Nutrition and Breast Cancer: A Literature Review on Prevention, Treatment and Recurrence

Paola De Cicco, Maria Valeria Catani, Valeria Gasperi, Matteo Sibilano, Maria Quaglietta, Isabella Savini, Paola De Cicco, Maria Valeria Catani, Valeria Gasperi, Matteo Sibilano, Maria Quaglietta, Isabella Savini

Abstract

Breast cancer (BC) is the second most common cancer worldwide and the most commonly occurring malignancy in women. There is growing evidence that lifestyle factors, including diet, body weight and physical activity, may be associated with higher BC risk. However, the effect of dietary factors on BC recurrence and mortality is not clearly understood. Here, we provide an overview of the current evidence obtained from the PubMed databases in the last decade, assessing dietary patterns, as well as the consumption of specific food-stuffs/food-nutrients, in relation to BC incidence, recurrence and survival. Data from the published literature suggest that a healthy dietary pattern characterized by high intake of unrefined cereals, vegetables, fruit, nuts and olive oil, and a moderate/low consumption of saturated fatty acids and red meat, might improve overall survival after diagnosis of BC. BC patients undergoing chemotherapy and/or radiotherapy experience a variety of symptoms that worsen patient quality of life. Studies investigating nutritional interventions during BC treatment have shown that nutritional counselling and supplementation with some dietary constituents, such as EPA and/or DHA, might be useful in limiting drug-induced side effects, as well as in enhancing therapeutic efficacy. Therefore, nutritional intervention in BC patients may be considered an integral part of the multimodal therapeutic approach. However, further research utilizing dietary interventions in large clinical trials is required to definitively establish effective interventions in these patients, to improve long-term survival and quality of life.

Keywords: breast cancer; diet; food; nutrients; prevention.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Breast cancer sub-types and relative prevalence. TNBC: triple negative breast cancer [12].
Figure 2
Figure 2
Main findings on breast cancer risk [19]. Red circle: direct correlation. Green circle: inverse correlation. Strong evidence: continuous line. Limited, but suggestive, evidence: dotted line. Convincing evidence: bold. Probable evidence: italic.

References

    1. Ferlay J., Hery C., Autier P., Sankaranarayanan R. Breast Cancer Epidemiology. Springer; New York, NY, USA: 2010. Global Burden of Breast Cancer; pp. 1–19.
    1. Seward B.W., Wild C.P. International Agency for Research on Cancer. World Cancer Report 2014. Lyon International Agency for Research on Cancer; Lyon, France: 2014. pp. 16–69.
    1. Porter P. “Westernizing” women’s risks? Breast cancer in lower-income countries. N. Engl. J. Med. 2008;358:213–216. doi: 10.1056/NEJMp0708307.
    1. Cancer Statistics Center. [(accessed on 27 September 2018)]; Available online: .
    1. Global Cancer Observatory. [(accessed on 27 September 2018)]; Available online: .
    1. Soerjomataram I., Louwman W.J., Lemmens V.E., de Vries E., Klokman W.J., Coebergh J.W. Risks of second primary breast and urogenital cancer following female breast cancer in the south of The Netherlands, 1972–2001. Eur. J. Cancer. 2005;41:2331–2337. doi: 10.1016/j.ejca.2005.01.029.
    1. Haque R., Prout M., Geiger A.M., Kamineni A., Thwin S.S., Avila C., Silliman R.A., Quinn V., Yood M.U. Comorbidities and cardiovascular disease risk in older breast cancer survivors. Am. J. Manag. Care. 2014;20:86–92.
    1. Pasanisi P., Berrino F., De Petris M., Venturelli E., Mastroianni A., Panico S. Metabolic syndrome as a prognostic factor for breast cancer recurrences. Int. J. Cancer. 2006;119:236–238. doi: 10.1002/ijc.21812.
    1. Makari-Judson G., Braun B., Jerry D.J., Mertens W.C. Weight gain following breast cancer diagnosis: Implication and proposed mechanisms. World J. Clin. Oncol. 2014;5:272–282. doi: 10.5306/wjco.v5.i3.272.
    1. Althuis M.D., Fergenbaum J.H., Garcia-Closas M., Brinton L.A., Madigan M.P., Sherman M.E. Etiology of hormone receptor-defined breast cancer: A systematic review of the literature. Cancer Epidemiol. Biomark. Prev. 2004;13:1558–1568.
    1. Anderson W.F., Rosenber P.S., Prat A., Perou C.M., Sherman M.E. How many etiological subtypes of breast cancer: Two, three, four, or more? J. Natl. Cancer Inst. 2014;106:dju165. doi: 10.1093/jnci/dju165.
