miR-204-containing exosomes ameliorate GVHD-associated dry eye disease

Tian Zhou, Chang He, Peilong Lai, Ziqi Yang, Yan Liu, Huiyi Xu, Xiaojing Lin, Biyan Ni, Rong Ju, Wei Yi, Lingyi Liang, Duanqing Pei, Charles E Egwuagu, Xialin Liu, Tian Zhou, Chang He, Peilong Lai, Ziqi Yang, Yan Liu, Huiyi Xu, Xiaojing Lin, Biyan Ni, Rong Ju, Wei Yi, Lingyi Liang, Duanqing Pei, Charles E Egwuagu, Xialin Liu

Abstract

Graft-versus-host disease (GVHD)–associated dry eye disease is characterized by extensive inflammatory destruction in the ocular surface and causes unbearable pain and visual impairment. Current treatments provide limited benefits. Here, we report that exosomes from mesenchymal stromal cells (MSC-exo) administered as eye drops notably alleviate GVHD-associated dry eye disease by suppressing inflammation and improving epithelial recovery in mice and humans. In a prospective clinical trial, 28 eyes with refractory GVHD–dry eye disease exhibited substantial relief after MSC-exo treatment, showing reduced fluorescein scores, longer tear-film breakup time, increased tear secretion, and lower OSDI scores. Mechanistically, MSC-exo reprogramed proinflammatory M1 macrophages toward the immunosuppressive M2 via miR-204–mediated targeting of the IL-6/IL-6R/Stat3 pathway. Blockade of miR-204 abolished the effects of MSC-exo, while overloading L929-exo with miR-204 markedly attenuated dry eye. Thus, this study suggests that MSC-exo are efficacious in treating GVHD-associated dry eye disease and highlights miR-204 as a potential therapeutic agent.

Figures

Fig. 1.. Topical administration of MSC-exo alleviated…
Fig. 1.. Topical administration of MSC-exo alleviated dry eye symptoms in BAC-stimulated mice.
(A) Representative images of slit lamp and fluorescein staining showing severe corneal edema and obvious epithelial defects (detected by fluorescein staining) in the eyes of BAC-stimulated mice treated with L929-exo or PBS. In contrast, BAC-stimulated mice treated with MSC-exo eye drops presented with transparent cornea and reduced fluorescein staining areas, similar to the PBS-control normal mouse eye. Unexpectedly, mice treated with artificial tears did not show similar reduction of corneal edema and epithelial defects. (B) Fluorescein staining scores of BAC-stimulated mice after treatment with MSC-exo or L929-exo. n = 12 mice, one-way ANOVA and Tukey’s post hoc test. (C) Cotton thread test showed substantially increased tear volume in BAC-stimulated mice treated with MSC-exo compared to PBS-, L929-exo–, or artificial tear–treated BAC mice. n = 12 mice, one-way ANOVA and Tukey’s post hoc test. n.s., not significant. **P < 0.01 and ***P < 0.001.
Fig. 2.. The GVHD-associated dry eye disease…
Fig. 2.. The GVHD-associated dry eye disease was recovered by MSC-exo eye drops.
(A) Slit lamp and fluorescein staining showing the representative ocular changes of hPBMC-induced GVHD in mice. The extensive epithelial defects were observed in the eyes of GVHD mice treated with L929-exo, while the MSC-exo eye drop group presented with reduced fluorescein staining areas. (B) The equal fluorescein staining scores in the experiment groups before any treatments indicate the baseline. After MSC-exo treatment, the score notably decreased, while there were no statistical differences between artificial tears and L929-exo. n = 8 mice, one-way ANOVA and Tukey’s post hoc test. (C) MSC-exo, but not artificial tear treatment, could increase tear volume. n = 8 mice, one-way ANOVA and Tukey’s post hoc test. *P < 0.05, **P < 0.01, and ***P < 0.001.
Fig. 3.. MSC-exo suppressed dry eye symptoms…
Fig. 3.. MSC-exo suppressed dry eye symptoms in patients with GVHD-associated dry eye disease.
