Exosomes and Exosomal miRNA in Respiratory Diseases

Shamila D Alipoor, Esmaeil Mortaz, Johan Garssen, Masoud Movassaghi, Mehdi Mirsaeidi, Ian M Adcock, Shamila D Alipoor, Esmaeil Mortaz, Johan Garssen, Masoud Movassaghi, Mehdi Mirsaeidi, Ian M Adcock

Abstract

Exosomes are nanosized vesicles released from every cell in the body including those in the respiratory tract and lungs. They are found in most body fluids and contain a number of different biomolecules including proteins, lipids, and both mRNA and noncoding RNAs. Since they can release their contents, particularly miRNAs, to both neighboring and distal cells, they are considered important in cell-cell communication. Recent evidence has shown their possible importance in the pathogenesis of several pulmonary diseases. The differential expression of exosomes and of exosomal miRNAs in disease has driven their promise as biomarkers of disease enabling noninvasive clinical diagnosis in addition to their use as therapeutic tools. In this review, we summarize recent advances in this area as applicable to pulmonary diseases.

Conflict of interest statement

The authors declare that there are no competing interests regarding the publication of this paper.

Figures

Figure 1
Figure 1
Exosomes properties and function exosomes are secreted membrane vesicles released into the extracellular space and transfer proteins, lipids, nucleic acids, and other hosts' cellular content. The fusion of the exosome membrane with the target cell plasma membrane results in the release of exosome content into the target cell cytoplasm.
Figure 2
Figure 2
Structure and contents of exosomes: exosomes contain a plasma membrane-derived phospholipid bilayer membrane. Exosomal contents based on the cell type of origin include mRNA, miRNA, and DNA and proteins such as annexins, tetraspanins, MHC molecules, cytoskeletal proteins, enzymes, and signal transduction proteins.

References

    1. Mayeux R. Biomarkers: potential uses and limitations. NeuroRx. 2004;1(2):182–188. doi: 10.1602/neurorx.1.2.182.
    1. Gerstein M., Krebs W. A database of macromolecular motions. Nucleic Acids Research. 1998;26(18):4280–4290. doi: 10.1093/nar/26.18.4280.
    1. Angulo M., Lecuona E., Sznajder J. I. Role of MicroRNAs in lung disease. Archivos de Bronconeumología. 2012;48(9):325–330. doi: 10.1016/j.arbres.2012.04.011.
    1. Sessa R., Hata A. Role of microRNAs in lung development and pulmonary diseases. Pulmonary Circulation. 2013;3(2):315–328. doi: 10.4103/2045-8932.114758.
    1. Farazi T. A., Hoell J. I., Morozov P., Tuschl T. MicroRNAs in human cancer. In: Schmitz U., Wolkenhauer O., Vera J., editors. MicroRNA Cancer Regulation. Vol. 774. Berlin, Germany: Springer; 2013. pp. 1–20. (Advances in Experimental Medicine and Biology).
    1. Mendell J. T., Olson E. N. MicroRNAs in stress signaling and human disease. Cell. 2012;148(6):1172–1187. doi: 10.1016/j.cell.2012.02.005.
    1. Booton R., Lindsay M. A. Emerging role of microRNAs and long noncoding RNAs in respiratory disease. Chest. 2014;146(1):193–204. doi: 10.1378/chest.13-2736.
    1. Tüfekci K. U., Öner M. G., Meuwissen R. L. J., Genç Ş. The role of microRNAs in human diseases. Methods in Molecular Biology. 2014;1107:33–50. doi: 10.1007/978-1-62703-748-8_3.
    1. Cherni I., Weiss G. J. miRNAs in lung cancer: large roles for small players. Future Oncology. 2011;7(9):1045–1055. doi: 10.2217/fon.11.74.
    1. Hu G., Drescher K. M., Chen X.-M. Exosomal miRNAs: biological properties and therapeutic potential. Frontiers in Genetics. 2012;3, article 56 doi: 10.3389/fgene.2012.00056.
