Recent Development of Active Ingredients in Mouthwashes and Toothpastes for Periodontal Diseases

Meenakshi Rajendiran, Harsh M Trivedi, Dandan Chen, Praveen Gajendrareddy, Lin Chen, Meenakshi Rajendiran, Harsh M Trivedi, Dandan Chen, Praveen Gajendrareddy, Lin Chen

Abstract

Periodontal diseases like gingivitis and periodontitis are primarily caused by dental plaque. Several antiplaque and anti-microbial agents have been successfully incorporated into toothpastes and mouthwashes to control plaque biofilms and to prevent and treat gingivitis and periodontitis. The aim of this article was to review recent developments in the antiplaque, anti-gingivitis, and anti-periodontitis properties of some common compounds in toothpastes and mouthwashes by evaluating basic and clinical studies, especially the ones published in the past five years. The common active ingredients in toothpastes and mouthwashes included in this review are chlorhexidine, cetylpyridinium chloride, sodium fluoride, stannous fluoride, stannous chloride, zinc oxide, zinc chloride, and two herbs-licorice and curcumin. We believe this comprehensive review will provide useful up-to-date information for dental care professionals and the general public regarding the major oral care products on the market that are in daily use.

Keywords: active ingredients; gingivitis; mouthwashes; periodontal diseases; periodontitis; plaque; toothpastes.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Kassebaum N.J., Bernabé E., Dahiya M., Bhandari B., Murray C.J., Marcenes W. Global burden of severe periodontitis in 1990–2010: A systematic review and meta-regression. J. Dent. Res. 2014;93:1045–1053. doi: 10.1177/0022034514552491.
    1. Marcenes W., Kassebaum N.J., Bernabé E., Flaxman A., Naghavi M., Lopez A., Murray C.J. Global burden of oral conditions in 1990–2010: A systematic analysis. J. Dent. Res. 2013;92:592–597. doi: 10.1177/0022034513490168.
    1. Thornton-Evans G., Eke P., Wei L., Palmer A., Moeti R., Hutchins S., Borrell L.N. Periodontitis among adults aged ≥30 years—United States, 2009–2010. MMWR Suppl. 2013;62:129–135.
    1. Nazir M.A. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int. J. Health Sci. 2017;11:72–80.
    1. Lang N.P., Lindhe J. Clinical Periodontology and Implant Dentistry, 2 Volume Set. John Wiley & Sons; Hoboken, NJ, USA: 2015.
    1. Cekici A., Kantarci A., Hasturk H., Van Dyke T.E. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontology 2000. 2014;64:57–80. doi: 10.1111/prd.12002.
    1. Kinane D.F., Lappin D.F. Clinical, pathological and immunological aspects of periodontal disease. Acta Odontol. Scand. 2001;59:154–160. doi: 10.1080/000163501750266747.
    1. Feres M., Cortelli S.C., Figueiredo L.C., Haffajee A.D., Socransky S.S. Microbiological basis for periodontal therapy. J. Appl. Oral Sci. Rev. FOB. 2004;12:256–266. doi: 10.1590/S1678-77572004000400002.
    1. Socransky S.S., Haffajee A.D., Cugini M.A., Smith C., Kent R.L., Jr. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 1998;25:134–144. doi: 10.1111/j.1600-051X.1998.tb02419.x.
    1. Liccardo D., Cannavo A., Spagnuolo G., Ferrara N., Cittadini A., Rengo C., Rengo G. Periodontal Disease: A Risk Factor for Diabetes and Cardiovascular Disease. Int. J. Mol. Sci. 2019;20:1414. doi: 10.3390/ijms20061414.
    1. Zeng X.T., Xia L.Y., Zhang Y.G., Li S., Leng W.D., Kwong J.S. Periodontal Disease and Incident Lung Cancer Risk: A Meta-Analysis of Cohort Studies. J. Periodontol. 2016;87:1158–1164. doi: 10.1902/jop.2016.150597.
    1. Carrizales-Sepúlveda E.F., Ordaz-Farías A., Vera-Pineda R., Flores-Ramírez R. Periodontal Disease, Systemic Inflammation and the Risk of Cardiovascular Disease. Heart Lung Circ. 2018;27:1327–1334. doi: 10.1016/j.hlc.2018.05.102.
    1. Page R.C. Gingivitis. J. Clin. Periodontol. 1986;13:345–359. doi: 10.1111/j.1600-051X.1986.tb01471.x.
    1. Schätzle M., Löe H., Lang N.P., Bürgin W., Anerud A., Boysen H. The clinical course of chronic periodontitis. J. Clin. Periodontol. 2004;31:1122–1127.
    1. Lang N.P., Schätzle M.A., Löe H. Gingivitis as a risk factor in periodontal disease. J. Clin. Periodontol. 2009;36(Suppl. 10):3–8. doi: 10.1111/j.1600-051X.2009.01415.x.
    1. Nightingale K.J., Chinta S.K., Agarwal P., Nemelivsky M., Frisina A.C., Cao Z., Norman R.G., Fisch G.S., Corby P. Toothbrush efficacy for plaque removal. Int. J. Dent. Hyg. 2014;12:251–256. doi: 10.1111/idh.12081.
    1. Richards D. The effectiveness of interproximal oral hygiene aids. Evid. Based Dent. 2018;19:107–108. doi: 10.1038/sj.ebd.6401341.
    1. Kumar S. Evidence-Based Update on Diagnosis and Management of Gingivitis and Periodontitis. Dent. Clin. N. Am. 2019;63:69–81. doi: 10.1016/j.cden.2018.08.005.
    1. Shumaker N.D., Metcalf B.T., Toscano N.T., Holtzclaw D.J. Periodontal and periimplant maintenance: A critical factor in long-term treatment success. Compend. Contin. Educ. Dent. 2009;30:388–390, 392, 394 passim; quiz 407, 418.
    1. Sugano N. Biological plaque control: Novel therapeutic approach to periodontal disease. J. Oral Sci. 2012;54:1–5. doi: 10.2334/josnusd.54.1.
    1. Allmyr M., Panagiotidis G., Sparve E., Diczfalusy U., Sandborgh-Englund G. Human exposure to triclosan via toothpaste does not change CYP3A4 activity or plasma concentrations of thyroid hormones. Basic Clin. Pharmacol. Toxicol. 2009;105:339–344. doi: 10.1111/j.1742-7843.2009.00455.x.
    1. Axelsson P., Odont D. Concept and Practice of Plaque-Control. Pediatr. Dent. 1981;3:13.
    1. Moran J.M. Home-use oral hygiene products: Mouthrinses. Periodontology 2000. 2008;48:42–53. doi: 10.1111/j.1600-0757.2008.00260.x.
    1. Teles R.P., Teles F.R. Antimicrobial agents used in the control of periodontal biofilms: Effective adjuncts to mechanical plaque control? Braz. Oral Res. 2009;23(Suppl. S1):39–48. doi: 10.1590/S1806-83242009000500007.
    1. Davies A. The mode of action of chlorhexidine. J. Periodontal Res. Suppl. 1973;12:68–75. doi: 10.1111/j.1600-0765.1973.tb02167.x.
    1. Varoni E., Tarce M., Lodi G., Carrassi A. Chlorhexidine (CHX) in dentistry: State of the art. Minerva Stomatol. 2012;61:399–419.
    1. Colombo A.P., Haffajee A.D., Dewhirst F.E., Paster B.J., Smith C.M., Cugini M.A., Socransky S.S. Clinical and microbiological features of refractory periodontitis subjects. J. Clin. Periodontol. 1998;25:169–180. doi: 10.1111/j.1600-051X.1998.tb02424.x.