(A) Representative images of ocular anterior segment under slit lamp and fluorescein examination before and 14 days after MSC-exo treatment. All 28 enrolled eyes with refractory GVHD–associated dry eye disease had no response to topical steroid, artificial tears, or even autologous serum. After MSC-exo eye drop usage, dry eye symptoms and pink eye were alleviated, and the cornea was more transparent with less punctate erosion areas, indicating that MSC-exo can exert a potent antixerophthalmic effect in humans. (B) The relevant information and symptom descriptions of the enrolled patients. (C) Fluorescein scores of individual eye with MSC-exo treatment at D0 and D14 showed decreased trend of fluorescein score in all eyes. (D) After 14-day usage of MSC-exo eye drops, more than half of the enrolled eyes presented with increased tear volume by Schirmer’s test. (E) More stable tear film was observed after MSC-exo treatment with increased tear-film breakup time. (F) Except for two patients, the others reported amelioration of dryness symptoms and improved quality of life, as reflected by decreased OSDI scores after MSC-exo treatment. (G) MSC-exo treatment played no obvious impacts on intraocular pressure. (C to G) n = 28 eyes (14 patients), paired Student’s t tests. *P < 0.05 and ***P < 0.001.
Fig. 4.. MSC-exo could suppress the corneal…
Fig. 4.. MSC-exo could suppress the corneal inflammation during dry eye.
(A) Corneal sections by hematoxylin and eosin staining revealed substantial loss of epithelium in the PBS and L929-exo treatment groups in BAC model, with reduced thicknesses of the total central cornea and the epithelium layer. After MSC-exo treatment, the BAC-stimulated cornea exhibited a regular and well-organized corneal structure, with corneal thickness recovery. n = 6 eyes, one-way ANOVA and Tukey’s post hoc test. Scale bar, 50 μm. (B) Immunofluorescence of corneal section revealed decreased TUNEL+ corneal cells, increased Ki-67+ proliferative cells, and less CD11b+ macrophage infiltration in the MSC-exo group in comparison to the PBS or L929-exo treatment group. n = 3 eyes, one-way ANOVA and Tukey’s post hoc test. Scale bar, 50 μm. (C) In comparison to the L929-exo group, the MSC-exo group displayed reduced levels of proinflammatory cytokines, including Il-6, Il-1β, and Il-17a. n = 6 eyes, unpaired Student’s t test. *P < 0.05, **P < 0.01, and ***P < 0.001.
Fig. 5.. Macrophages were reprogrammed by MSC-exo…
Fig. 5.. Macrophages were reprogrammed by MSC-exo from M1 to M2 phenotype in vivo and in vitro.
(A) CD9+ exosomes were isolated from MSCs transfected with CD9-Tdtomato vector and administered as eye drops to BAC-stimulated mice. Immunochemical analysis of corneal whole mounts detected the colocalization of CD9-Tdtomato-MSC-exo with CD11b+ macrophages, suggesting that macrophages were targets of MCS-exo in the cornea. Scale bar, 10 μm. (B) Detection of reduced numbers of CD68+CD11b+ activated macrophages in MSC-exo–treated corneal flat mounts. Scale bar, 50 μm. (C) Representative cytometry plots and graphs of CD11b+ macrophages in the cornea of BAC-stimulated mice. Quadrants show percent CD11c-, CD86-, CD206-, and/or CD11b-expressing cells. n = 12 eyes (four corneas mixed in one sample), one-way ANOVA and Tukey’s post hoc test. (D) The immunofluorescence of M1 and M2 marker (CD86 and CD206, respectively) on cultured raw264.7 macrophages. Scale bar, 50 μm. n = 3, one-way ANOVA and Tukey’s post hoc test. (E) Western blot shows decreased expression of CD86, with increased Arg1 and CD206 expression after MSC-exo treatment in H2O2-stimulated raw264.7 cells. n = 3, one-way ANOVA and Tukey’s post hoc test. *P < 0.05, **P < 0.01, and ***P < 0.001. DAPI, 4′,6-diamidino-2-phenylindole.
Fig. 6.. miR-204 was required for the…
Fig. 6.. miR-204 was required for the antixerophthalmic effect of MSC-exo.