    1. Cheng L., Sharples R. A., Scicluna B. J., Hill A. F. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. Journal of Extracellular Vesicles. 2014;3 doi: 10.3402/jev.v3.23743.
    1. Eissa N. T. The exosome in lung diseases: message in a bottle. Journal of Allergy and Clinical Immunology. 2013;131(3):904–905. doi: 10.1016/j.jaci.2013.01.021.
    1. Lin J., Li J., Huang B., et al. Exosomes: novel biomarkers for clinical diagnosis. The Scientific World Journal. 2015;2015:8. doi: 10.1155/2015/657086.657086
    1. Raposo G., Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. The Journal of Cell Biology. 2013;200(4):373–383. doi: 10.1083/jcb.201211138.
    1. Kruh-Garcia N. A., Schorey J. S., Dobos K. M. Exosomes: New Tuberculosis Biomarkers-Prospects From the Bench to the Clinic. Rijeka, Croatia: INTECH; 2012.
    1. Bhatnagar S., Schorey J. S. Exosomes released from infected macrophages contain Mycobacterium avium glycopeptidolipids and are proinflammatory. The Journal of Biological Chemistry. 2007;282(35):25779–25789. doi: 10.1074/jbc.m702277200.
    1. Kourembanas S. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annual Review of Physiology. 2015;77:13–27. doi: 10.1146/annurev-physiol-021014-071641.
    1. Kim C.-H., Hong M.-J., Park S.-D., et al. Enhancement of anti-tumor immunity specific to murine glioma by vaccination with tumor cell lysate-pulsed dendritic cells engineered to produce interleukin-12. Cancer Immunology, Immunotherapy. 2006;55(11):1309–1319. doi: 10.1007/s00262-006-0134-x.
    1. Singh P. P., Smith V. L., Karakousis P. C., Schorey J. S. Exosomes isolated from mycobacteria-infected mice or cultured macrophages can recruit and activate immune cells in vitro and in vivo. Journal of Immunology. 2012;189(2):777–785. doi: 10.4049/jimmunol.1103638.
    1. Singh P. P., LeMaire C., Tan J. C., Zeng E., Schorey J. S. Exosomes released from m.tuberculosis infected cells can suppress ifn-γ mediated activation of naïve macrophages. PLoS ONE. 2011;6(4, article e18564) doi: 10.1371/journal.pone.0018564.
    1. Krek A., Grün D., Poy M. N., et al. Combinatorial microRNA target predictions. Nature Genetics. 2005;37(5):495–500. doi: 10.1038/ng1536.
    1. Valadi H., Ekström K., Bossios A., Sjöstrand M., Lee J. J., Lötvall J. O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology. 2007;9(6):654–659. doi: 10.1038/ncb1596.
    1. Mathivanan S., Simpson R. J. ExoCarta: a compendium of exosomal proteins and RNA. Proteomics. 2009;9(21):4997–5000. doi: 10.1002/pmic.200900351.
    1. Tickner J. A., Urquhart A. J., Stephenson S.-A., Richard D. J., O'Byrne K. J. Functions and therapeutic roles of exosomes in cancer. Frontiers in Oncology. 2014;4, article 127 doi: 10.3389/fonc.2014.00127.
    1. Sun T., Kalionis B., Lv G., Xia S., Gao W. Role of exosomal noncoding RNAs in lung carcinogenesis. BioMed Research International. 2015;2015, article 125807 doi: 10.1155/2015/125807.
    1. Eldh M. Exosomes and Exosomal RNA-A Way of Cell-to-Cell Communication. 2013.
    1. Staals R. H., Pruijn G. J. RNA Exosome. Springer; 2010. The human exosome and disease; pp. 132–142.
    1. Beatty W. L., Rhoades E. R., Ullrich H. J., Chatterjee D., Heuser J. E., Russell D. G. Trafficking and release of mycobacterial lipids from infected macrophages. Traffic. 2000;1(3):235–247. doi: 10.1034/j.1600-0854.2000.010306.x.
