong Y.-G., Lee W.-S., Lee K.-B. Accuracy evaluation of dental models manufactured by CAD/CAM milling method and 3D printing method. J. Adv. Prosthodont. 2018;10:245–251. doi: 10.4047/jap.2018.10.3.245.
    1. Kim S.-Y., Shin Y.-S., Jung H.-D., Hwang C.-J., Baik H.-S., Cha J.-Y. Precision and trueness of dental models manufactured with different 3-dimensional printing techniques. Am. J. Orthod. Dentofac. Orthop. 2018;153:144–153. doi: 10.1016/j.ajodo.2017.05.025.
    1. Al-Imam H., Gram M., Benetti A.R., Gotfredsen K. Accuracy of stereolithography additive casts used in a digital workflow. J. Prosthet. Dent. 2018;119:580–585. doi: 10.1016/j.prosdent.2017.05.020.
    1. Budzik G., Bazan A., Turek P., Burek J. Analysis of the Accuracy of Reconstructed Two Teeth Models Manufactured Using the 3DP and FDM Technologies. Strojniški Vestnik J. Mech. Eng. 2016;62 doi: 10.5545/sv-jme.2015.2699.
    1. Ishida Y., Miyasaka T. Dimensional accuracy of dental casting patterns created by 3D printers. Dent. Mater. J. 2016;35:250–256. doi: 10.4012/dmj.2015-278.
    1. Arnold C., Monsees D., Hey J., Schweyen R. Surface Quality of 3D-Printed Models as a Function of Various Printing Parameters. Materials. 2019;12:1970. doi: 10.3390/ma12121970.
    1. Park M.-E., Shin S.-Y. Three-dimensional comparative study on the accuracy and reproducibility of dental casts fabricated by 3D printers. J. Prosthet. Dent. 2018;119:861.e1–861.e7. doi: 10.1016/j.prosdent.2017.08.020.
    1. Ayoub A., Rehab M., O’Neil M., Khambay B., Ju X., Barbenel J., Naudi K. A novel approach for planning orthognathic surgery: The integration of dental casts into three-dimensional printed mandibular models. Int. J. Oral Maxillofac. Surg. 2014;43:454–459. doi: 10.1016/j.ijom.2013.08.016.
    1. Hatz C., Msallem B., Aghlmandi S., Brantner P., Thieringer F.M. Can an entry-level 3D printer create high-quality anatomical models? Accuracy assessment of mandibular models printed by a desktop 3D printer and a professional device. Int. J. Oral Maxillofac. Surg. 2020;49:143–148. doi: 10.1016/j.ijom.2019.03.962.
    1. Jang Y., Sim J.-Y., Park J.-K., Kim W.-C., Kim H.-Y., Kim J.-H. Accuracy of 3-unit fixed dental prostheses fabricated on 3D-printed casts. J. Prosthet. Dent. 2020;123:135–142. doi: 10.1016/j.prosdent.2018.11.004.
    1. Zhang H.-R., Yin L.-F., Liu Y.-L., Yan L.-Y., Wang N., Liu G., An X.-L., Liu B. Fabrication and accuracy research on 3D printing dental model based on cone beam computed tomography digital modeling. West China J. Stomatol. 2018;36:156–161.
    1. Xiao N., Sun Y.C., Zhao Y.J., Wang Y. A method to evaluate the trueness of reconstructed dental models made with photo-curing 3D printing technologies. Beijing Da Xue Xue Bao Yi Xue Ban. 2019;51:120–130.
    1. Zeng F.-H., Xu Y.-Z., Fang L., Tang X.-S. Reliability of three dimensional resin model by rapid prototyping manufacturing and digital modeling. Shanghai Kou Qiang Yi Xue Shanghai J. Stomatol. 2012;21:53–56.
    1. AlShawaf B., Weber H.-P., Finkelman M., El Rafie K., Kudara Y., Papaspyridakos P. Accuracy of printed casts generated from digital implant impressions versus stone casts from conventional implant impressions: A comparative in vitro study. Clin. Oral Implant. Res. 2018;29:835–842. doi: 10.1111/clr.13297.
    1. Dostálová T., Kasparova M., Kriz P., Halamova S., Jelinek M., Bradna P., Mendricky J. Intraoral scanner and stereographic 3D print in dentistry—Quality and accuracy of model—New laser application in clinical practice. Laser Phys. 2018;28:125602. doi: 10.1088/1555-6611/aae067.
    1. Burde A.V., VarvarǍ M., Dudea D., Câmpian R.S. Quantitative evaluation of accuracy for two rapid prototyping systems in dental model manufacturing. Clujul Med. 2015;88:S44.