(A) miRNA profiling assays were performed on L929-exo and MSC-exo and GO analysis of the target genes of differentially expressed miRNAs in various processes. (B) Differentially up-regulated miRs in MSC-exo that target genes involved in the regulation of immune responses. (C) Volcano plot of differentially expressed miRNAs in MSC-exo than L929-exo. Red dots, up-regulated miRNAs; blue dots, down-regulated miRNAs with a >2.0-fold change. (D) qPCR analysis of miR-204-5p expression in the cornea tissue after MSC-exo treatment. n = 6 eyes, one-way ANOVA and Tukey’s post hoc test. (E) Slit lamp and fluorescein staining analysis of BAC-stimulated mice treated with PBS or exosomes indicated in the figure. Fluorescein staining scores are indicated in the right. L929-miR-204-exo showed similar therapeutic potential with the MSC-exo group. n = 10 mice, one-way ANOVA and Tukey’s post hoc test. ***P < 0.001.
Fig. 7.. miR-204 was the candidate mediator…
Fig. 7.. miR-204 was the candidate mediator of MSC-exo for macrophage reprogramming from M1 to M2 by targeting IL-6R signaling.
(A) L929-miR-204-exo and MSC-exo treatments suppressed the CD86+ M1 macrophages and promoted CD206+ M2 ones in the BAC-induced corneal whole-mount staining. Scale bar, 50 μm. (B) Flow cytometry showed that, in the BAC-induced dry eye corneas, the percentage of CD11b+CD11c− macrophages decreased after L929-miR-204-exo or MSC-exo treatment compared with L929-miR-NC-exo controls, with more prominent reduction in the MSC-exo group. In addition, both treatments inhibited the percentage of CD11b+CD11c−CD86+ M1 macrophages to a similar extent. n = 12 eyes (four corneas mixed in one sample), one-way ANOVA and Tukey’s post hoc test. (C) mRNA expressions of IL-6, IL-1β, and CD86 were decreased after L929-miR-204-exo and MSC-exo treatments in comparison to the L929-miR-NC-exo group. n = 6 eyes, one-way ANOVA and Tukey’s post hoc test. (D) Predicted regulatory networks of genes targeted by miR-204. (E) Luciferase reporter assay demonstrating direct interaction of miR-204-5p with 3′UTR of the Il-6r gene. One-way ANOVA and Tukey’s post hoc test. n = 3. *P < 0.05, **P < 0.01, and ***P < 0.001. (F) Western blot analysis showing the suppression of IL-6Rα, IL-6, and p-Stat3 by mmu-miR-204-5p precursor.
Fig. 8.. Schematic drawing showing that MSC-exo…
Fig. 8.. Schematic drawing showing that MSC-exo eye drops alleviate GVHD-associated dry eye disease by reprogramming M1 macrophages to M2 via miR-204–mediated targeting of IL-6R/Stat3 pathway.
The miR-204 in MSC-exo directly targeted the Il-6r gene and suppressed the activation of IL-6R/Stat3 pathway, resulting in the M1 macrophages in the dry eye cornea to reprogram toward immunosuppressive M2 phenotype. MSC-exo, which are enriched in miR-204, could restore the ocular surface homeostasis by switching M1 to M2 and ameliorate the inflammatory destruction during the GVHD-associated dry eye disease.

References

    1. Clayton J. A., Dry eye. N. Engl. J. Med. 378, 2212–2223 (2018).
    1. Herretes S., Ross D. B., Duffort S., Barreras H., Yaohong T., Saeed A. M., Murillo J. C., Komanduri K. V., Levy R. B., Perez V. L., Recruitment of donor T cells to the eyes during ocular GVHD in recipients of MHC-matched allogeneic hematopoietic stem cell transplants. Invest. Ophthalmol. Vis. Sci. 56, 2348–2357 (2015).
    1. Giannaccare G., Pellegrini M., Bernabei F., Scorcia V., Campos E., Ocular surface system alterations in ocular graft-versus-host disease: All the pieces of the complex puzzle. Graefes Arch. Clin. Exp. Ophthalmol. 257, 1341–1351 (2019).
    1. Royer D. J., Echegaray-Mendez J., Lin L., Gmyrek G. B., Mathew R., Saban D. R., Perez V. L., Carr D. J., Complement and CD4+ T cells drive context-specific corneal sensory neuropathy. eLife 8, e48378 (2019).
    1. Hassan A. S., Clouthier S. G., Ferrara J. L. M., Stepan A., Mian S. I., Ahmad A. Z., Elner V. M., Lacrimal gland involvement in graft-versus-host disease: A murine model. Invest. Ophthalmol. Vis. Sci. 46, 2692–2697 (2005).