    1. Simpson R. J., Lim J. W. E., Moritz R. L., Mathivanan S. Exosomes: proteomic insights and diagnostic potential. Expert Review of Proteomics. 2009;6(3):267–283. doi: 10.1586/epr.09.17.
    1. Masyuk A. I., Masyuk T. V., LaRusso N. F. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases. Journal of Hepatology. 2013;59(3):621–625. doi: 10.1016/j.jhep.2013.03.028.
    1. Qazi K. R., Paredes P. T., Dahlberg B., Grunewald J., Eklund A., Gabrielsson S. Proinflammatory exosomes in bronchoalveolar lavage fluid of patients with sarcoidosis. Thorax. 2010;65(11):1016–1024. doi: 10.1136/thx.2009.132027.
    1. Skog J., Würdinger T., van Rijn S., et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology. 2008;10(12):1470–1476. doi: 10.1038/ncb1800.
    1. Tesselaar M. E. T., Romijn F. P. H. T. M., Van Der Linden I. K., Prins F. A., Bertina R. M., Osanto S. Microparticle-associated tissue factor activity: a link between cancer and thrombosis? Journal of Thrombosis and Haemostasis. 2007;5(3):520–527. doi: 10.1111/j.1538-7836.2007.02369.x.
    1. Kruh-Garcia N. A., Wolfe L. M., Chaisson L. H., et al. Detection of Mycobacterium tuberculosis peptides in the exosomes of patients with active and latent M. tuberculosis infection using MRM-MS. PLoS ONE. 2014;9(7) doi: 10.1371/journal.pone.0103811.e103811
    1. Wang J.-J., Chen C., Xie P.-F., Pan Y., Tan Y.-H., Tang L.-J. Proteomic analysis and immune properties of exosomes released by macrophages infected with Mycobacterium avium. Microbes and Infection. 2014;16(4):283–291. doi: 10.1016/j.micinf.2013.12.001.
    1. Liu R., Zhang C., Hu Z., et al. A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. European Journal of Cancer. 2011;47(5):784–791. doi: 10.1016/j.ejca.2010.10.025.
    1. Calin G. A., Croce C. M. MicroRNA signatures in human cancers. Nature Reviews Cancer. 2006;6(11):857–866. doi: 10.1038/nrc1997.
    1. Smalley D. M., Sheman N. E., Nelson K., Theodorescu D. Isolation and identification of potential urinary microparticle biomarkers of bladder cancer. Journal of Proteome Research. 2008;7(5):2088–2096. doi: 10.1021/pr700775x.
    1. Khalyfa A., Gozal D. Exosomal miRNAs as potential biomarkers of cardiovascular risk in children. Journal of Translational Medicine. 2014;12, article 162 doi: 10.1186/1479-5876-12-162.
    1. Mittelbrunn M., Gutiérrez-Vázquez C., Villarroya-Beltri C., et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nature Communications. 2011;2(1, article 282) doi: 10.1038/ncomms1285.
    1. Johnstone R. M. Exosomes biological significance: a concise review. Blood Cells, Molecules, and Diseases. 2006;36(2):315–321. doi: 10.1016/j.bcmd.2005.12.001.
    1. Delcayre A., Shu H., Le Pecq J.-B. Dendritic cell-derived exosomes in cancer immunotherapy: exploiting nature's antigen delivery pathway. Expert Review of Anticancer Therapy. 2005;5(3):537–547. doi: 10.1586/14737140.5.3.537.
    1. De Toro J., Herschlik L., Waldner C., Mongini C. Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Frontiers in Immunology. 2015;6, article 203 doi: 10.3389/fimmu.2015.00203.
    1. Andre F., Escudier B., Angevin E., Tursz T., Zitvogel L. Exosomes for cancer immunotherapy. Annals of Oncology. 2004;15(4):iv141–iv144. doi: 10.1093/annonc/mdh918.
    1. Escudier B., Dorval T., Chaput N., et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. Journal of Translational Medicine. 2005;3(1, article 10) doi: 10.1186/1479-5876-3-10.