    1. Eick S., Seltmann T., Pfister W. Efficacy of antibiotics to strains of periodontopathogenic bacteria within a single species biofilm—An In Vitro study. J. Clin. Periodontol. 2004;31:376–383. doi: 10.1111/j.0303-6979.2004.00490.x.
    1. Jenkins S., Addy M., Wade W. The mechanism of action of chlorhexidine. A study of plaque growth on enamel inserts In Vivo. J. Clin. Periodontol. 1988;15:415–424. doi: 10.1111/j.1600-051X.1988.tb01595.x.
    1. Löe H., Schiott C.R. The effect of mouthrinses and topical application of chlorhexidine on the development of dental plaque and gingivitis in man. J. Periodontal Res. 1970;5:79–83. doi: 10.1111/j.1600-0765.1970.tb00696.x.
    1. Gjermo P., Rolla G., Arskaug L. Effect on Dental Plaque Formation and some In Vitro properties of 12 bis-biguanides. J. Periodontal Res. Suppl. 1973;12:81–92. doi: 10.1111/j.1600-0765.1973.tb02169.x.
    1. Puig Silla M., Montiel Company J.M., Almerich Silla J.M. Use of chlorhexidine varnishes in preventing and treating periodontal disease. A review of the literature. Med. Oral Patol. Oral Cir. Bucal. 2008;13:E257–E260.
    1. Colombo A.P., Teles R.P., Torres M.C., Souto R., Rosalém W.J., Mendes M.C., Uzeda M. Subgingival microbiota of Brazilian subjects with untreated chronic periodontitis. J. Periodontol. 2002;73:360–369. doi: 10.1902/jop.2002.73.4.360.
    1. Marinone M., Savoldi E. Chlorhexidine and taste. Influence of mouthwashes concentration and of rinsing time. Minerva Stomatol. 2000;49:221–226.
    1. Eriksen H.M., Nordbø H., Kantanen H., Ellingsen J.E. Chemical plaque control and extrinsic tooth discoloration. A review of possible mechanisms. J. Clin. Periodontol. 1985;12:345–350. doi: 10.1111/j.1600-051X.1985.tb00924.x.
    1. Bonacorsi C., Raddi M.S., Carlos I.Z. Cytotoxicity of chlorhexidine digluconate to murine macrophages and its effect on hydrogen peroxide and nitric oxide induction. Braz. J. Med. Biol. Res. Rev. Bras. Pesqui. Med. Biol. 2004;37:207–212. doi: 10.1590/S0100-879X2004000200007.
    1. Haydari M., Bardakci A.G., Koldsland O.C., Aass A.M., Sandvik L., Preus H.R. Comparing the effect of 0.06%-, 0.12% and 0.2% Chlorhexidine on plaque, bleeding and side effects in an experimental gingivitis model: A parallel group, double masked randomized clinical trial. BMC Oral Health. 2017;17:118. doi: 10.1186/s12903-017-0400-7.
    1. Jose A., Butler A., Payne D., Maclure R., Rimmer P., Bosma M.L. A randomised clinical study to evaluate the efficacy of alcohol-free or alcohol-containing mouthrinses with chlorhexidine on gingival bleeding. Br. Dent. J. 2015;219:125–130. doi: 10.1038/sj.bdj.2015.592.
    1. Takenaka S., Ohsumi T., Noiri Y. Evidence-based strategy for dental biofilms: Current evidence of mouthwashes on dental biofilm and gingivitis. JPN Dent. Sci. Rev. 2019;55:33–40. doi: 10.1016/j.jdsr.2018.07.001.
    1. Haerian-Ardakani A., Rezaei M., Talebi-Ardakani M., Keshavarz Valian N., Amid R., Meimandi M., Esmailnejad A., Ariankia A. Comparison of Antimicrobial Effects of Three Different Mouthwashes. Iran. J. Public Health. 2015;44:997–1003.
    1. Kadkhoda Z., Amarlu Z., Eshraghi S., Samiei N. Antimicrobial effect of chlorhexidine on Aggregatibacter actinomycetemcomitans biofilms associated with peri-implantitis. J. Dent. Res. Dent. Clin. Dent. Prospect. 2016;10:176–180. doi: 10.15171/joddd.2016.028.
    1. D’Ercole S., D’Addazio G., Di Lodovico S., Traini T., Di Giulio M., Sinjari B. Porphyromonas Gingivalis Load is Balanced by 0.20% Chlorhexidine Gel. A Randomized, Double-Blind, Controlled, Microbiological and Immunohistochemical Human Study. J. Clin. Med. 2020;9:284. doi: 10.3390/jcm9010284.
    1. Sinjari B., D’Addazio G., De Tullio I., Traini T., Caputi S. Peri-Implant Bone Resorption during Healing Abutment Placement: The Effect of a 0.20% Chlorhexidine Gel vs. Placebo-A Randomized Double Blind Controlled Human Study. BioMed Res. Int. 2018;2018:5326340. doi: 10.1155/2018/5326340.
    1. Dorina L., Annalisa P., Ornella D., Alessandro B., Liliana O., Marco G., Di Girolamo M., Valentina C. The use of a new chemical device based on silver and cationic surfactants as a new approach for daily oral hygiene: A preliminary study on a group of periodontal patients. Int. J. Immunopathol. Pharmacol. 2019;33:2058738419868101.
    1. Rusu D., Stratul S.I., Sarbu C., Roman A., Anghel A., Didilescu A., Jentsch H. Evaluation of a hydrophobic gel adhering to the gingiva in comparison with a standard water-soluble 1% chlorhexidine gel after scaling and root planing in patients with moderate chronic periodontitis. A randomized clinical trial. Int. J. Dent. Hyg. 2017;15:53–64. doi: 10.1111/idh.12155.
    1. Zhao H., Hu J., Zhao L. Adjunctive subgingival application of Chlorhexidine gel in nonsurgical periodontal treatment for chronic periodontitis: A systematic review and meta-analysis. BMC Oral Health. 2020;20:34. doi: 10.1186/s12903-020-1021-0.
    1. Malhotra R., Grover V., Kapoor A., Saxena D. Comparison of the effectiveness of a commercially available herbal mouthrinse with chlorhexidine gluconate at the clinical and patient level. J. Indian Soc. Periodontol. 2011;15:349–352. doi: 10.4103/0972-124X.92567.
    1. Shukla N., Saha S., Singh S. Effect of Chlorhexidine with Fluoride Mouthrinse on Plaque Accumulation, Plaque pH—A Double Blind Parallel Randomized Clinical Trial. J. Clin. Diagn. Res. JCDR. 2016;10:Zc62–Zc65. doi: 10.7860/JCDR/2016/18080.8186.
    1. Marrelli M., Amantea M., Tatullo M. A comparative, randomized, controlled study on clinical efficacy and dental staining reduction of a mouthwash containing Chlorhexidine 0.20% and Anti Discoloration System (ADS) Ann. Stomatol. 2015;6:35–42.
    1. Van Swaaij B.W.M., van der Weijden G.A.F., Bakker E.W.P., Graziani F., Slot D.E. Does chlorhexidine mouthwash, with an anti-discoloration system, reduce tooth surface discoloration without losing its efficacy? A systematic review and meta-analysis. Int. J. Dent. Hyg. 2020;18:27–43. doi: 10.1111/idh.12402.
    1. Wang Z., de la Fuente-Núñez C., Shen Y., Haapasalo M., Hancock R.E. Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide. PLoS ONE. 2015;10:e0132512. doi: 10.1371/journal.pone.0132512.