    1. American Cancer Society Breast Cancer Facts & Figures 2017–2018. [(accessed on 1 June 2019)]; Available online: .
    1. Zare N., Haem E., Lankarani K.B., Heydari S.T., Barooti E. Breast cancer risk factors in a defined population: Weighted logistic regression approach for rare events. J. Breast Cancer. 2013;16:214–219. doi: 10.4048/jbc.2013.16.2.214.
    1. Sun Y.S., Zhao Z., Yang Z.N., Xu F., Lu H.J., Zhu Z.Y., Shi W., Jiang J., Yao P.P., Zhu H.P. Risk factors and preventions of breast cancer. Int. J. Biol. Sci. 2017;13:1387–1397. doi: 10.7150/ijbs.21635.
    1. Giles E.D., Wellberg E.A., Astling D.P., Anderson S.M., Thor A.D., Jindal S., Tan A.C., Schedin P.S., Maclean P.S. Obesity and overfeeding affecting both tumor and systemic metabolism activates the progesterone receptor to contribute to post-menopausal breast cancer. Cancer Res. 2012;72:6490–6501. doi: 10.1158/0008-5472.CAN-12-1653.
    1. Mourouti N., Kontogianni M.D., Papavagelis C., Panagiotakos D.B. Diet and breast cancer: A systematic review. Int. J. Food Sci. Nutr. 2015;66:1–42. doi: 10.3109/09637486.2014.950207.
    1. Protani M., Coory M., Martin J.H. Effects of obesity on survival of women with breast cancer: Systematic review and meta-analysis. Breast Cancer Res. Treat. 2010;123:627–635. doi: 10.1007/s10549-010-0990-0.
    1. Kwan M.L., Weltzien E., Kushi L.H., Castillo A., Slattery M.L., Caan B.J. Dietary patterns and breast cancer recurrence and survival among women with early-stage breast cancer. J. Clin. Oncol. 2009;27:919–926. doi: 10.1200/JCO.2008.19.4035.
    1. Rock C.L., Doyle C., Demark-Wahnefried W., Meyerhardt J., Courneya K.S., Schwartz A.L., Bandera E.V., Hamilton K.K., Grant B., McCullough M., et al. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J. Clin. 2012;62:243–274. doi: 10.3322/caac.21142.
    1. World Cancer Research Fund, Third Expert Report on “Diet, Nutrition, Physical Activity and Cancer: A Global Perspective”. [(accessed on 27 September 2018)]; Available online: .
    1. Arends J., Bachmann P., Baracos V., Barthelemy N., Bertz H., Bozzetti F., Fearon K., Hütterer E., Isenring E., Kaasa S., et al. ESPEN guidelines on nutrition in cancer patients. Clin. Nutr. 2017;36:11–48. doi: 10.1016/j.clnu.2016.07.015.
    1. Chan D.S., Vieira A.R., Aune D., Bandera E.V., Greenwood D.C., McTiernan A., Navarro Rosenblatt D., Thune I., Vieira R., Norat T. Body mass index and survival in women with breast cancer—Systematic literature review and meta-analysis of 82 follow-up studies. Ann. Oncol. 2014;25:1901–1914. doi: 10.1093/annonc/mdu042.
    1. George S.M., Bernstein L., Smith A.W., Neuhouser M.L., Baumgartner K.B., Baumgartner R.N., Ballard-Barbash R. Central adiposity after breast cancer diagnosis is related to mortality in the Health, Eating, Activity, and Lifestyle study. Breast Cancer Res. Treat. 2014;146:647–655. doi: 10.1007/s10549-014-3048-x.
    1. Skouroliakou M., Grosomanidis D., Massara P., Kostara C., Papandreou P., Ntountaniotis D., Xepapadakis G. Serum antioxidant capacity, biochemical profile and body composition of breast cancer survivors in a randomized Mediterranean dietary intervention study. Eur. J. Nutr. 2018;57:2133–2145. doi: 10.1007/s00394-017-1489-9.
    1. Aune D., Chan D.S., Vieira A.R., Rosenblatt D.A., Vieira R., Greenwood D.C., Norat T. Fruits, vegetables and breast cancer risk: A systematic review and meta-analysis of prospective studies. Breast Cancer Res. Treat. 2012;134:479–493. doi: 10.1007/s10549-012-2118-1.
    1. Fung T.T., Chiuve S.E., Willett W.C., Hankinson S.E., Hu F.B., Holmes M.D. Intake of specific fruits and vegetables in relation to risk of estrogen receptor-negative breast cancer among post-menopausal women. Breast Cancer Res. Treat. 2013;138:925–930. doi: 10.1007/s10549-013-2484-3.
    1. Masala G., Assedi M., Bendinelli B., Ermini I., Sieri S., Grioni S., Sacerdote C., Ricceri F., Panico S., Mattiello A., et al. Fruit and vegetables consumption and breast cancer risk: The EPIC Italy study. Breast Cancer Res. Treat. 2012;132:1127–1136. doi: 10.1007/s10549-011-1939-7.