    1. Lugini L., Cecchetti S., Huber V., et al. Immune surveillance properties of human NK cell-derived exosomes. The Journal of Immunology. 2012;189(6):2833–2842. doi: 10.4049/jimmunol.1101988.
    1. Théry C., Ostrowski M., Segura E. Membrane vesicles as conveyors of immune responses. Nature Reviews Immunology. 2009;9(8):581–593. doi: 10.1038/nri2567.
    1. Viaud S., Terme M., Flament C., et al. Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Rα . PLoS ONE. 2009;4(3, article e4942) doi: 10.1371/journal.pone.0004942.
    1. Näslund T. I., Gehrmann U., Qazi K. R., Karlsson M. C. I., Gabrielsson S. Dendritic cell-derived exosomes need to activate both T and B cells to induce antitumor immunity. The Journal of Immunology. 2013;190(6):2712–2719. doi: 10.4049/jimmunol.1203082.
    1. Gu X., Erb U., Büchler M. W., Zöller M. Improved vaccine efficacy of tumor exosome compared to tumor lysate loaded dendritic cells in mice. International Journal of Cancer. 2015;136(4):E74–E84. doi: 10.1002/ijc.29100.
    1. Zöller M. Exosomes in cancer disease. In: Grützmann R., Pilarsky C., editors. Cancer Gene Profiling: Methods and Protocols. Vol. 1381. 2016. pp. 111–149. (Methods in Molecular Biology).
    1. Zhang Y., Wang X.-F. A niche role for cancer exosomes in metastasis. Nature Cell Biology. 2015;17(6):709–711. doi: 10.1038/ncb3181.
    1. Sceneay J., Smyth M. J., Möller A. The pre-metastatic niche: finding common ground. Cancer and Metastasis Reviews. 2013;32(3-4):449–464. doi: 10.1007/s10555-013-9420-1.
    1. Hoshino A., Costa-Silva B., Shen T.-L., et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527(7578):329–335. doi: 10.1038/nature15756.
    1. Chahar H. S., Bao X., Casola A. Exosomes and their role in the life cycle and pathogenesis of RNA viruses. Viruses. 2015;7(6):3204–3225. doi: 10.3390/v7062770.
    1. van der Pol E., Böing A. N., Harrison P., Sturk A., Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacological Reviews. 2012;64(3):676–705. doi: 10.1124/pr.112.005983.
    1. Kruh-Garcia N. A., Wolfe L. M., Dobos K. M. Deciphering the role of exosomes in tuberculosis. Tuberculosis. 2015;95(1):26–30. doi: 10.1016/j.tube.2014.10.010.
    1. Anand P. K., Anand E., Bleck C. K. E., Anes E., Griffiths G. Exosomal hsp70 induces a pro-inflammatory response to foreign particles including mycobacteria. PLoS ONE. 2010;5(4) doi: 10.1371/journal.pone.0010136.e10136
    1. Hsu D.-H., Paz P., Villaflor G., et al. Exosomes as a tumor vaccine: enhancing potency through direct loading of antigenic peptides. Journal of Immunotherapy. 2003;26(5):440–450. doi: 10.1097/00002371-200309000-00007.
    1. Chaput N., Schartz N. E. C., Andre F., Zitvogel L. Exosomes for immunotherapy of cancer. Advances in Experimental Medicine and Biology. 2003;532:215–221. doi: 10.1007/978-1-4615-0081-0_17.
    1. Andre F., Andersen M., Wolfers J., et al. Exosomes in cancer immunotherapy: preclinical data. Advances in Experimental Medicine and Biology. 2001;495:349–354. doi: 10.1007/978-1-4615-0685-0_49.
    1. Fujita Y., Kosaka N., Araya J., Kuwano K., Ochiya T. Extracellular vesicles in lung microenvironment and pathogenesis. Trends in Molecular Medicine. 2015;21(9):533–542. doi: 10.1016/j.molmed.2015.07.004.
    1. Rose M. C., Voynow J. A. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiological Reviews. 2006;86(1):245–278. doi: 10.1152/physrev.00010.2005.