    1. Lourenço T.G., Heller D., do Souto R.M., Silva-Senem M.X., Varela V.M., Torres M.C., Feres-Filho E.J., Colombo A.P. Long-term evaluation of the antimicrobial susceptibility and microbial profile of subgingival biofilms in individuals with aggressive periodontitis. Braz. J. Microbiol. 2015;46:493–500. doi: 10.1590/S1517-838246220131037.
    1. Lasserre J.F., Leprince J.G., Toma S., Brecx M.C. Electrical enhancement of chlorhexidine efficacy against the periodontal pathogen Porphyromonas gingivalis within a biofilm. New Microbiol. 2015;38:511–519.
    1. Li X., Wong C.H., Ng T.W., Zhang C.F., Leung K.C., Jin L. The spherical nanoparticle-encapsulated chlorhexidine enhances anti-biofilm efficiency through an effective releasing mode and close microbial interactions. Int. J. Nanomed. 2016;11:2471–2480.
    1. Tokajuk G., Niemirowicz K., Deptuła P., Piktel E., Cieśluk M., Wilczewska A.Z., Dąbrowski J.R., Bucki R. Use of magnetic nanoparticles as a drug delivery system to improve chlorhexidine antimicrobial activity. Int. J. Nanomed. 2017;12:7833–7846. doi: 10.2147/IJN.S140661.
    1. Bescos R., Ashworth A., Cutler C., Brookes Z.L., Belfield L., Rodiles A., Casas-Agustench P., Farnham G., Liddle L., Burleigh M., et al. Effects of Chlorhexidine mouthwash on the oral microbiome. Sci. Rep. 2020;10:5254. doi: 10.1038/s41598-020-61912-4.
    1. Chatzigiannidou I., Teughels W., Van de Wiele T., Boon N. Oral biofilms exposure to chlorhexidine results in altered microbial composition and metabolic profile. NPJ Biofilms Microbiomes. 2020;6:13. doi: 10.1038/s41522-020-0124-3.
    1. Shen Y., Zhao J., de la Fuente-Núñez C., Wang Z., Hancock R.E., Roberts C.R., Ma J., Li J., Haapasalo M., Wang Q. Experimental and Theoretical Investigation of Multispecies Oral Biofilm Resistance to Chlorhexidine Treatment. Sci. Rep. 2016;6:27537. doi: 10.1038/srep27537.
    1. Cieplik F., Jakubovics N.S., Buchalla W., Maisch T., Hellwig E., Al-Ahmad A. Resistance Toward Chlorhexidine in Oral Bacteria—Is There Cause for Concern? Front. Microbiol. 2019;10:587. doi: 10.3389/fmicb.2019.00587.
    1. Quisno R., Foter M.J. Cetyl Pyridinium Chloride: I. Germicidal Properties. J. Bacteriol. 1946;52:111–117. doi: 10.1128/JB.52.1.111-117.1946.
    1. Witt J., Bsoul S., He T., Gibb R., Dunavent J., Hamilton A. The effect of toothbrushing regimens on the plaque inhibitory properties of an experimental cetylpyridinium chloride mouthrinse. J. Clin. Periodontol. 2006;33:737–742. doi: 10.1111/j.1600-051X.2006.00974.x.
    1. Haps S., Slot D.E., Berchier C.E., Van der Weijden G.A. The effect of cetylpyridinium chloride-containing mouth rinses as adjuncts to toothbrushing on plaque and parameters of gingival inflammation: A systematic review. Int. J. Dent. Hyg. 2008;6:290–303. doi: 10.1111/j.1601-5037.2008.00344.x.
    1. Van der Weijden F.A., Van der Sluijs E., Ciancio S.G., Slot D.E. Can Chemical Mouthwash Agents Achieve Plaque/Gingivitis Control? Dent. Clin. N. Am. 2015;59:799–829. doi: 10.1016/j.cden.2015.06.002.
    1. Alvarez D.M., Duarte L.F., Corrales N., Smith P.C., González P.A. Cetylpyridinium chloride blocks herpes simplex virus replication in gingival fibroblasts. Antivir. Res. 2020;179:104818. doi: 10.1016/j.antiviral.2020.104818.
    1. Popkin D.L., Zilka S., Dimaano M., Fujioka H., Rackley C., Salata R., Griffith A., Mukherjee P.K., Ghannoum M.A., Esper F. Cetylpyridinium Chloride (CPC) Exhibits Potent, Rapid Activity Against Influenza Viruses in vitro and in vivo. Pathog. Immun. 2017;2:252–269. doi: 10.20411/pai.v2i2.200.
    1. Neu T.R. Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol. Rev. 1996;60:151–166. doi: 10.1128/MR.60.1.151-166.1996.
    1. Lim K., Mustapha A. Inhibition of Escherichia coli O157:H7, Listeria monocytogenes and Staphylococcus aureus on sliced roast beef by cetylpyridinium chloride and acidified sodium chlorite. Food Microbiol. 2007;24:89–94. doi: 10.1016/j.fm.2006.04.005.
    1. Gunsolley J.C. Clinical efficacy of antimicrobial mouthrinses. J. Dent. 2010;38(Suppl. S1):S6–S10. doi: 10.1016/S0300-5712(10)70004-X.
    1. Therapeutic mouthrinses: Reaching beyond mechanical plaque control for reduction in dental plaque and gingivitis. [(accessed on 16 February 2021)];Inside Dent. 2011 Available online: .
    1. Berchier C.E., Slot D.E., Van der Weijden G.A. The efficacy of 0.12% chlorhexidine mouthrinse compared with 0.2% on plaque accumulation and periodontal parameters: A systematic review. J. Clin. Periodontol. 2010;37:829–839. doi: 10.1111/j.1600-051X.2010.01575.x.
    1. Witt J.J., Walters P., Bsoul S., Gibb R., Dunavent J., Putt M. Comparative clinical trial of two antigingivitis mouthrinses. Am. J. Dent. 2005;18:15a–17a.
    1. Jeffcoat M., Parry S., Gerlach R.W., Doyle M.J. Use of alcohol-free antimicrobial mouth rinse is associated with decreased incidence of preterm birth in a high-risk population. Am. J. Obstet. Gynecol. 2011;205:382.e1–382.e6. doi: 10.1016/j.ajog.2011.07.016.
    1. Teng F., He T., Huang S., Bo C.P., Li Z., Chang J.L., Liu J.Q., Charbonneau D., Xu J., Li R., et al. Cetylpyridinium chloride mouth rinses alleviate experimental gingivitis by inhibiting dental plaque maturation. Int. J. Oral Sci. 2016;8:182–190. doi: 10.1038/ijos.2016.18.
    1. Ardizzoni A., Pericolini E., Paulone S., Orsi C.F., Castagnoli A., Oliva I., Strozzi E., Blasi E. In vitro effects of commercial mouthwashes on several virulence traits of Candida albicans, viridans streptococci and Enterococcus faecalis colonizing the oral cavity. PLoS ONE. 2018;13:e0207262. doi: 10.1371/journal.pone.0207262.
    1. García-Gargallo M., Zurlohe M., Montero E., Alonso B., Serrano J., Sanz M., Herrera D. Evaluation of new chlorhexidine- and cetylpyridinium chloride-based mouthrinse formulations adjunctive to scaling and root planing: Pilot study. Int. J. Dent. Hyg. 2017;15:269–279. doi: 10.1111/idh.12254.
    1. Guerra F., Pasqualotto D., Rinaldo F., Mazur M., Corridore D., Nofroni I., Ottolenghi L., Nardi G.M. Therapeutic efficacy of chlorhexidine-based mouthwashes and its adverse events: Performance-related evaluation of mouthwashes added with Anti-Discoloration System and cetylpyridinium chloride. Int. J. Dent. Hyg. 2019;17:229–236. doi: 10.1111/idh.12371.