    1. Farvid M.S., Stern M.C., Norat T., Sasazuki S., Vineis P., Weijenberg M.P., Wolk A., Wu K., Stewart B.W., Cho E. Consumption of red and processed meat and breast cancer incidence: A systematic review and meta-analysis of prospective studies. Int. J. Cancer. 2018;143:2787–2799. doi: 10.1002/ijc.31848.
    1. Anderson J.J., Darwis N.D.M., Mackay D.F., Celis-Morales C.A., Lyall D.M., Sattar N., Gill J.M.R., Pell J.P. Red and processed meat consumption and breast cancer: UK Biobank cohort study and meta-analysis. Eur. J. Cancer. 2018;90:73–82. doi: 10.1016/j.ejca.2017.11.022.
    1. Prentice R.L., Caan B., Chlebowski R.T., Patterson R., Kuller L.H., Ockene J.K., Margolis K.L., Limacher M.C., Manson J.E., Parker L.M., et al. Low fat dietary pattern and risk of invasive breast cancer. The Women’s Health Initiative randomized controlled dietary modification trial. JAMA. 2006;295:629–642. doi: 10.1001/jama.295.6.629.
    1. Turner L.B. A meta-analysis of fat intake, reproduction, and breast cancer risk: An evolutionary perspective. Am. J. Hum. Biol. 2011;23:601–608. doi: 10.1002/ajhb.21176.
    1. Makarem N., Chandran U., Bandera E.V., Parekh N. Dietary fat in breast cancer survival. Annu. Rev. Nutr. 2013;33:319–348. doi: 10.1146/annurev-nutr-112912-095300.
    1. Sieri S. Dietary fat intake and development of specific breast cancer subtypes. J. Natl. Cancer Inst. 2014;106:dju068. doi: 10.1093/jnci/dju068.
    1. Li C., Yang L., Zhang D., Jiang W. Systematic review and meta-analysis suggest that dietary cholesterol intake increases risk of breast cancer. Nutr. Res. 2016;36:627–635. doi: 10.1016/j.nutres.2016.04.009.
    1. Missmer S.A., Smith-Warner S.A., Spiegelman D., Yaun S.S., Adami H.O., Beeson W.L., van den Brandt P.A., Fraser G.E., Freudenheim J.L., Goldbohm R.A., et al. Meat and dairy food consumption and breast cancer: A pooled analysis of cohort studies. Int. J. Epidemiol. 2002;31:78–85. doi: 10.1093/ije/31.1.78.
    1. Dong J.Y., Zhang L., He K., Qin L.Q. Dairy consumption and risk of breast cancer: A meta-analysis of prospective cohort studies. Breast Cancer Res. Treat. 2011;127:23–31. doi: 10.1007/s10549-011-1467-5.
    1. Zang J., Shen M., Du S., Chen T., Zou S. The association between dairy intake and breast cancer in western and asian populations: A systematic review and meta-analysis. J. Breast Cancer. 2015;18:313–322. doi: 10.4048/jbc.2015.18.4.313.
    1. Schlesinger S., Chan D.S.M., Vingeliene S., Vieira A.R., Abar L., Polemiti E., Stevens C.A.T., Greenwood D.C., Aune D., Norat T. Carbohydrates, glycemic index, glycemic load, and breast cancer risk: A systematic review and dose-response meta-analysis of prospective studies. Nutr. Rev. 2017;75:420–441. doi: 10.1093/nutrit/nux010.
    1. Qin L.Q., Xu J.Y., Wang P.Y., Hoshi K. Soyfood intake in the prevention of breast cancer risk in women: A meta-analysis of observational epidemiological studies. J. Nutr. Sci. Vitam. 2006;52:428–436. doi: 10.3177/jnsv.52.428.
    1. Wu A.H., Yu M.C., Tseng C.C., Pike M.C. Epidemiology of soy exposures and breast cancer risk. Br. J. Cancer. 2008;98:9–14. doi: 10.1038/sj.bjc.6604145.
    1. Dong J.Y., Qin L.Q. Soy isoflavones consumption and risk of breast cancer incidence or recurrence: A meta-analysis of prospective studies. Breast Cancer Res. Treat. 2011;125:315–323. doi: 10.1007/s10549-010-1270-8.
    1. Couto E., Sandin S., Löf M., Ursin G., Adami H.O., Weiderpass E. Mediterranean dietary pattern and risk of breast cancer. PLoS ONE. 2013;8:e55374. doi: 10.1371/journal.pone.0055374.
    1. Psaltopoulou T., Kosti R.I., Haidopoulos D., Dimopoulos M., Panagiotakos D.B. Olive oil intake is inversely related to cancer prevalence: A systematic review and a meta-analysis of 13,800 patients and 23,340 controls in 19 observational studies. Lipids Health Dis. 2011;10:127. doi: 10.1186/1476-511X-10-127.