    1. Bourdonnay E., Zasłona Z., Penke L. R. K., et al. Transcellular delivery of vesicular SOCS proteins from macrophages to epithelial cells blunts inflammatory signaling. The Journal of Experimental Medicine. 2015;212(5):729–742. doi: 10.1084/jem.20141675.
    1. Ismail N., Wang Y., Dakhlallah D., et al. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood. 2013;121(6):984–995. doi: 10.1182/blood-2011-08-374793.
    1. Cordazzo C., Petrini S., Neri T., et al. Rapid shedding of proinflammatory microparticles by human mononuclear cells exposed to cigarette smoke is dependent on Ca2+ mobilization. Inflammation Research. 2014;63(7):539–547. doi: 10.1007/s00011-014-0723-7.
    1. Taylor D. D., Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecologic Oncology. 2008;110(1):13–21. doi: 10.1016/j.ygyno.2008.04.033.
    1. Xie Y., Todd N. W., Liu Z., et al. Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer. 2010;67(2):170–176. doi: 10.1016/j.lungcan.2009.04.004.
    1. Lässer C. Exosomal RNA as biomarkers and the therapeutic potential of exosome vectors. Expert Opinion on Biological Therapy. 2012;12(1):S189–S197. doi: 10.1517/14712598.2012.680018.
    1. Schorey J. S., Cheng Y., Singh P. P., Smith V. L. Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Reports. 2015;16(1):24–43. doi: 10.15252/embr.201439363.
    1. Velayati A. A., Abeel T., Shea T., et al. Populations of latent Mycobacterium tuberculosis lack a cell wall: isolation, visualization, and whole-genome characterization. International Journal of Mycobacteriology. 2016;5(1):66–73. doi: 10.1016/j.ijmyco.2015.12.001.
    1. Giri P. K., Kruh N. A., Dobos K. M., Schorey J. S. Proteomic analysis identifies highly antigenic proteins in exosomes from M. tuberculosis-infected and culture filtrate protein-treated macrophages. Proteomics. 2010;10(17):3190–3202. doi: 10.1002/pmic.200900840.
    1. Fortune S. M., Solache A., Jaeger A., et al. Mycobacterium tuberculosis inhibits macrophage responses to IFN-γ through myeloid differentiation factor 88-dependent and -independent mechanisms. The Journal of Immunology. 2004;172(10):6272–6280. doi: 10.4049/jimmunol.172.10.6272.
    1. Furci L., Schena E., Miotto P., Cirillo D. M. Alteration of human macrophages microRNA expression profile upon infection with Mycobacterium tuberculosis . International Journal of Mycobacteriology. 2013;2(3):128–134. doi: 10.1016/j.ijmyco.2013.04.006.
    1. Singh P. P., Li L., Schorey J. S. Exosomal RNA from Mycobacterium tuberculosis-infected cells is functional in recipient macrophages. Traffic. 2015;16(6):555–571. doi: 10.1111/tra.12278.
    1. Pearson M. Is the primary mechanism underlying COPD: inflammation or ischaemia? COPD. 2013;10(4):536–541. doi: 10.3109/15412555.2013.763781.
    1. Barnes P. J., Shapiro S. D., Pauwels R. A. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. European Respiratory Journal. 2003;22(4):672–688. doi: 10.1183/09031936.03.00040703.
    1. MacNee W., Donaldson K. Mechanism of lung injury caused by PM10 and ultrafine particles with special reference to COPD. The European Respiratory Journal. Supplement. 2003;40:47s–51s.
    1. Di Stefano A., Caramori G., Ricciardolo F. L. M., Capelli A., Adcock I. M., Donner C. F. Cellular and molecular mechanisms in chronic obstructive pulmonary disease: an overview. Clinical and Experimental Allergy. 2004;34(8):1156–1167. doi: 10.1111/j.1365-2222.2004.02030.x.
    1. Kratzer A., Chu H. W., Salys J., et al. Endothelial cell adhesion molecule CD146: implications for its role in the pathogenesis of COPD. The Journal of Pathology. 2013;230(4):388–398. doi: 10.1002/path.4197.