    1. Pulcini A., Bollaín J., Sanz-Sánchez I., Figuero E., Alonso B., Sanz M., Herrera D. Clinical effects of the adjunctive use of a 0.03% chlorhexidine and 0.05% cetylpyridinium chloride mouth rinse in the management of peri-implant diseases: A randomized clinical trial. J. Clin. Periodontol. 2019;46:342–353. doi: 10.1111/jcpe.13088.
    1. Tadakamadla S.K., Bharathwaj V.V., Duraiswamy P., Sforza C., Tartaglia G.M. Clinical efficacy of a new cetylpyridinium chloride-hyaluronic acid-based mouthrinse compared to chlorhexidine and placebo mouthrinses-A 21-day randomized clinical trial. Int. J. Dent. Hyg. 2020;18:116–123. doi: 10.1111/idh.12413.
    1. Lee J.E., Lee J.M., Lee Y., Park J.W., Suh J.Y., Um H.S., Kim Y.G. The antiplaque and bleeding control effects of a cetylpyridinium chloride and tranexamic acid mouth rinse in patients with gingivitis. J. Periodontal Implant Sci. 2017;47:134–142. doi: 10.5051/jpis.2017.47.3.134.
    1. Al-Ghananeem A.M., Leung K.P., Faraj J., DeLuca P.P. Development of a Sustained Antiplaque and Antimicrobial Chewing Gum of a Decapeptide. AAPS PharmSciTech. 2017;18:2240–2247. doi: 10.1208/s12249-016-0706-9.
    1. Jiang H., Xiong X., Buekens P., Su Y., Qian X. Use of mouth rinse during pregnancy to improve birth and neonatal outcomes: A randomized controlled trial. BMC Pregnancy Childbirth. 2015;15:311. doi: 10.1186/s12884-015-0761-3.
    1. Arnold W.H., Dorow A., Langenhorst S., Gintner Z., Bánóczy J., Gaengler P. Effect of fluoride toothpastes on enamel demineralization. BMC Oral Health. 2006;6:8. doi: 10.1186/1472-6831-6-8.
    1. Silverstone L.M., Hicks M.J., Featherstone M.J. Dynamic factors affecting lesion initiation and progression in human dental enamel. Part I. The dynamic nature of enamel caries. Quintessence Int. 1988;19:683–711.
    1. Rošin-Grget K., Peroš K., Sutej I., Bašić K. The cariostatic mechanisms of fluoride. Acta Med. Acad. 2013;42:179–188. doi: 10.5644/ama2006-124.85.
    1. Yoshihara A., Sakuma S., Kobayashi S., Miyazaki H. Antimicrobial effect of fluoride mouthrinse on mutans streptococci and lactobacilli in saliva. Pediatr. Dent. 2001;23:113–117.
    1. Buzalaf M.A.R., Pessan J.P., Honório H.M., Ten Cate J.M. Mechanisms of action of fluoride for caries control. Monogr. Oral Sci. 2011;22:97–114.
    1. Bradshaw D.J., Marsh P.D., Hodgson R.J., Visser J.M. Effects of glucose and fluoride on competition and metabolism within in vitro dental bacterial communities and biofilms. Caries Res. 2002;36:81–86. doi: 10.1159/000057864.
    1. Marinho V.C. Cochrane reviews of randomized trials of fluoride therapies for preventing dental caries. Eur. Arch. Paediatr. Dent. Off. J. Eur. Acad. Paediatr. Dent. 2009;10:183–191. doi: 10.1007/BF03262681.
    1. O’Mullane D.M., Baez R.J., Jones S., Lennon M.A., Petersen P.E., Rugg-Gunn A.J., Whelton H., Whitford G.M. Fluoride and Oral Health. Community Dent. Health. 2016;33:69–99.
    1. Goldman A.S., Yee R., Holmgren C.J., Benzian H. Global affordability of fluoride toothpaste. Glob. Health. 2008;4:7. doi: 10.1186/1744-8603-4-7.
    1. DenBesten P., Li W. Chronic fluoride toxicity: Dental fluorosis. Monogr. Oral Sci. 2011;22:81–96.
    1. Limaleite A., Buzalaf C.P., Buzalaf M. Fluorine: Chemistry, Analysis, Function and Effects. Royal Society of Chemistry; London, UK: 2015. Fluoride intake in the context of dental fluorosis; pp. 22–38.
    1. Ponikvar-Svet M. Fluorine and Health—Molecular Imaging, Biomedical Materials and Pharmaceuticals. Elsevier; Amsterdam, The Netherlands: 2008. Exposure of Humans to Fluorine and Its Assessment; pp. 487–549.
    1. Rugg-Gunn A., Bánóczy J. Fluoride toothpastes and fluoride mouthrinses for home use. Acta Med. Acad. 2013;42:168–178. doi: 10.5644/ama2006-124.84.
    1. Muhler J.C., Radike A.W., Nebergall W.H., Day H.G. The effect of a stannous fluoride-containing dentifrice on caries reduction in children. J. Dent. Res. 1954;33:606–612. doi: 10.1177/00220345540330050401.
    1. Tinanoff N. Progress regarding the use of stannous fluoride in clinical dentistry. J. Clin. Dent. 1995;6:37–40.
    1. Bellamy P.G., Boulding A., Farmer S., Day T.N., Mussett A.J., Barker M.L. Randomized digital plaque imaging trial evaluating plaque inhibition efficacy of a novel stabilized stannous fluoride dentifrice compared with an amine fluoride/stannous fluoride dentifrice. J. Clin. Dent. 2012;23:71–75.
    1. Ellingsen J.E., Svatun B., Rölla G. The effects of stannous and stannic ions on the formation and acidogenicity of dental plaque in vivo. Acta Odontol. Scand. 1980;38:219–222. doi: 10.3109/00016358009003492.
    1. Gehring F. Effect of amine fluoride and sodium fluoride on the germs of plaque flora. Dtsch. Zahnarztl. Z. 1983;38(Suppl. S1):S36–S40.
    1. Kaufmann M., Bartholmes P. Purification, characterization and inhibition by fluoride of enolase from Streptococcus mutans DSM 320523. Caries Res. 1992;26:110–116. doi: 10.1159/000261494.
    1. Wong M.C., Glenny A.M., Tsang B.W., Lo E.C., Worthington H.V., Marinho V.C. Topical fluoride as a cause of dental fluorosis in children. Cochrane Database Syst. Rev. 2010:Cd007693. doi: 10.1002/14651858.CD007693.pub2.
    1. Wright J.T., Hanson N., Ristic H., Whall C.W., Estrich C.G., Zentz R.R. Fluoride toothpaste efficacy and safety in children younger than 6 years: A systematic review. J. Am. Dent. Assoc. 2014;145:182–189. doi: 10.14219/jada.2013.37.
    1. Cameron A.C., Widmer R.P. Handbook of Pediatric Dentistry E-Book. Elsevier Health Sciences; Amsterdam, The Netherlands: 2013.
    1. Naumova E.A., Weber L., Pankratz V., Czenskowski V., Arnold W.H. Bacterial viability in oral biofilm after tooth brushing with amine fluoride or sodium fluoride. Arch. Oral Biol. 2019;97:91–96. doi: 10.1016/j.archoralbio.2018.10.013.
    1. Naumova E.A., Niemann N., Aretz L., Arnold W.H. Effects of different amine fluoride concentrations on enamel remineralization. J. Dent. 2012;40:750–755. doi: 10.1016/j.jdent.2012.05.006.