    1. Castelló A., Boldo E., Pérez-Gómez B., Lope V., Altzibar J.M., Martín V., Castaño-Vinyals G., Guevara M., Dierssen-Sotos T., Tardón A., et al. Adherence to the Western, Prudent and Mediterranean dietary patterns and breast cancer risk: MCC-Spain study. Maturitas. 2017;103:8–15. doi: 10.1016/j.maturitas.2017.06.020.
    1. Toklu H., Nogay N.H. Effects of dietary habits and sedentary lifestyle on breast cancer among women attending the oncology day treatment center at a state university in Turkey. Niger. J. Clin. Pr. 2018;21:1576–1584.
    1. Toledo E., Salas-Salvado J., Donat-Vargas C., Buil-Cosiales P., Estruch R., Ros E., Corella D., Fitó M., Hu F.B., Arós F., et al. Mediterranean diet and invasive breast cancer risk among women at high cardiovascular risk in the PREDIMED trial: A randomized clinical trial. JAMA Intern. Med. 2015;175:1752–1760. doi: 10.1001/jamainternmed.2015.4838.
    1. Khalis M., Chajès V., Moskal A., Biessy C., Huybrechts I., Rinaldi S., Dossus L., Charaka H., Mellas N., Nejjari C., et al. Healthy lifestyle and breast cancer risk: A case-control study in Morocco. Cancer Epidemiol. 2019;58:160–166. doi: 10.1016/j.canep.2018.12.012.
    1. Van den Brandt P.A., Schulpen M. Mediterranean diet adherence and risk of post-menopausal breast cancer: Results of a cohort study and meta-analysis. Int. J. Cancer. 2017;140:2220–2231. doi: 10.1002/ijc.30654.
    1. Fararouei M., Iqbal A., Rezaian S., Gheibi Z., Dianatinasab A., Shakarami S., Dianatinasab M. Dietary habits and physical activity are associated with the risk of breast cancer among young iranian women: A case-control study on 1010 premenopausal women. Clin. Breast Cancer. 2019;19:127–134. doi: 10.1016/j.clbc.2018.10.011.
    1. Kontou N. The Mediterranean Diet in Cancer Prevention. In: Preedy V.R., Watson R.R., editors. The Mediterranean Diet. Academic Press; San Diego, CA, USA: 2015. pp. 393–406. Chapter 36.
    1. Maskarinec G., Morimoto Y., Takata Y., Murphy S.P., Stanczyk F.Z. Alcohol and dietary fibre intakes affect circulating sex hormones among premenopausal women. Public Health Nutr. 2006;9:875–881. doi: 10.1017/PHN2005923.
    1. Braakhuis A.J., Campion P., Bishop K.S. Reducing breast cancer recurrence: The role of dietary polyphenolics. Nutrients. 2016;8:547. doi: 10.3390/nu8090547.
    1. Kanaya N., Adams L., Takasaki A., Chen S. Whole blueberry powder inhibits metastasis of triple negative breast cancer in a xenograft mouse model through modulation of inflammatory cytokines. Nutr. Cancer. 2014;66:242–248. doi: 10.1080/01635581.2014.863366.
    1. Wadsworth T.L., Koop D.R. Effects of the wine polyphenolics quercetin and resveratrol on pro-inflammatory cytokine expression in RAW 264.7 macrophages. Biochem. Pharm. 1999;57:941–949. doi: 10.1016/S0006-2952(99)00002-7.
    1. Gerhäuser C., Klimo K., Heiss E., Neumann I., Gamal-Eldeen A., Knauft J., Liu G.Y., Sitthimonchai S., Frank N. Mechanism-based in vitro screening of potential cancer chemopreventive agents. Mutat. Res. 2003;523:163–172. doi: 10.1016/S0027-5107(02)00332-9.
    1. Biswas S.K., McClure D., Jimenez L.A., Megson I.L., Rahman I. Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: Mechanism of free radical scavenging activity. Antioxid. Redox Signal. 2005;7:32–41. doi: 10.1089/ars.2005.7.32.
    1. Dannenberg A.J., Subbaramaiah K. Targeting cyclooxygenase-2 in human neoplasia: Rationale and promise. Cancer Cell. 2003;4:431–436. doi: 10.1016/S1535-6108(03)00310-6.
    1. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 2009;1:a001651. doi: 10.1101/cshperspect.a001651.
    1. Brueggemeier R.W., Díaz-Cruz E.S., Li P.K., Sugimoto Y., Lin Y.C., Shapiro C.L. Translational studies on aromatase.; cyclooxygenases.; and enzyme inhibitors in breast cancer. J. Steroid Biochem. Mol. Biol. 2005;95:129–136. doi: 10.1016/j.jsbmb.2005.04.013.