    1. Maeda Y., Reddy P., Lowler K. P., Liu C., Bishop D. K., Ferrara J. L. M., Critical role of host γδ T cells in experimental acute graft-versus-host disease. Blood 106, 749–755 (2005).
    1. Uchino M., Ogawa Y., Kawai M., Shimada H., Kameyama K., Okamoto S., Dogru M., Tsubota K., Ocular complications in a child with acute graft-versus-host disease following cord blood stem cell transplantation: Therapeutic challenges. Acta Ophthalmol. Scand. 84, 545–548 (2006).
    1. Kheirkhah A., Qazi Y., Arnoldner M. A., Suri K., Dana R., In vivo confocal microscopy in dry eye disease associated with chronic graft-versus-host disease. Invest. Ophthalmol. Vis. Sci. 57, 4686–4691 (2016).
    1. Kheirkhah A., Rahimi Darabad R., Cruzat A., Hajrasouliha A. R., Witkin D., Wong N., Dana R., Hamrah P., Corneal epithelial immune dendritic cell alterations in subtypes of dry eye disease: A pilot in vivo confocal microscopic study. Invest. Ophthalmol. Vis. Sci. 56, 7179–7185 (2015).
    1. Rojas B., Cuhna R., Zafirakis P., Ramirez J. M., Lizan-garciía M., Zhao T., Foster C. S., Cell populations and adhesion molecules expression in conjunctiva before and after bone marrow transplantation. Exp. Eye Res. 81, 313–325 (2005).
    1. Ogawa Y., Kuwana M., Yamazaki K., Mashima Y., Yamada M., Mori T., Okamoto S., Oguchi Y., Kawakami Y., Periductal area as the primary site for T-cell activation in lacrimal gland chronic graft-versus-host disease. Invest. Ophthalmol. Vis. Sci. 44, 1888–1896 (2003).
    1. Sinha S., Singh R. B., Dohlman T. H., Wang M., Taketani Y., Yin J., Dana R., Prevalence of persistent corneal epithelial defects in chronic ocular graft-versus-host disease. Am. J. Ophthalmol. 218, 296–303 (2020).
    1. Ogawa Y., Kodama H., Kameyama K., Yamazaki K., Yasuoka H., Okamoto S., Inoko H., Kawakami Y., Kuwana M., Donor fibroblast chimerism in the pathogenic fibrotic lesion of human chronic graft-versus-host disease. Invest. Ophthalmol. Vis. Sci. 46, 4519–4527 (2005).
    1. Janin A., Facon T., Castier P., Mancel E., Jouet J. P., Gosselin B., Pseudomembranous conjunctivitis following bone marrow transplantation: Immunopathological and ultrastructural study of one case. Hum. Pathol. 27, 307–309 (1996).
    1. Pellegrini M., Bernabei F., Barbato F., Arpinati M., Giannaccare G., Versura P., Bonifazi F., Incidence, risk factors and complications of ocular graft-versus-host disease following hematopoietic stem cell transplantation. Am. J. Ophthalmol. 227, 25–34 (2021).
    1. Balaram M., Rashid S., Dana R., Chronic ocular surface disease after allogeneic bone marrow transplantation. Ocul. Surf. 3, 203–210 (2005).
    1. Shi Y., Wang Y., Li Q., Liu K., Hou J., Shao C., Wang Y., Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat. Rev. Nephrol. 14, 493–507 (2018).
    1. Song N., Scholtemeijer M., Shah K., Mesenchymal stem cell immunomodulation: Mechanisms and therapeutic potential. Trends Pharmacol. Sci. 41, 653–664 (2020).
    1. Thery C., Zitvogel L., Amigorena S., Exosomes: Composition, biogenesis and function. Nat. Rev. Immunol. 2, 569–579 (2002).
    1. Jeppesen D. K., Fenix A. M., Franklin J. L., Higginbotham J. N., Zhang Q., Zimmerman L. J., Liebler D. C., Ping J., Liu Q., Evans R., Fissell W. H., Patton J. G., Rome L. H., Burnette D. T., Coffey R. J., Reassessment of exosome composition. Cell 177, 428–445.e18 (2019).