    1. Naumova E.A., Sandulescu T., Bochnig C., Gaengler P., Zimmer S., Arnold W.H. Kinetics of fluoride bioavailability in supernatant saliva and salivary sediment. Arch. Oral Biol. 2012;57:870–876. doi: 10.1016/j.archoralbio.2012.01.011.
    1. Li K.Q., Jia S.S., Ma M., Shen H.Z., Xu L., Liu G.P., Huang S.Y., Zhang D.S. Effects of fluoride on proliferation and mineralization in periodontal ligament cells in vitro. Braz. J. Med. Biol. Res. Rev. Bras. Pesqui. Med. Biol. 2016;49:e5291. doi: 10.1590/1414-431x20165291.
    1. Dehghani M., Abtahi M., Sadeghian H., Shafaee H., Tanbakuchi B. Combined chlorhexidine-sodiumfluoride mouthrinse for orthodontic patients: Clinical and microbiological study. J. Clin. Exp. Dent. 2015;7:e569–e575. doi: 10.4317/jced.51979.
    1. Rabe P., Twetman S., Kinnby B., Svensäter G., Davies J.R. Effect of fluoride and chlorhexidine digluconate mouthrinses on plaque biofilms. Open Dent. J. 2015;9:106–111. doi: 10.2174/1874210601509010106.
    1. Moi G.P., Tenuta L.M., Cury J.A. Anticaries potential of a fluoride mouthrinse evaluated in vitro by validated protocols. Braz. Dent. J. 2008;19:91–96. doi: 10.1590/S0103-64402008000200001.
    1. Latimer J., Munday J.L., Buzza K.M., Forbes S., Sreenivasan P.K., McBain A.J. Antibacterial and anti-biofilm activity of mouthrinses containing cetylpyridinium chloride and sodium fluoride. BMC Microbiol. 2015;15:169. doi: 10.1186/s12866-015-0501-x.
    1. Winston J.L., Fiedler S.K., Schiff T., Baker R. An anticalculus dentifrice with sodium hexametaphosphate and stannous fluoride: A six-month study of efficacy. J. Contemp. Dent. Pract. 2007;8:1–8. doi: 10.5005/jcdp-8-5-1.
    1. He T., Baker R., Bartizek R.D., Biesbrock A.R., Chaves E., Terézhalmy G. Extrinsic stain removal efficacy of a stannous fluoride dentifrice with sodium hexametaphosphate. J. Clin. Dent. 2007;18:7–11.
    1. Terézhalmy G.T., Biesbrock A.R., Farrell S., Barker M.L., Bartizek R.D. Tooth whitening through the removal of extrinsic stain with two sodium hexametaphosphate-containing whitening dentifrices. Am. J. Dent. 2007;20:309–314.
    1. Boneta A.E., Aguilar M.M., Romeu F.L., Stewart B., DeVizio W., Proskin H.M. Comparative investigation of the efficacy of triclosan/copolymer/sodium fluoride and stannous fluoride/sodium hexametaphosphate/zinc lactate dentifrices for the control of established supragingival plaque and gingivitis in a six-month clinical study. J. Clin. Dent. 2010;21:117–123.
    1. Mallatt M., Mankodi S., Bauroth K., Bsoul S.A., Bartizek R.D., He T. A controlled 6-month clinical trial to study the effects of a stannous fluoride dentifrice on gingivitis. J. Clin. Periodontol. 2007;34:762–767. doi: 10.1111/j.1600-051X.2007.01109.x.
    1. Mankodi S., Bartizek R.D., Leslie Winston J., Biesbrock A.R., McClanahan S.F., He T. Anti-gingivitis efficacy of a stabilized 0.454% stannous fluoride/sodium hexametaphosphate dentifrice: A controlled 6-month clinical trial. J. Clin. Periodontol. 2005;32:75–80. doi: 10.1111/j.1600-051X.2004.00639.x.
    1. Sensabaugh C., Sagel M.E. Stannous fluoride dentifrice with sodium hexametaphosphate: Review of laboratory, clinical and practice-based data. J. Dent. Hyg. 2009;83:70–78.
    1. Valkenburg C., Else Slot D., Van der Weijden G.F. What is the effect of active ingredients in dentifrice on inhibiting the regrowth of overnight plaque? A systematic review. Int. J. Dent. Hyg. 2020;18:128–141. doi: 10.1111/idh.12423.
    1. Parkinson C.R., Milleman K.R., Milleman J.L. Gingivitis efficacy of a 0.454% w/w stannous fluoride dentifrice: A 24-week randomized controlled trial. BMC Oral Health. 2020;20:89. doi: 10.1186/s12903-020-01079-6.
    1. Biesbrock A., He T., DiGennaro J., Zou Y., Ramsey D., Garcia-Godoy F. The effects of bioavailable gluconate chelated stannous fluoride dentifrice on gingival bleeding: Meta-analysis of eighteen randomized controlled trials. J. Clin. Periodontol. 2019;46:1205–1216. doi: 10.1111/jcpe.13203.
    1. Seriwatanachai D., Triratana T., Kraivaphan P., Amaornchat C., Mateo L.R., Sabharwal A., Delgado E., Szewczyk G., Ryan M., Zhang Y.P. Effect of stannous fluoride and zinc phosphate dentifrice on dental plaque and gingivitis: A randomized clinical trial with 6-month follow-up. J. Am. Dent. Assoc. 2019;150:S25–S31. doi: 10.1016/j.adaj.2019.01.003.
    1. Hu D., Li X., Liu H., Mateo L.R., Sabharwal A., Xu G., Szewczyk G., Ryan M., Zhang Y.P. Evaluation of a stabilized stannous fluoride dentifrice on dental plaque and gingivitis in a randomized controlled trial with 6-month follow-up. J. Am. Dent. Assoc. 2019;150:S32–S37. doi: 10.1016/j.adaj.2019.01.005.
    1. Hines D., Xu S., Stranick M., Lavender S., Pilch S., Zhang Y.P., Sullivan R., Montesani L., Montesani L., Mateo L.R., et al. Effect of a stannous fluoride toothpaste on dentinal hypersensitivity: In vitro and clinical evaluation. J. Am. Dent. Assoc. 2019;150:S47–S59. doi: 10.1016/j.adaj.2019.01.006.
    1. Li Y., Suprono M., Mateo L.R., Zhang Y.P., Denis J., D’Ambrogio R., Sullivan R., Thomson P. Solving the problem with stannous fluoride: Extrinsic stain. J. Am. Dent. Assoc. 2019;150:S38–S46. doi: 10.1016/j.adaj.2019.01.002.
    1. Jongsma M.A., van der Mei H.C., Atema-Smit J., Busscher H.J., Ren Y. In vivo biofilm formation on stainless steel bonded retainers during different oral health-care regimens. Int. J. Oral Sci. 2015;7:42–48. doi: 10.1038/ijos.2014.69.
    1. Johannsen A., Emilson C.G., Johannsen G., Konradsson K., Lingström P., Ramberg P. Effects of stabilized stannous fluoride dentifrice on dental calculus, dental plaque, gingivitis, halitosis and stain: A systematic review. Heliyon. 2019;5:e02850. doi: 10.1016/j.heliyon.2019.e02850.
    1. Scaramucci T., Borges A.B., Lippert F., Zero D.T., Aoki I.V., Hara A.T. Anti-erosive properties of solutions containing fluoride and different film-forming agents. J. Dent. 2015;43:458–465. doi: 10.1016/j.jdent.2015.01.007.
    1. Ganss C., Lussi A., Sommer N., Klimek J., Schlueter N. Efficacy of fluoride compounds and stannous chloride as erosion inhibitors in dentine. Caries Res. 2010;44:248–252. doi: 10.1159/000314671.