    1. Aly P., Mohsen C. Comparison of the Accuracy of Three-Dimensional Printed Casts, Digital, and Conventional Casts: An In Vitro Study. Eur. J. Dent. 2020;14:189–193. doi: 10.1055/s-0040-1705243.
    1. Bohner L., Hanisch M., Canto G.D.L., Mukai E., Sesma N., Neto P.T., Tortamano P. Accuracy of Casts Fabricated by Digital and Conventional Implant Impressions. J. Oral Implant. 2019;45:94–99. doi: 10.1563/aaid-joi-D-17-00142.
    1. Brown G.B., Currier G.F., Kadioglu O., Kierl J.P. Accuracy of 3-dimensional printed dental models reconstructed from digital intraoral impressions. Am. J. Orthod. Dentofac. Orthop. 2018;154:733–739. doi: 10.1016/j.ajodo.2018.06.009.
    1. Burde A.V., Gasparik C., Baciu S., Manole M., Dudea D., Câmpian R.S. Three-Dimensional Accuracy Evaluation of Two Additive Manufacturing Processes in the Production of Dental Models. Key Eng. Mater. 2017;752:119–125. doi: 10.4028/.
    1. Camardella L.T., Vilella O.D.V., Breuning H. Accuracy of printed dental models made with 2 prototype technologies and different designs of model bases. Am. J. Orthod. Dentofac. Orthop. 2017;151:1178–1187. doi: 10.1016/j.ajodo.2017.03.012.
    1. Camardella L.T., Vilella O.V., Van Hezel M.M., Breuning K.H. Accuracy of stereolithographically printed digital models compared to plaster models Genauigkeit von stereolitographisch gedruckten digitalen Modellen im Vergleich zu Gipsmodellen. J. Orofac. Orthop. Fortschritte Kieferorthopädie. 2017;40:162–402. doi: 10.1007/s00056-017-0093-1.
    1. Cho S.-H., Schaefer O., Thompson G.A., Guentsch A. Comparison of accuracy and reproducibility of casts made by digital and conventional methods. J. Prosthet. Dent. 2015;113:310–315. doi: 10.1016/j.prosdent.2014.09.027.
    1. Cuperus A.M.R., Harms M.C., Rangel F.A., Bronkhorst E.M., Schols J.G., Breuning K.H. Dental models made with an intraoral scanner: A validation study. Am. J. Orthod. Dentofac. Orthop. 2012;142:308–313. doi: 10.1016/j.ajodo.2012.03.031.
    1. Dietrich C.A., Ender A., Baumgartner S., Mehl A. A validation study of reconstructed rapid prototyping models produced by two technologies. Angle Orthod. 2017;87:782–787. doi: 10.2319/01091-727.1.
    1. Favero C.S., English J.D., Cozad B.E., Wirthlin J.O., Short M.M., Kasper F.K. Effect of print layer height and printer type on the accuracy of 3-dimensional printed orthodontic models. Am. J. Orthod. Dentofac. Orthop. 2017;152:557–565. doi: 10.1016/j.ajodo.2017.06.012.
    1. Hazeveld A., Slater J.J.H., Ren Y. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. Am. J. Orthod. Dentofac. Orthop. 2014;145:108–115. doi: 10.1016/j.ajodo.2013.05.011.
    1. Jin S.-J., Jeong I.-D., Kim J.-H., Kim W.-C. Accuracy (trueness and precision) of dental models fabricated using additive manufacturing methods. Int. J. Comput. Dent. 2018;21:107–113.
    1. Kasparova M., Grafova L., Dvorak P., Dostalova T., Prochazka A., Eliasova H., Prusa J., Kakawand S. Possibility of reconstruction of dental plaster cast from 3D digital study models. Biomed. Eng. Online. 2013;12:49. doi: 10.1186/1475-925X-12-49.
    1. Keating A.P., Knox J., Bibb R., Zhurov A.I. A comparison of plaster, digital and reconstructed study model accuracy. J. Orthod. 2008;35:191–201. doi: 10.1179/146531207225022626.
    1. Kuo R.-F., Chen S.-J., Wong T.-Y., Lu B.-C., Huang Z.-H. Digital Morphology Comparisons between Models of Conventional Intraoral Casting and Digital Rapid Prototyping; Proceedings of the 5th International Conference on Biomedical Engineering in Vietnam; Ho Chi Minh, Viet Nam. 16–18 June 2014; Cham, Switzerland: Springer International Publishing; 2015.