    1. Casado-Diaz A., Quesada-Gomez J. M., Dorado G., Extracellular vesicles derived from mesenchymal stem cells (MSC) in regenerative medicine: Applications in skin wound healing. Front. Bioeng. Biotechnol. 8, 146 (2020).
    1. Doeppner T. R., Bähr M., Hermann D. M., Giebel B., Concise review: Extracellular vesicles overcoming limitations of cell therapies in ischemic stroke. Stem Cells Transl. Med. 6, 2044–2052 (2017).
    1. Kalluri R., LeBleu V. S., The biology, function, and biomedical applications of exosomes. Science 367, eaau6977 (2020).
    1. Ouyang W., Wu Y., Lin X., Wang S., Yang Y., Tang L., Liu Z., Wu J., Huang C., Zhou Y., Zhang X., Hu J., Liu Z., Role of CD4+ T helper cells in the development of BAC-induced dry eye syndrome in mice. Invest. Ophthalmol. Vis. Sci. 62, 25 (2021).
    1. Lin Z., Liu X., Zhou T., Wang Y., Bai L., He H., Liu Z., A mouse dry eye model induced by topical administration of benzalkonium chloride. Mol. Vis. 17, 257–264 (2011).
    1. Samaeekia R., Rabiee B., Putra I., Shen X., Park Y. J., Hematti P., Eslani M., Djalilian A. R., Effect of human corneal mesenchymal stromal cell-derived exosomes on corneal epithelial wound healing. Invest. Ophthalmol. Vis. Sci. 59, 5194–5200 (2018).
    1. Yin L., Wang X. J., Chen D. X., Liu X. N., Wang X. J., Humanized mouse model: A review on preclinical applications for cancer immunotherapy. Am. J. Cancer Res. 10, 4568–4584 (2020).
    1. Wu X., Li Y., Huang B., Ma X., Zhu L., Zheng N., Xu S., Nawaz W., Xu C., Wu Z., A single-domain antibody inhibits SFTSV and mitigates virus-induced pathogenesis in vivo. JCI Insight 5, e136855 (2020).
    1. Zhou D., Chen Y. T., Chen F., Gallup M., Vijmasi T., Bahrami A. F., Noble L. B., van Rooijen N., McNamara N. A., Critical involvement of macrophage infiltration in the development of Sjögren’s syndrome-associated dry eye. Am. J. Pathol. 181, 753–760 (2012).
    1. You I. C., Coursey T. G., Bian F., Barbosa F. L., de Paiva C. S., Pflugfelder S. C., Macrophage phenotype in the ocular surface of experimental murine dry eye disease. Arch. Immunol. Ther. Exp. (Warsz.) 63, 299–304 (2015).
    1. Pajarinen J., Lin T., Gibon E., Kohno Y., Maruyama M., Nathan K., Lu L., Yao Z., Goodman S. B., Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials 196, 80–89 (2019).
    1. Lee H. S., Choi J.-H., Cui L., Li Y., Yang J. M., Yun J.-J., Jung J. E., Choi W., Yoon K. C., Anti-inflammatory and antioxidative effects of Camellia japonica on human corneal epithelial cells and experimental dry eye: In vivo and in vitro study. Invest. Ophthalmol. Vis. Sci. 58, 1196–1207 (2017).
    1. Robson A., Exosome-derived microRNAs improve cardiac function. Nat. Rev. Cardiol. 18, 150–151 (2021).
    1. Latta L., Ludwig N., Krammes L., Stachon T., Fries F. N., Mukwaya A., Szentmary N., Seitz B., Wowra B., Kahraman M., Keller A., Meese E., Lagali N., Kasmann-Kellner B., Abnormal neovascular and proliferative conjunctival phenotype in limbal stem cell deficiency is associated with altered microRNA and gene expression modulated by PAX6 mutational status in congenital aniridia. Ocul. Surf. 19, 115–127 (2021).
    1. Shiels A., TRPM3_miR-204: A complex locus for eye development and disease. Hum. Genomics 14, 7 (2020).
    1. Lu Y., Tai P. W. L., Ai J., Gessler D. J., Su Q., Yao X., Zheng Q., Zamore P. D., Xu X., Gao G., Transcriptome profiling of neovascularized corneas reveals miR-204 as a multi-target biotherapy deliverable by rAAVs. Mol. Ther. Nucleic Acids 10, 349–360 (2018).