    1. Ganss C., Neutard L., von Hinckeldey J., Klimek J., Schlueter N. Efficacy of a tin/fluoride rinse: A randomized in situ trial on erosion. J. Dent. Res. 2010;89:1214–1218. doi: 10.1177/0022034510375291.
    1. West N., Seong J., Macdonald E., He T., Barker M., Hooper S. A randomised clinical study to measure the anti-erosion benefits of a stannous-containing sodium fluoride dentifrice. J. Indian Soc. Periodontol. 2015;19:182–187. doi: 10.4103/0972-124X.145817.
    1. Miller W. Microorganisms of the Human Mouth. White Dental Mfg. Company; Philadelphia, PA, USA: 1890.
    1. Kirsch J., Hannig M., Winkel P., Basche S., Leis B., Pütz N., Kensche A., Hannig C. Influence of pure fluorides and stannous ions on the initial bacterial colonization in situ. Sci. Rep. 2019;9:18499. doi: 10.1038/s41598-019-55083-0.
    1. Lorenz K., Hoffmann T., Heumann C., Noack B. Effect of toothpaste containing amine fluoride and stannous chloride on the reduction of dental plaque and gingival inflammation. A randomized controlled 12-week home-use study. Int. J. Dent. Hyg. 2019;17:237–243. doi: 10.1111/idh.12392.
    1. Christianson D.W. Structural biology of zinc. Adv. Protein Chem. 1991;42:281–355.
    1. Thomas B., Bishop J. Manual of Dietetic Practice. John Wiley & Sons; Hoboken, NJ, USA: 2013.
    1. Kim Y.J., Kim Y.K., Kho H.S. Effects of smoking on trace metal levels in saliva. Oral Dis. 2010;16:823–830. doi: 10.1111/j.1601-0825.2010.01698.x.
    1. Burguera-Pascu M., Rodríguez-Archilla A., Burguera J.L., Burguera M., Rondón C., Carrero P. Flow injection on-line dilution for zinc determination in human saliva with electrothermal atomic absorption spectrometry detection. Anal. Chim. Acta. 2007;600:214–220. doi: 10.1016/j.aca.2006.10.021.
    1. Menegário A.A., Packer A.P., Giné M.F. Determination of Ba, Cd, Cu, Pb and Zn in saliva by isotope dilution direct injection inductively coupled plasma mass spectrometry. Analyst. 2001;126:1363–1366. doi: 10.1039/b102638k.
    1. Brudevold F., Steadman L.T., Spinelli M.A., Amdur B.H., Gron P. A study of zinc in human teeth. Arch. Oral Biol. 1963;8:135–144. doi: 10.1016/0003-9969(63)90051-7.
    1. Williams R.A.D., Elliott J.C. Basic and Applied Dental Biochemistry. Elsevier Health Sciences; Amsterdam, The Netherlands: 1989.
    1. Lynch R.J. Zinc in the mouth, its interactions with dental enamel and possible effects on caries; a review of the literature. Int. Dent. J. 2011;61(Suppl. S3):46–54. doi: 10.1111/j.1875-595X.2011.00049.x.
    1. Finney M., Walker J.T., Marsh P.D., Brading M.G. Antimicrobial effects of a novel Triclosan/zinc citrate dentifrice against mixed culture oral biofilms. Int. Dent. J. 2003;53(Suppl. S1):371–378. doi: 10.1111/j.1875-595X.2003.tb00912.x.
    1. Phan T.N., Buckner T., Sheng J., Baldeck J.D., Marquis R.E. Physiologic actions of zinc related to inhibition of acid and alkali production by oral streptococci in suspensions and biofilms. Oral Microbiol. Immunol. 2004;19:31–38. doi: 10.1046/j.0902-0055.2003.00109.x.
    1. He G., Pearce E.I., Sissons C.H. Inhibitory effect of ZnCl on glycolysis in human oral microbes. Arch. Oral Biol. 2002;47:117–129. doi: 10.1016/S0003-9969(01)00093-0.
    1. Gilbert R.J., Ingram G.S. The oral disposition of zinc following the use of an anticalculus toothpaste containing 0.5% zinc citrate. J. Pharm. Pharmacol. 1988;40:399–402. doi: 10.1111/j.2042-7158.1988.tb06303.x.
    1. Harrap G.J., Best J.S., Saxton C.A. Human oral retention of zinc from mouthwashes containing zinc salts and its relevance to dental plaque control. Arch. Oral Biol. 1984;29:87–91. doi: 10.1016/0003-9969(84)90110-9.
    1. Hall P.J., Green A.K., Horay C.P., de Brabander S., Beasley T.J., Cromwell V.J., Holt J.S., Savage D.J. Plaque antibacterial levels following controlled food intake and use of a toothpaste containing 2% zinc citrate and 0.3% Triclosan. Int. Dent. J. 2003;53(Suppl. S1):379–384. doi: 10.1111/j.1875-595X.2003.tb00913.x.
    1. Afseth J., Helgeland K., Bonesvoll P. Retention of Cu and Zn in the oral cavity following rinsing with aqueous solutions of copper and zinc salts. Scand. J. Dent. Res. 1983;91:42–45. doi: 10.1111/j.1600-0722.1983.tb00773.x.
    1. Windisch W. Homeostatic reactions of quantitative Zn metabolism on deficiency and subsequent repletion with Zn in 65Zn-labeled adult rats. Trace Elem. Electrocytes. 2001;18:122–128.
    1. Ingram G.S., Horay C.P., Stead W.J. Interaction of zinc with dental mineral. Caries Res. 1992;26:248–253. doi: 10.1159/000261447.
    1. Lee Y.J., Elzinga E.J., Reeder R.J. Sorption mechanisms of zinc on hydroxyapatite: Systematic uptake studies and EXAFS spectroscopy analysis. Environ. Sci. Technol. 2005;39:4042–4048. doi: 10.1021/es048593r.
    1. Stötzel C., Müller F.A., Reinert F., Niederdraenk F., Barralet J.E., Gbureck U. Ion adsorption behaviour of hydroxyapatite with different crystallinities. Colloids Surf. B Biointerfaces. 2009;74:91–95. doi: 10.1016/j.colsurfb.2009.06.031.
    1. Li M., Xiao X., Liu R., Chen C., Huang L. Structural characterization of zinc-substituted hydroxyapatite prepared by hydrothermal method. J. Mater. Sci. Mater. Med. 2008;19:797–803. doi: 10.1007/s10856-007-3213-4.
    1. Mayer I., Apfelbaum F., Featherstone J.D. Zinc ions in synthetic carbonated hydroxyapatites. Arch. Oral Biol. 1994;39:87–90. doi: 10.1016/0003-9969(94)90040-X.
    1. Fatima T., Rahim Z., Lin C.W., Qamar Z. Zinc: A precious trace element for oral health care. J. Pak. Med. Assoc. 2016;66:1019–1023.
    1. Patel A., von Fraunhofer J.A., Bashirelahi N. What every dentist should know about zinc. Gen. Dent. 2011;59:110–114.
    1. Creeth J.E., Abraham P.J., Barlow J.A., Cummins D. Oral delivery and clearance of antiplaque agents from Triclosan-containing dentifrices. Int. Dent. J. 1993;43(Suppl. S1):387–397.
    1. Prasad K.V., Therathil S.G., Agnihotri A., Sreenivasan P.K., Mateo L.R., Cummins D. The Effects of Two New Dual Zinc plus Arginine Dentifrices in Reducing Oral Bacteria in Multiple Locations in the Mouth: 12-Hour Whole Mouth Antibacterial Protection for Whole Mouth Health. J. Clin. Dent. 2018;29:A25–A32.