    1. Chen F.P., Chien M.H. Phytoestrogens induce differential effects on both normal and malignant human breast cells in vitro. Climacteric. 2014;17:682–691. doi: 10.3109/13697137.2014.937688.
    1. Papoutsi Z., Kassi E., Tsiapara A., Fokialakis N., Chrousos G.P., Moutsatsou P. Evaluation of estrogenic/antiestrogenic activity of ellagic acid via the estrogen receptor subtypes ERalpha and ERbeta. J. Agric. Food Chem. 2005;53:7715–7720. doi: 10.1021/jf0510539.
    1. Inoue-Choi M., Sinha R., Gierach G.L., Ward M.H. Red and processed meat, nitrite, and heme iron intakes and post-menopausal breast cancer risk in the NIH-AARP Diet and Health Study. Int. J. Cancer. 2016;138:1609–1618. doi: 10.1002/ijc.29901.
    1. Lauber S.N., Ali S., Gooderham N.J. The cooked food derived carcinogen 2-amino-1-methyl-6-phenylimidazo[4.;5-b] pyridine is a potent oestrogen: A mechanistic basis for its tissue-specific carcinogenicity. Carcinogenesis. 2004;25:2509–2517. doi: 10.1093/carcin/bgh268.
    1. Rose D.P. Effects of dietary fatty acids on breast and prostate cancers: Evidence from in vitro experiments and animal studies. AJCN. 1997;6:1513S–1522S. doi: 10.1093/ajcn/66.6.1513S.
    1. Blackburn G.L., Wang K.A. Dietary fat reduction and breast cancer outcome: Results from the Women’s Intervention Nutrition Study (WINS) Am. J. Clin. Nutr. 2007;86:878–881. doi: 10.1093/ajcn/86.3.878S.
    1. VanWeelden K., Flanagan L., Binderup L., Tenniswood M., Welsh J. Apoptotic regression of MCF-7 xenografts in nude mice treated with the vitamin D3 analog, EB1089. Endocrinology. 1998;139:2102–2110. doi: 10.1210/endo.139.4.5892.
    1. Chiang K.C., Yeh C.N., Chen S.C., Shen S.C., Hsu J.T., Yeh T.S., Pang J.H., Su L.J., Takano M., Kittaka A., et al. MART-10, a new generation of vitamin D analog, is more potent than 1α,25-dihydroxyvitamin D(3) in inhibiting cell proliferation and inducing apoptosis in ER+ MCF-7 breast cancer cells. Evid. Based Complement. Altern. Med. 2012;2012:310872. doi: 10.1155/2012/310872.
    1. Welsh J. Vitamin D and breast cancer: Insights from animal models. Am. J. Clin. Nutr. 2004;80:1721S–1724S. doi: 10.1093/ajcn/80.6.1721S.
    1. Colston K.W., Perks C.M., Xie S.P., Holly J.M. Growth inhibition of both MCF-7 and Hs578T human breast cancer cell lines by vitamin D analogues is associated with increased expression of insulin-like growth factor binding protein-3. J. Mol. Endocrinol. 1998;20:157–162. doi: 10.1677/jme.0.0200157.
    1. Cauley J.A., Chlebowski R.T., Wactawski-Wende J., Robbins J.A., Rodabough R.J., Chen Z., Johnson K.C., O’Sullivan M.J., Jackson R.D., Manson J.E. Calcium plus vitamin D supplementation and health outcomes five years after active intervention ended: The Women’s Health Initiative. J. Womens Health. 2013;22:915–929. doi: 10.1089/jwh.2013.4270.
    1. Schulz M., Hoffmann K., Weikert C., Nöthlings U., Schulze M.B., Boeing H. Identification of a dietary pattern characterized by high-fat food choices associated with increased risk of breast cancer: The European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Br. J. Nutr. 2008;100:942–946. doi: 10.1017/S0007114508966149.
    1. Holmes M.D., Liu S., Hankinson S.E., Colditz G.A., Hunter D.J., Willett W. Dietary carbohydrates, fiber, and breast cancer risk. C Am. J. Epidemiol. 2004;159:732–739. doi: 10.1093/aje/kwh112.
    1. Mulholland H.G., Murray L.J., Cardwell C.R., Cantwell M.M. Dietary glycaemic index.; glycaemic load and breast cancer risk: A systematic review and meta-analysis. Br. J. Cancer. 2008;99:1170–1175. doi: 10.1038/sj.bjc.6604618.
    1. Mullie P., Koechlin A., Boniol M., Autier P., Boyle P. Relation between breast cancer and high glycemic index or glycemic load: A meta-analysis of prospective cohort studies. Crit. Rev. Food Sci. Nutr. 2016;56:152–159. doi: 10.1080/10408398.2012.718723.