    1. Loflin W.A., English J.D., Borders C., Harris L.M., Moon A., Holland J.N., Kasper F.K. Effect of print layer height on the assessment of 3D-printed models. Am. J. Orthod. Dentofac. Orthop. 2019;156:283–289. doi: 10.1016/j.ajodo.2019.02.013.
    1. Nestler N., Wesemann C., Spies B.C., Beuer F., Bumann A. Dimensional accuracy of extrusion- and photopolymerization-based 3D printers: In vitro study comparing printed casts. J. Prosthet. Dent. 2020 doi: 10.1016/j.prosdent.2019.11.011.
    1. Papaspyridakos P., Chen Y.-W., AlShawaf B., Kang K., Finkelman M., Chronopoulos V., Weber H.-P. Digital workflow: In vitro accuracy of 3D printed casts generated from complete-arch digital implant scans. J. Prosthet. Dent. 2020 doi: 10.1016/j.prosdent.2019.10.029.
    1. Rebong R.E., Stewart K.T., Utreja A., Ghoneima A.A. Accuracy of three-dimensional dental resin models created by fused deposition modeling, stereolithography, and Polyjet prototype technologies: A comparative study. Angle Orthod. 2018;88:363–369. doi: 10.2319/071117-460.1.
    1. Rungrojwittayakul O., Kan J.Y., Shiozaki K., Swamidass R.S., Goodacre B.J., Goodacre C.J., Lozada J.L. Accuracy of 3D Printed Models Created by Two Technologies of Printers with Different Designs of Model Base. J. Prosthodont. 2019;29:124–128. doi: 10.1111/jopr.13107.
    1. Saleh W.K., Ariffin E., Sherriff M., Bister D. Accuracy and reproducibility of linear measurements of resin, plaster, digital and printed study-models. J. Orthod. 2015;42:301–306. doi: 10.1179/1465313315Y.0000000016.
    1. Sherman S.L., Kadioglu O., Currier G.F., Kierl J.P., Li J. Accuracy of digital light processing printing of 3-dimensional dental models. Am. J. Orthod. Dentofac. Orthop. 2020;157:422–428. doi: 10.1016/j.ajodo.2019.10.012.
    1. Hassan W.W., Yusoff Y., Mardi N.A. Comparison of reconstructed rapid prototyping models produced by 3-dimensional printing and conventional stone models with different degrees of crowding. Am. J. Orthod. Dentofac. Orthop. 2017;151:209–218. doi: 10.1016/j.ajodo.2016.08.019.
    1. Zhang Z.-C., Li P.-L., Chu F.-T., Shen G. Influence of the three-dimensional printing technique and printing layer thickness on model accuracy. J. Orofac. Orthop. Fortschritte Kieferorthopädie. 2019;80:194–204. doi: 10.1007/s00056-019-00180-y.
    1. Koo T.K., Li M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016;15:155–163. doi: 10.1016/j.jcm.2016.02.012.
    1. Hirogaki Y., Sohmura T., Satoh H., Takahashi J., Takada K. Complete 3-D reconstruction of dental cast shape using perceptual grouping. IEEE Trans. Med. Imaging. 2001;20:1093–1101. doi: 10.1109/42.959306.
    1. Bell A., Ayoub A.F., Siebert P. Assessment of the accuracy of a three-dimensional imaging system for archiving dental study models. J. Orthod. 2003;30:219–223. doi: 10.1093/ortho/30.3.219.
    1. Naidu D., Freer T.J. Validity, reliability, and reproducibility of the iOC intraoral scanner: A comparison of tooth widths and Bolton ratios. Am. J. Orthod. Dentofac. Orthop. 2013;144:304–310. doi: 10.1016/j.ajodo.2013.04.011.
    1. McLean J.W., Von Fraunhofer J.A. The estimation of cement film thickness by an in vivo technique. Br. Dent. J. 1971;131:107–111. doi: 10.1038/sj.bdj.4802708.
    1. Jemt T., Book K. Prosthesis misfit and marginal bone loss in edentulous implant patients. Int. J. Oral Maxillofac. Implant. 1996;11:620–625.
    1. Jemt T. In vivo measurements of precision of fit involving implant-supported prostheses in the edentulous jaw. Int. J. Oral Maxillofac. Implant. 1996;11:151–158.
    1. Papaspyridakos P., Chen C.-J., Chuang S.-K., Weber H.-P., Gallucci G.O. A systematic review of biologic and technical complications with fixed implant rehabilitations for edentulous patients. Int. J. Oral Maxillofac. Implant. 2012;27:102–110.

Source: PubMed

3
Prenumerera