    1. Li T., Pan H., Li R., The dual regulatory role of miR-204 in cancer. Tumour Biol. 37, 11667–11677 (2016).
    1. Tajima S., Tsuji K., Ebihara Y., Sui X., Tanaka R., Muraoka K., Yoshida M., Yamada K., Yasukawa K., Taga T., Kishimoto T., Nakahata T., Analysis of interleukin 6 receptor and gp130 expressions and proliferative capability of human CD34+ cells. J. Exp. Med. 184, 1357–1364 (1996).
    1. Jacobs R., Tran U., Chen H., Kassim A., Engelhardt B. G., Greer J. P., Goodman S. G., Clifton C., Lucid C., Vaughan L. A., Savani B. N., Jagasia M., Prevalence and risk factors associated with development of ocular GVHD defined by NIH consensus criteria. Bone Marrow Transplant. 47, 1470–1473 (2012).
    1. Levy O., Kuai R., Siren E. M. J., Bhere D., Milton Y., Nissar N., De Biasio M., Heinelt M., Reeve B., Abdi R., Alturki M., Fallatah M., Almalik A., Alhasan A. H., Shah K., Karp J. M., Shattering barriers toward clinically meaningful MSC therapies. Sci. Adv. 6, eaba6884 (2020).
    1. Yin K., Wang S., Zhao R. C., Exosomes from mesenchymal stem/stromal cells: A new therapeutic paradigm. Biomark. Res. 7, 8 (2019).
    1. Weng J., He C., Lai P., Luo C., Guo R., Wu S., Geng S., Xiangpeng A., Liu X., Du X., Mesenchymal stromal cells treatment attenuates dry eye in patients with chronic graft-versus-host disease. Mol. Ther. 20, 2347–2354 (2012).
    1. Jones L., Downie L. E., Korb D., Benitez-Del-Castillo J. M., Dana R., Deng S. X., Dong P. N., Geerling G., Hida R. Y., Liu Y., Seo K. Y., Tauber J., Wakamatsu T. H., Xu J., Wolffsohn J. S., Craig J. P., TFOS DEWS II management and therapy report. Ocul. Surf. 15, 575–628 (2017).
    1. Severn P. S., Fraser S. G., Bilateral cataracts and glaucoma induced by long-term use of oral prednisolone bought over the internet. Lancet 368, 618 (2006).
    1. Munir S. Z., Aylward J., A review of ocular graft-versus-host disease. Optom. Vis. Sci. 94, 545–555 (2017).
    1. Peszkowski M. J., Fujiwara K., Warfvinge G., Larsson A., Experimental graft versus host disease in the (BN × LEW) F1 rat hybrid as a model for autoimmune disease. Study of early adenitis in lacrimal and salivary glands. Autoimmunity 24, 101–111 (1996).
    1. Mastropasqua R., Agnifili L., Fasanella V., Nubile M., Gnama A. A., Falconio G., Perri P., Di Staso S., Mariotti C., The conjunctiva-associated lymphoid tissue in chronic ocular surface diseases. Microsc. Microanal. 23, 697–707 (2017).
    1. Knop E., Knop N., The role of eye-associated lymphoid tissue in corneal immune protection. J. Anat. 206, 271–285 (2005).
    1. Murray P. J., Allen J. E., Biswas S. K., Fisher E. A., Gilroy D. W., Goerdt S., Gordon S., Hamilton J. A., Ivashkiv L. B., Lawrence T., Locati M., Mantovani A., Martinez F. O., Mege J. L., Mosser D. M., Natoli G., Saeij J. P., Schultze J. L., Shirey K. A., Sica A., Suttles J., Udalova I., van Ginderachter J. A., Vogel S. N., Wynn T. A., Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).
    1. Ransohoff R. M., A polarizing question: Do M1 and M2 microglia exist? Nat. Neurosci. 19, 987–991 (2016).
    1. Qiu G., Zheng G., Ge M., Wang J., Huang R., Shu Q., Xu J., Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Res Ther 9, 320 (2018).
    1. Thomou T., Mori M. A., Dreyfuss J. M., Konishi M., Sakaguchi M., Wolfrum C., Rao T. N., Winnay J. N., Garcia-Martin R., Grinspoon S. K., Gorden P., Kahn C. R., Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542, 450–455 (2017).