    1. Romieu I., Ferrari P., Rinaldi S., Slimani N., Jenab M., Olsen A., Tjonneland A., Overvad K., Boutron-Ruault M.C., Lajous M., et al. Dietary glycemic index and glycemic load and breast cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) Am. J. Clin. Nutr. 2012;96:345–355. doi: 10.3945/ajcn.111.026724.
    1. Kaaks R., Lukanova A. Energy balance and cancer: The role of insulin and insulin-like growth factor-I. Proc. Nutr. Soc. 2001;60:91–106. doi: 10.1079/PNS200070.
    1. Helle S.I., Lonning P.E. Insulin-like growth factors in breast cancer. Acta Oncol. 1996;35:19–22. doi: 10.3109/02841869609083963.
    1. Key T.J., Appleby P.N., Reeves G.K., Roddam A.W. Endogenous Hormones and Breast Cancer Collaborative Group. Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: Pooled individual data analysis of 17 prospective studies. Lancet Oncol. 2010;11:530–542.
    1. Xu M., Wang S., Ren Z., Frank J.A., Yang X.H., Zhang Z., Ke Z., Shi X., Luo J. Chronic ethanol exposure enhances the aggressiveness of breast cancer: The role of p38γ. Oncotarget. 2016;7:3489–3505. doi: 10.18632/oncotarget.6508.
    1. Roswall N., Weiderpass E. Alcohol as a risk factor for Cancer: Existing evidence in a global perspective. J. Prev. Med. Public Health. 2015;48:1–9. doi: 10.3961/jpmph.14.052.
    1. Liu Y., Nguyen N., Colditz G.A. Links between alcohol consumption and breast cancer: A look at the evidence. Womens Health. 2015;11:65–77. doi: 10.2217/WHE.14.62.
    1. Seitz H.K., Pelucchi C., Bagnardi V., La Vecchia C. Epidemiology and pathophysiology of alcohol and breast cancer: Update 2012. Alcohol. 2012;47:204–212. doi: 10.1093/alcalc/ags011.
    1. Murphy P.A., Song T., Buseman G., Barua K., Beecher G.R., Trainer D., Holden J. Isoflavones in retail and institutional soy foods. J. Agric. Food Chem. 1999;47:2697–2704. doi: 10.1021/jf981144o.
    1. Messina M.J., Wood C.E. Soy isoflavones, estrogen therapy, and breast cancer risk: Analysis and commentary. Nutr. J. 2008;7:17. doi: 10.1186/1475-2891-7-17.
    1. Anampa J., Makower D., Sparano J.A. Progress in adjuvant chemotherapy for breast cancer: An overview. BMC Med. 2015;13:195. doi: 10.1186/s12916-015-0439-8.
    1. Kayl A.E., Meyers C.A. Side-effects of chemotherapy and quality of life in ovarian and breast cancer patients. Curr. Opin. Obs. Gynecol. 2006;18:24–28. doi: 10.1097/01.gco.0000192996.20040.24.
    1. Saquib N., Flatt S.W., Natarajan L., Thomson C.A., Bardwell W.A., Caan B., Rock C.L., Pierce J.P. Weight gain and recovery of pre-cancer weight after breast cancer treatments: Evidence from the women’s healthy eating and living (WHEL) study. Breast Cancer Res. Treat. 2007;105:177–186. doi: 10.1007/s10549-006-9442-2.
    1. Buch K., Gunmalm V., Andersson M., Schwarz P., Brøns C. Effect of chemotherapy and aromatase inhibitors in the adjuvant treatment of breast cancer on glucose and insulin metabolism-A systematic review. Cancer Med. 2019;8:238–245. doi: 10.1002/cam4.1911.
    1. Caan B.J., Kwan M.L., Hartzell G., Castillo A., Slattery M.L., Sternfeld B., Weltzien E. Pre-diagnosis body mass index, post-diagnosis weight change, and prognosis among women with early stage breast cancer. Cancer Causes Control. 2008;19:1319–1328. doi: 10.1007/s10552-008-9203-0.
    1. Irwin M.L., McTiernan A., Baumgartner R.N., Baumgartner K.B., Bernstein L., Gilliland F.D., Ballard-Barbash R. Changes in body fat and weight after a breast cancer diagnosis: Influence of demographic, prognostic, and lifestyle factors. J. Clin. Oncol. 2005;23:774–782. doi: 10.1200/JCO.2005.04.036.
    1. Nechuta S.J., Caan B.J., Chen W.Y., Flatt S.W., Lu W., Patterson R.E., Poole E.M., Kwan M.L., Chen Z., Weltzien E., et al. The After Breast Cancer Pooling Project: Rationale, methodology, and breast cancer survivor characteristics. Cancer Causes Control. 2011;22:1319–1331. doi: 10.1007/s10552-011-9805-9.
    1. Chlebowski R.T. Nutrition and physical activity influence on breast cancer incidence and outcome. Breast. 2013;22:30–37. doi: 10.1016/j.breast.2013.07.006.