    1. Gul H., Nayyer M., Gilani M., Aman N., Azad A.A., Shah A.T., Chaudhry A.A., Kaleem M., Khan A.S. Comparative Fluoride Release and Antimicrobial Analysis of Commercial and Experimental Bioactive Glass/Nano-Oxide-Based Dentifrices. Eur. J. Dent. 2020;14:38–44. doi: 10.1055/s-0040-1701292.
    1. Kang J.H., Jang Y.J., Kim D.J., Park J.W. Antimicrobial effectiveness of cetylpyridinium chloride and zinc chloride-containing mouthrinses on bacteria of halitosis and peri-implant disease. Int. J. Oral Maxillofac. Implant. 2015;30:1341–1347. doi: 10.11607/jomi.3824.
    1. Messier C., Epifano F., Genovese S., Grenier D. Licorice and its potential beneficial effects in common oro-dental diseases. Oral Dis. 2012;18:32–39. doi: 10.1111/j.1601-0825.2011.01842.x.
    1. Wang X., Zhang H., Chen L., Shan L., Fan G., Gao X. Liquorice, a unique “guide drug” of traditional Chinese medicine: A review of its role in drug interactions. J. Ethnopharmacol. 2013;150:781–790. doi: 10.1016/j.jep.2013.09.055.
    1. Kitagawa I. Licorice root. A natural sweetener and an important ingredient in Chinese medicine. Pure Appl. Chem. 2002;74:1189–1198. doi: 10.1351/pac200274071189.
    1. Li J.Y., Cao H.Y., Liu P., Cheng G.H., Sun M.Y. Glycyrrhizic acid in the treatment of liver diseases: Literature review. BioMed Res. Int. 2014;2014:872139. doi: 10.1155/2014/872139.
    1. Yamamura Y., Kotaki H., Tanaka N., Aikawa T., Sawada Y., Iga T. The pharmacokinetics of glycyrrhizin and its restorative effect on hepatic function in patients with chronic hepatitis and in chronically carbon-tetrachloride-intoxicated rats. Biopharm. Drug Dispos. 1997;18:717–725. doi: 10.1002/(SICI)1099-081X(199711)18:8<717::AID-BDD54>;2-U.
    1. Lewis J.R. Carbenoxolone sodium in the treatment of peptic ulcer. A review. JAMA. 1974;229:460–462. doi: 10.1001/jama.1974.03230420072036.
    1. Hajiaghamohammadi A.A., Ziaee A., Samimi R. The efficacy of licorice root extract in decreasing transaminase activities in non-alcoholic fatty liver disease: A randomized controlled clinical trial. Phytother. Res. 2012;26:1381–1384. doi: 10.1002/ptr.3728.
    1. Shin Y.W., Bae E.A., Lee B., Lee S.H., Kim J.A., Kim Y.S., Kim D.H. In vitro and In Vivo antiallergic effects of Glycyrrhiza glabra and its components. Planta Med. 2007;73:257–261. doi: 10.1055/s-2007-967126.
    1. Isbrucker R.A., Burdock G.A. Risk and safety assessment on the consumption of Licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regul. Toxicol. Pharmacol. 2006;46:167–192. doi: 10.1016/j.yrtph.2006.06.002.
    1. Asl M.N., Hosseinzadeh H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother. Res. PTR. 2008;22:709–724. doi: 10.1002/ptr.2362.
    1. Kalani K., Chaturvedi V., Alam S., Khan F., Srivastava S.K. Anti-tubercular agents from Glycyrrhiza glabra. Curr. Top. Med. Chem. 2015;15:1043–1049. doi: 10.2174/1568026615666150317223323.
    1. Peters M.C., Tallman J.A., Braun T.M., Jacobson J.J. Clinical reduction of S. mutans in pre-school children using a novel liquorice root extract lollipop: A pilot study. Eur. Arch. Paediatr. Dent. Off. J. Eur. Acad. Paediatr. Dent. 2010;11:274–278. doi: 10.1007/BF03262762.
    1. Hu C.H., He J., Eckert R., Wu X.Y., Li L.N., Tian Y., Lux R., Shuffer J.A., Gelman F., Mentes J., et al. Development and evaluation of a safe and effective sugar-free herbal lollipop that kills cavity-causing bacteria. Int. J. Oral Sci. 2011;3:13–20. doi: 10.4248/IJOS11005.
    1. Wittschier N., Faller G., Beikler T., Stratmann U., Hensel A. Polysaccharides from Glycyrrhiza glabra L. exert significant anti-adhesive effects against Helicobacter pylori and Porphyromonas gingivalis. Planta Med. 2006;72:38. doi: 10.1055/s-2006-950038.
    1. Feldman M., Grenier D. Cranberry proanthocyanidins act in synergy with licochalcone A to reduce Porphyromonas gingivalis growth and virulence properties, and to suppress cytokine secretion by macrophages. J. Appl. Microbiol. 2012;113:438–447. doi: 10.1111/j.1365-2672.2012.05329.x.
    1. Bodet C., La V.D., Gafner S., Bergeron C., Grenier D. A licorice extract reduces lipopolysaccharide-induced proinflammatory cytokine secretion by macrophages and whole blood. J. Periodontol. 2008;79:1752–1761. doi: 10.1902/jop.2008.080052.
    1. Farhad S.Z., Aminzadeh A., Mafi M., Barekatain M., Naghney M., Ghafari M.R. The effect of adjunctive low-dose doxycycline and licorice therapy on gingival crevicular fluid matrix metalloproteinase-8 levels in chronic periodontitis. Dent. Res. J. 2013;10:624–629.
    1. Walker B.R., Edwards C.R. Licorice-induced hypertension and syndromes of apparent mineralocorticoid excess. Endocrinol. Metab. Clin. N. Am. 1994;23:359–377. doi: 10.1016/S0889-8529(18)30102-6.
    1. Takamori A., Yoshinaga Y., Ukai T., Nakamura H., Takamori Y., Izumi S., Shiraishi C., Hara Y. Topical application of glycyrrhetinic acid in the gingival sulcus inhibits attachment loss in lipopolysaccharide-induced experimental periodontitis in rats. J. Periodontal Res. 2018;53:422–429. doi: 10.1111/jre.12529.
    1. Kwon Y.J., Son D.H., Chung T.H., Lee Y.J. A Review of the Pharmacological Efficacy and Safety of Licorice Root from Corroborative Clinical Trial Findings. J. Med. Food. 2020;23:12–20. doi: 10.1089/jmf.2019.4459.
    1. Sidhu P., Shankargouda S., Rath A., Hesarghatta Ramamurthy P., Fernandes B., Kumar Singh A. Therapeutic benefits of liquorice in dentistry. J. Ayurveda Integr. Med. 2020;11:82–88. doi: 10.1016/j.jaim.2017.12.004.
    1. Ravindran P. Turmeric: The Genus Curcuma. Volume 1. CRC Press Taylor Fr. Group; Boca Raton, FL, USA: 2006. Turmeric—The golden spice of life; pp. 1–14.
    1. Govindarajan V.S. Turmeric—Chemistry, technology, and quality. Crit. Rev. Food Sci. Nutr. 1980;12:199–301. doi: 10.1080/10408398009527278.
    1. Araújo C.C., Leon L.L. Biological activities of Curcuma longa L. Mem. Inst. Oswaldo Cruz. 2001;96:723–728. doi: 10.1590/S0074-02762001000500026.
    1. Tilak J.C., Banerjee M., Mohan H., Devasagayam T.P. Antioxidant availability of turmeric in relation to its medicinal and culinary uses. Phytother. Res. 2004;18:798–804. doi: 10.1002/ptr.1553.