    1. Takahashi T., Kubo H. The role of microparticles in chronic obstructive pulmonary disease. International Journal of Chronic Obstructive Pulmonary Disease. 2014;9:303–314. doi: 10.2147/copd.s38931.
    1. Li C.-J., Liu Y., Chen Y., Yu D., Williams K. J., Liu M.-L. Novel proteolytic microvesicles released from human macrophages after exposure to tobacco smoke. American Journal of Pathology. 2013;182(5):1552–1562. doi: 10.1016/j.ajpath.2013.01.035.
    1. Moon H.-G., Kim S.-H., Gao J., et al. CCN1 secretion and cleavage regulate the lung epithelial cell functions after cigarette smoke. American Journal of Physiology—Lung Cellular and Molecular Physiology. 2014;307(4):L326–L337. doi: 10.1152/ajplung.00102.2014.
    1. Chew L. P., Huttenlocher D., Kedem K., Kleinberg J. Fast detection of common geometric substructure in proteins. Journal of Computational Biology. 1999;6(3-4):313–325. doi: 10.1089/106652799318292.
    1. Fujita Y., Araya J., Ochiya T. Extracellular vesicles in smoking-related lung diseases. Oncotarget. 2015;6(41):43144–43145. doi: 10.18632/oncotarget.6556.
    1. Letsiou E., Sammani S., Zhang W., et al. Pathologic mechanical stress and endotoxin exposure increases lung endothelial microparticle shedding. American Journal of Respiratory Cell and Molecular Biology. 2015;52(2):193–204. doi: 10.1165/rcmb.2013-0347OC.
    1. Sorroche P. B., Fernández Acquier M., López Jove O., et al. Alpha-1 antitrypsin deficiency in COPD patients: a cross-sectional study. Archivos de Bronconeumología. 2015;51(11):539–543. doi: 10.1016/j.arbr.2015.09.013.
    1. Lockett A. D., Brown M. B., Santos-Falcon N., et al. Active trafficking of alpha 1 antitrypsin across the lung endothelium. PLoS ONE. 2014;9(4) doi: 10.1371/journal.pone.0093979.e93979
    1. Sohal S. S., Walters E. H. Role of epithelial mesenchymal transition (EMT) in chronic obstructive pulmonary disease (COPD) Respiratory Research. 2013;14, article 120 doi: 10.1186/1465-9921-14-120.
    1. Wang Q., Wang Y., Zhang Y., Zhang Y., Xiao W. The role of uPAR in epithelial-mesenchymal transition in small airway epithelium of patients with chronic obstructive pulmonary disease. Respiratory Research. 2013;14(1, article 67) doi: 10.1186/1465-9921-14-67.
    1. Vella L. J. The emerging role of exosomes in epithelial-mesenchymal-transition in cancer. Frontiers in Oncology. 2014;4, article 361 doi: 10.3389/fonc.2014.00361.
    1. Bozinovski S., Vlahos R., Anthony D., et al. COPD and squamous cell lung cancer: aberrant inflammation and immunity is the common link. British Journal of Pharmacology. 2016;173(4):638–648. doi: 10.1111/bph.13198.
    1. De-Torres J. P., Wilson D. O., Sanchez-Salcedo P., et al. Lung cancer in patients with chronic obstructive pulmonary disease: development and validation of the COPD lung cancer screening score. American Journal of Respiratory and Critical Care Medicine. 2015;191(3):285–291. doi: 10.1164/rccm.201407-1210oc.
    1. Barnes P. J., Adcock I. M. Chronic obstructive pulmonary disease and lung cancer: a lethal association. American Journal of Respiratory and Critical Care Medicine. 2011;184(8):866–867. doi: 10.1164/rccm.201108-1436ed.
    1. de Torres J., Marin J., Casanova C., et al. Lung cancer in patients with COPD: incidence and predicting factors. European Respiratory Journal. 2011;38(supplement 55)p2728
    1. Evans M. J., Fanucchi M. V., Plopper C. G., Hyde D. M. Postnatal development of the lamina reticularis in primate airways. The Anatomical Record. 2010;293(6):947–954. doi: 10.1002/ar.20824.