    1. Boltong A., Aranda S., Keast R., Wynne R., Francis P.A., Chirgwin J., Gough K. A prospective cohort study of the effects of adjuvant breast cancer chemotherapy on taste function, food liking, appetite and associated nutritional outcomes. PLoS ONE. 2014;9:e103512. doi: 10.1371/journal.pone.0103512.
    1. De Vries Y.C., Boesveldt S., Kelfkens C.S., Posthuma E.E., van den Berg M.M.G.A., de Kruif J.T.C.M., Haringhuizen A., Sommeijer D.W., Buist N., Grosfeld S., et al. Taste and smell perception and quality of life during and after systemic therapy for breast cancer. Breast Cancer Res. Treat. 2018;170:27–34. doi: 10.1007/s10549-018-4720-3.
    1. De Vries Y.C., van den Berg M.M.G.A., de Vries J.H.M., Boesveldt S., de Kruif J.T.C.M., Buist N., Haringhuizen A., Los M., Sommeijer D.W., Timmer-Bonte J.H.N., et al. Differences in dietary intake during chemotherapy in breast cancer patients compared to women without cancer. Support. Care Cancer. 2017;25:2581–2591. doi: 10.1007/s00520-017-3668-x.
    1. Speck R.M., DeMichele A., Farrar J.T., Hennessy S., Mao J.J., Stineman M.G., Barg F.K. Taste alteration in breast cancer patients treated with taxane chemotherapy: Experience, effect, and coping strategies. Support. Care Cancer. 2013;21:549–555. doi: 10.1007/s00520-012-1551-3.
    1. Murtaza B., Hichami A., Khan A.S., Ghiringhelli F., Khan N.A. Alteration in taste perception in cancer: Causes and strategies of treatment. Front. Physiol. 2017;8:134. doi: 10.3389/fphys.2017.00134.
    1. Villarini A., Pasanisi P., Raimondi M., Gargano G., Bruno E., Morelli D., Evangelista A., Curtosi P., Berrino F. Preventing weight gain during adjuvant chemotherapy for breast cancer: A dietary intervention study. Breast Cancer Res. Treat. 2012;135:581–589. doi: 10.1007/s10549-012-2184-4.
    1. Bougnoux P., Hajjaji N., Ferrasson M.N., Giraudeau B., Couet C., Le Floch O. Improving outcome of chemotherapy of metastatic breast cancer by docosahexaenoic acid: A phase II trial. Br. J. Cancer. 2009;101:1785–1978. doi: 10.1038/sj.bjc.6605441.
    1. Hutchins-Wiese H.L., Picho K., Watkins B.A., Li Y., Tannenbaum S., Claffey K., Kenny A.M. High-dose eicosapentaenoic acid and docosahexaenoic acid supplementation reduces bone resorption in post-menopausal breast cancer survivors on aromatase inhibitors: A pilot study. Nutr. Cancer. 2014;66:68–76. doi: 10.1080/01635581.2014.847964.
    1. Shen S., Unger J.M., Crew K.D., Till C., Greenlee H., Gralow J., Dakhil S.R., Minasian L.M., Wade J.L., 3rd, Fisch M.J., et al. Omega-3 fatty acid use for obese breast cancer patients with aromatase inhibitor-related arthralgia (SWOG S0927) Breast Cancer Res. Treat. 2018;172:603–610. doi: 10.1007/s10549-018-4946-0.
    1. Ghoreishi Z., Esfahani A., Djazayeri A., Djalali M., Golestan B., Ayromlou H., Hashemzade S., Asghari Jafarabadi M., Montazeri V., Keshavarz S.A., et al. Omega-3 fatty acids are protective against paclitaxel-induced peripheral neuropathy: A randomized double-blind placebo controlled trial. Bmc Cancer. 2012;12:355. doi: 10.1186/1471-2407-12-355.
    1. Inoue M., Tajima K., Mizutani M., Iwata H., Iwase T., Miura S., Hirose K., Hamajima N., Tominaga S. Regular consumption of green tea and the risk of breast cancer recurrence: Follow-up study from the Hospital-based Epidemiologic Research Program at Aichi Cancer Center (HERPACC).; Japan. Cancer Lett. 2001;167:175–182. doi: 10.1016/S0304-3835(01)00486-4.
    1. Nakachi K., Suemasu K., Suga K., Takeo T., Imai K., Higashi Y. Influence of drinking green tea on breast cancer malignancy among Japanese patients. Jpn. J. Cancer Res. 1998;89:254–261. doi: 10.1111/j.1349-7006.1998.tb00556.x.
    1. Bao P.P., Zhao G.M., Shu X.O., Peng P., Cai H., Lu W., Zheng Y. Modifiable lifestyle factors and triple-negative breast cancer survival: A population-based prospective study. Epidemiology. 2015;26:909–916. doi: 10.1097/EDE.0000000000000373.