    1. Ammon H.P., Wahl M.A. Pharmacology of Curcuma longa. Planta Med. 1991;57:1–7. doi: 10.1055/s-2006-960004.
    1. Brouet I., Ohshima H. Curcumin, an anti-tumour promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochem. Biophys. Res. Commun. 1995;206:533–540. doi: 10.1006/bbrc.1995.1076.
    1. Dikshit M., Rastogi L., Shukla R., Srimal R.C. Prevention of ischaemia-induced biochemical changes by curcumin & quinidine in the cat heart. Indian J. Med. Res. 1995;101:31–35.
    1. Srinivasan M. Effect of curcumin on blood sugar as seen in a diabetic subject. Indian J. Med. Sci. 1972;26:269–270.
    1. Babu P.S., Srinivasan K. Influence of dietary curcumin and cholesterol on the progression of experimentally induced diabetes in albino rat. Mol. Cell. Biochem. 1995;152:13–21.
    1. Arun N., Nalini N. Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats. Plant Foods Hum. Nutr. 2002;57:41–52. doi: 10.1023/A:1013106527829.
    1. Kiso Y., Suzuki Y., Watanabe N., Oshima Y., Hikino H. Antihepatotoxic principles of Curcuma longa rhizomes. Planta Med. 1983;49:185–187. doi: 10.1055/s-2007-969845.
    1. Nirmala C., Puvanakrishnan R. Protective role of curcumin against isoproterenol induced myocardial infarction in rats. Mol. Cell. Biochem. 1996;159:85–93. doi: 10.1007/BF00420910.
    1. Venkatesan N. Curcumin attenuation of acute adriamycin myocardial toxicity in rats. Br. J. Pharmacol. 1998;124:425–427. doi: 10.1038/sj.bjp.0701877.
    1. Deodhar S.D., Sethi R., Srimal R.C. Preliminary study on antirheumatic activity of curcumin (diferuloyl methane) Indian J. Med. Res. 1980;71:632–634.
    1. Rao C.V., Rivenson A., Simi B., Reddy B.S. Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res. 1995;55:259–266.
    1. Limtrakul P., Lipigorngoson S., Namwong O., Apisariyakul A., Dunn F.W. Inhibitory effect of dietary curcumin on skin carcinogenesis in mice. Cancer Lett. 1997;116:197–203. doi: 10.1016/S0304-3835(97)00187-0.
    1. Goel A., Kunnumakkara A.B., Aggarwal B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol. 2008;75:787–809. doi: 10.1016/j.bcp.2007.08.016.
    1. Aggarwal B.B., Harikumar K.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol. 2009;41:40–59. doi: 10.1016/j.biocel.2008.06.010.
    1. Gupta S.C., Patchva S., Aggarwal B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J. 2013;15:195–218. doi: 10.1208/s12248-012-9432-8.
    1. Chaturvedi T.P. Uses of turmeric in dentistry: An update. Indian J. Dent. Res. Off. Publ. Indian Soc. Dent. Res. 2009;20:107–109. doi: 10.4103/0970-9290.49065.
    1. Nagpal M., Sood S. Role of curcumin in systemic and oral health: An overview. J. Nat. Sci. Biol. Med. 2013;4:3–7.
    1. Mali A.M., Behal R., Gilda S.S. Comparative evaluation of 0.1% turmeric mouthwash with 0.2% chlorhexidine gluconate in prevention of plaque and gingivitis: A clinical and microbiological study. J. Indian Soc. Periodontol. 2012;16:386–391. doi: 10.4103/0972-124X.100917.
    1. Waghmare P.F., Chaudhari A.U., Karhadkar V.M., Jamkhande A.S. Comparative evaluation of turmeric and chlorhexidine gluconate mouthwash in prevention of plaque formation and gingivitis: A clinical and microbiological study. J. Contemp. Dent. Pract. 2011;12:221–224.
    1. Muglikar S., Patil K.C., Shivswami S., Hegde R. Efficacy of curcumin in the treatment of chronic gingivitis: A pilot study. Oral Health Prev. Dent. 2013;11:81–86.
    1. Behal R., Mali A.M., Gilda S.S., Paradkar A.R. Evaluation of local drug-delivery system containing 2% whole turmeric gel used as an adjunct to scaling and root planing in chronic periodontitis: A clinical and microbiological study. J. Indian Soc. Periodontol. 2011;15:35–38.
    1. Wilken R., Veena M.S., Wang M.B., Srivatsan E.S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer. 2011;10:12. doi: 10.1186/1476-4598-10-12.
    1. World Health Organization . WHO Monographs on Selected Medicinal Plants. World Health Organization; Geneva, Switzerland: 1999. pp. 1–4.
    1. Cheng A.L., Hsu C.H., Lin J.K., Hsu M.M., Ho Y.F., Shen T.S., Ko J.Y., Lin J.T., Lin B.R., Ming-Shiang W., et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001;21:2895–2900.
    1. Shoba G., Joy D., Joseph T., Majeed M., Rajendran R., Srinivas P.S. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998;64:353–356. doi: 10.1055/s-2006-957450.
    1. Hata M., Sasaki E., Ota M., Fujimoto K., Yajima J., Shichida T., Honda M. Allergic contact dermatitis from curcumin (turmeric) Contact Dermat. 1997;36:107–108. doi: 10.1111/j.1600-0536.1997.tb00426.x.
    1. Swierczyńska M.K., Krecisz B. Occupational skin changes in persons working in contact with food spices. Med. Pr. 1998;49:187–190.
    1. Liddle M., Hull C., Liu C., Powell D. Contact urticaria from curcumin. Dermat. Contact Atopic Occup. Drug. 2006;17:196–197. doi: 10.2310/6620.2006.06004.
    1. Kandwal A., Mamgain R.K., Mamgain P. Comparative evaluation of turmeric gel with 2% chlorhexidine gluconate gel for treatment of plaque induced gingivitis: A randomized controlled clinical trial. Ayu. 2015;36:145–150. doi: 10.4103/0974-8520.175537.
    1. Singh V., Pathak A.K., Pal M., Sareen S., Goel K. Comparative evaluation of topical application of turmeric gel and 0.2% chlorhexidine gluconate gel in prevention of gingivitis. Natl. J. Maxillofac. Surg. 2015;6:67–71. doi: 10.4103/0975-5950.168238.
    1. Stoyell K.A., Mappus J.L., Gandhi M.A. Clinical efficacy of turmeric use in gingivitis: A comprehensive review. Complement. Ther. Clin. Pract. 2016;25:13–17. doi: 10.1016/j.ctcp.2016.08.004.
    1. Arunachalam L.T., Sudhakar U., Vasanth J., Khumukchum S., Selvam V.V. Comparison of anti-plaque and anti-gingivitis effect of curcumin and chlorhexidine mouth rinse in the treatment of gingivitis: A clinical and biochemical study. J. Indian Soc. Periodontol. 2017;21:478–483. doi: 10.4103/jisp.jisp_116_17.
    1. Chatterjee A., Debnath K., Rao N.K.H. A comparative evaluation of the efficacy of curcumin and chlorhexidine mouthrinses on clinical inflammatory parameters of gingivitis: A double-blinded randomized controlled clinical study. J. Indian Soc. Periodontol. 2017;21:132–137. doi: 10.4103/jisp.jisp_136_17.
    1. Xiao C.J., Yu X.J., Xie J.L., Liu S., Li S. Protective effect and related mechanisms of curcumin in rat experimental periodontitis. Head Face Med. 2018;14:12. doi: 10.1186/s13005-018-0169-1.

Source: PubMed

3
Prenumerera