    1. Evans M. J., Van Winkle L. S., Fanucchi M. V., Plopper C. G. The attenuated fibroblast sheath of the respiratory tract epithelial-mesenchymal trophic unit. American Journal of Respiratory Cell and Molecular Biology. 1999;21(6):655–657. doi: 10.1165/ajrcmb.21.6.3807.
    1. Donaldson A., Natanek S. A., Lewis A., et al. Increased skeletal muscle-specific microRNA in the blood of patients with COPD. Thorax. 2013;68(12):1140–1149. doi: 10.1136/thoraxjnl-2012-203129.
    1. Burke H., Spalluto C. M., Cellura D., Staples K. J., Wilkinson T. M. Role of exosomal microRNA in driving skeletal muscle wasting in COPD. European Respiratory Journal. 2015;46, supplement 59 doi: 10.1183/13993003.congress-2015.oa2930.
    1. Maertzdorf J., Weiner J., III, Mollenkopf H.-J., et al. Common patterns and disease-related signatures in tuberculosis and sarcoidosis. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(20):7853–7858. doi: 10.1073/pnas.1121072109.
    1. Crouser E. D., Julian M. W., Crawford M., et al. Differential expression of microRNA and predicted targets in pulmonary sarcoidosis. Biochemical and Biophysical Research Communications. 2012;417(2):886–891. doi: 10.1016/j.bbrc.2011.12.068.
    1. Jazwa A., Kasper L., Bak M., et al. Differential inflammatory microRNA and cytokine expression in pulmonary sarcoidosis. Archivum Immunologiae et Therapiae Experimentalis. 2015;63(2):139–146. doi: 10.1007/s00005-014-0315-9.
    1. Abd-El-Fattah A. A., Sadik N. A. H., Shaker O. G., Aboulftouh M. L. Differential microRNAs expression in serum of patients with lung cancer, pulmonary tuberculosis, and pneumonia. Cell Biochemistry and Biophysics. 2013;67(3):875–884. doi: 10.1007/s12013-013-9575-y.
    1. Kishore A., Navratilova Z., Kolek V., Petrek M. Detection of exosomal miRNA in pulmonary sarcoidosis. European Respiratory Journal. 2014;44(supplement 58, article 48)
    1. Lambrecht B. N., Hammad H. The immunology of asthma. Nature Immunology. 2015;16(1):45–56. doi: 10.1038/ni.3049.
    1. Fujita Y., Yoshioka Y., Ito S., Araya J., Kuwano K., Ochiya T. Intercellular communication by extracellular vesicles and their MicroRNAs in Asthma. Clinical Therapeutics. 2014;36(6):873–881. doi: 10.1016/j.clinthera.2014.05.006.
    1. Admyre C., Telemo E., Almqvist N., et al. Exosomes—nanovesicles with possible roles in allergic inflammation. Allergy. 2008;63(4):404–408. doi: 10.1111/j.1398-9995.2007.01600.x.
    1. Admyre C., Grunewald J., Thyberg J., et al. Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. European Respiratory Journal. 2003;22(4):578–583. doi: 10.1183/09031936.03.00041703.
    1. Mazzeo C., Cañas J. A., Zafra M. P., et al. Exosome secretion by eosinophils: a possible role in asthma pathogenesis. Journal of Allergy and Clinical Immunology. 2015;135(6):1603–1613. doi: 10.1016/j.jaci.2014.11.026.
    1. Prado N., Marazuela E. G., Segura E., et al. Exosomes from bronchoalveolar fluid of tolerized mice prevent allergic reaction. The Journal of Immunology. 2008;181(2):1519–1525. doi: 10.4049/jimmunol.181.2.1519.
    1. Torregrosa Paredes P., Esser J., Admyre C., et al. Bronchoalveolar lavage fluid exosomes contribute to cytokine and leukotriene production in allergic asthma. Allergy. 2012;67(7):911–919. doi: 10.1111/j.1398-9995.2012.02835.x.