    1. Shahjin F., Chand S., Yelamanchili S. V., Extracellular vesicles as drug delivery vehicles to the central nervous system. J. Neuroimmune Pharmacol. 15, 443–458 (2020).
    1. Kang S., Tanaka T., Narazaki M., Kishimoto T., Targeting interleukin-6 signaling in clinic. Immunity 50, 1007–1023 (2019).
    1. Elahi F. M., Farwell D. G., Nolta J. A., Anderson J. D., Preclinical translation of exosomes derived from mesenchymal stem/stromal cells. Stem Cells 38, 15–21 (2020).
    1. Pegtel D. M., Gould S. J., Exosomes. Annu. Rev. Biochem. 88, 487–514 (2019).
    1. Abud T. B., Amparo F., Saboo U. S., Di Zazzo A., Dohlman T. H., Ciolino J. B., Hamrah P., Dana R., A clinical trial comparing the safety and efficacy of topical tacrolimus versus methylprednisolone in ocular graft-versus-host disease. Ophthalmology 123, 1449–1457 (2016).
    1. Karakus S., Agrawal D., Hindman H. B., Henrich C., Ramulu P. Y., Akpek E. K., Effects of prolonged reading on dry eye. Ophthalmology 125, 1500–1505 (2018).
    1. Wolffsohn J. S., Arita R., Chalmers R., Djalilian A., Dogru M., Dumbleton K., Gupta P. K., Karpecki P., Lazreg S., Pult H., Sullivan B. D., Tomlinson A., Tong L., Villani E., Yoon K. C., Jones L., Craig J. P., TFOS DEWS II diagnostic methodology report. Ocul. Surf. 15, 539–574 (2017).
    1. Guo L., Lai P., Wang Y., Huang T., Chen X., Luo C., Geng S., Huang X., Wu S., Ling W., Huang L., Du X., Weng J., Extracellular vesicles from mesenchymal stem cells prevent contact hypersensitivity through the suppression of Tc1 and Th1 cells and expansion of regulatory T cells. Int. Immunopharmacol. 74, 105663 (2019).
    1. Abbuehl J.-P., Tatarova Z., Held W., Huelsken J., Long-term engraftment of primary bone marrow stromal cells repairs niche damage and improves hematopoietic stem cell transplantation. Cell Stem Cell 21, 241–255.e6 (2017).
    1. Iwai K., Minamisawa T., Suga K., Yajima Y., Shiba K., Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations. J. Extracell. Vesicles 5, 30829 (2016).
    1. Bachurski D., Schuldner M., Nguyen P. H., Malz A., Reiners K. S., Grenzi P. C., Babatz F., Schauss A. C., Hansen H. P., Hallek M., Pogge von Strandmann E., Extracellular vesicle measurements with nanoparticle tracking analysis—An accuracy and repeatability comparison between NanoSight NS300 and ZetaView. J. Extracell. Vesicles 8, 1596016 (2019).
    1. Lai P., Chen X., Guo L., Wang Y., Liu X., Liu Y., Zhou T., Huang T., Geng S., Luo C., Huang X., Wu S., Ling W., Du X., He C., Weng J., A potent immunomodulatory role of exosomes derived from mesenchymal stromal cells in preventing cGVHD. J. Hematol. Oncol. 11, 135 (2018).
    1. Lemp M. A., Report of the National Eye Institute/Industry workshop on clinical trials in dry eyes. CLAO J. 21, 221–232 (1995).
    1. He C., Liu Y., Huang Z., Yang Z., Zhou T., Liu S., Hao Z., Wang J., Feng Q., Liu Y., Cao Y., Liu X., A specific RIP3+ subpopulation of microglia promotes retinopathy through a hypoxia-triggered necroptotic mechanism. Proc. Natl. Acad. Sci. U.S.A. 118, e2023290118 (2021).
    1. Li C. J., Cheng P., Liang M. K., Chen Y. S., Lu Q., Wang J. Y., Xia Z. Y., Zhou H. D., Cao X., Xie H., Liao E. Y., Luo X. H., MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J. Clin. Invest. 125, 1509–1522 (2015).

Source: PubMed

3
Prenumerera