    1. Kulshreshtha A., Ahmad T., Agrawal A., Ghosh B. Proinflammatory role of epithelial cell–derived exosomes in allergic airway inflammation. Journal of Allergy and Clinical Immunology. 2013;131(4):1194–1203.e14. doi: 10.1016/j.jaci.2012.12.1565.
    1. Levänen B., Bhakta N. R., Paredes P. T., et al. Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. The Journal of Allergy & Clinical Immunology. 2013;131(3):894–903.e8. doi: 10.1016/j.jaci.2012.11.039.
    1. Lee C., Mitsialis S. A., Aslam M., et al. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation. 2012;126(22):2601–2611. doi: 10.1161/CIRCULATIONAHA.112.114173.
    1. Moon H., Cao Y., Yang J., Lee J. H., Choi H. S., Jin Y. Lung epithelial cell-derived extracellular vesicles activate macrophage-mediated inflammatory responses via ROCK1 pathway. Cell Death and Disease. 2015;6(12, article e2016) doi: 10.1038/cddis.2015.282.
    1. Ley B., Collard H. R., King T. E., Jr. Clinical course and prediction of survival in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2011;183(4):431–440. doi: 10.1164/rccm.201006-0894CI.
    1. Minnis P., Kane R., Anglin R., et al. Serum exosomes from IPF patients display a fibrotic miRNA profile that correlates to clinical measures of disease severity. European Respiratory Journal. 2015;46(supplement 59) doi: 10.1183/13993003.congress-2015.pa3845.PA3845
    1. Vituret C., Gallay K., Confort M.-P., et al. Transfer of the cystic fibrosis transmembrane conductance regulator to human cystic fibrosis cells mediated by extracellular vesicles. Human Gene Therapy. 2016;27(2):166–183. doi: 10.1089/hum.2015.144.
    1. Porro C., Lepore S., Trotta T., et al. Isolation and characterization of microparticles in sputum from cystic fibrosis patients. Respiratory Research. 2010;11(1, article 94) doi: 10.1186/1465-9921-11-94.
    1. Szul T., Bratcher P. E., Fraser K. B., et al. Toll-like receptor 4 engagement mediates prolyl endopeptidase release from airway epithelia via exosomes. American Journal of Respiratory Cell and Molecular Biology. 2016;54(3):359–369. doi: 10.1165/rcmb.2015-0108oc.
    1. Hu G., Gong A.-Y., Roth A. L., et al. Release of luminal exosomes contributes to TLR4-mediated epithelial antimicrobial defense. PLoS Pathogens. 2013;9(4) doi: 10.1371/journal.ppat.1003261.e1003261
    1. Kesimer M., Gupta R. Physical characterization and profiling of airway epithelial derived exosomes using light scattering. Methods. 2015;87:59–63. doi: 10.1016/j.ymeth.2015.03.013.
    1. Arifuzzaman M., Haridass P., Dang H., et al. C60. All About Cystic Fibrosis. American Thoracic Society International Conference Abstracts; 2016. Qualitative and quantitative changes of gel forming mucins and exosomes in response to infection and inflammation in the airways; p. p. A5565.
    1. Huang L., Ma W., Ma Y., Feng D., Chen H., Cai B. Exosomes in mesenchymal stem cells, a new therapeutic strategy for cardiovascular diseases? International Journal of Biological Sciences. 2015;11(2):238–245. doi: 10.7150/ijbs.10725.
    1. Wilson J. G., Liu K. D., Zhuo H., et al. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. The Lancet Respiratory Medicine. 2015;3(1):24–32. doi: 10.1016/s2213-2600(14)70291-7.
    1. Zhu Y.-G., Feng X.-M., Abbott J., et al. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. STEM CELLS. 2014;32(1):116–125. doi: 10.1002/stem.1504.
    1. Morse M. A., Garst J., Osada T., et al. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. Journal of Translational Medicine. 2005;3(1, article 9) doi: 10.1186/1479-5876-3-9.

Source: PubMed

3
Prenumerera