    1. Babu R.J., Sundravel S., Arumugam G., Renuka R., Deepa N., Sachdanandam P. Salubrious effect of vitamin C and vitamin E on tamoxifen-treated women in breast cancer with reference to plasma lipid and lipoprotein levels. Cancer Lett. 2000;151:1–5. doi: 10.1016/S0304-3835(99)00340-7.
    1. Suhail N., Bilal N., Khan H.Y., Hasan S., Sharma S., Khan F., Mansoor T., Banu N. Effect of vitamins C and E on antioxidant status of breast-cancer patients undergoing chemotherapy. J. Clin. Pharm. 2012;37:22–26. doi: 10.1111/j.1365-2710.2010.01237.x.
    1. Peralta E.A., Brewer A.T., Louis S., Dunnington G.L. Vitamin E increases biomarkers of estrogen stimulation when taken with tamoxifen. J. Surg. Res. 2009;153:143–147. doi: 10.1016/j.jss.2008.03.030.
    1. Prieto-Alhambra D., Servitja S., Javaid M.K., Garrigós L., Arden N.K., Cooper C., Albanell J., Tusquets I., Diez-Perez A., Nogues X. Vitamin D threshold to prevent aromatase inhibitor-related bone loss: The B-ABLE prospective cohort study. Breast Cancer Res. Treat. 2012;133:1159–1167. doi: 10.1007/s10549-012-2013-9.
    1. Khan Q.J., Reddy P.S., Kimler B.F., Sharma P., Baxa S.E., O’Dea A.P., Klemp J.R., Fabian C.J. Effect of vitamin D supplementation on serum 25-hydroxy vitamin D levels, joint pain, and fatigue in women starting adjuvant letrozole treatment for breast cancer. Breast Cancer Res. Treat. 2010;119:111–118. doi: 10.1007/s10549-009-0495-x.
    1. Zheng J.S., Hu X.J., Zhao Y.M., Yang J., Li D. Intake of fish and marine n-3 polyunsaturated fatty acids and risk of breast cancer: Meta-analysis of data from 21 independent prospective cohort studies. BMJ. 2013;346:f3706. doi: 10.1136/bmj.f3706.
    1. Liu J., Ma D.W. The role of n-3 polyunsaturated fatty acids in the prevention and treatment of breast cancer. Nutrients. 2014;6:5184–5223. doi: 10.3390/nu6115184.
    1. Murray M., Hraiki A., Bebawy M., Pazderka C., Rawling T. Anti-tumor activities of lipids and lipid analogues and their development as potential anticancer drugs. Pharm. Ther. 2015;150:109–128. doi: 10.1016/j.pharmthera.2015.01.008.
    1. D’Eliseo D., Velotti F. Omega-3 fatty acids and cancer cell cytotoxicity: Implications for multi-targeted cancer therapy. J. Clin. Med. 2016;5:15. doi: 10.3390/jcm5020015.
    1. . [(accessed on 20 November 2018)]; Available online: .
    1. Hurria A., Rosen C., Hudis C., Zuckerman E., Panageas K.S., Lachs M.S., Witmer M., van Gorp W.G., Fornier M., D’Andrea G., et al. Cognitive function of older patients receiving adjuvant chemotherapy for breast cancer: A pilot prospective longitudinal study. J. Am. Geriatr. Soc. 2006;54:925–931. doi: 10.1111/j.1532-5415.2006.00732.x.
    1. Orchard T.S., Gaudier-Diaz M.M., Weinhold K.R., Courtney DeVries A. Clearing the fog: A review of the effects of dietary omega-3 fatty acids and added sugars on chemotherapy-induced cognitive deficits. Breast Cancer Res. Treat. 2017;161:391–398. doi: 10.1007/s10549-016-4073-8.
    1. Manni A., El-Bayoumy K., Thompson H. Docosahexaenoic acid in combination with dietary energy restriction for reducing the risk of obesity related breast cancer. Int. J. Mol. Sci. 2017;19:28. doi: 10.3390/ijms19010028.
    1. Lecumberri E., Dupertuis Y.M., Miralbell R., Pichard C. Green tea polyphenol epigallocatechin-3-gallate (EGCG) as adjuvant in cancer therapy. Clin. Nutr. 2013;32:894–903. doi: 10.1016/j.clnu.2013.03.008.
    1. Yiannakopoulou E.C. Interaction of green tea catechins with breast cancer endocrine treatment: A systematic review. Pharmacology. 2014;94:245–248. doi: 10.1159/000369170.
    1. Beltz L.A., Bayer D.K., Moss A.L., Simet I. M: Mechanisms of cancer prevention by green and black tea polyphenols. Anticancer Agents Med. Chem. 2006;6:389–406. doi: 10.2174/187152006778226468.
    1. Cao J., Han J., Xiao H., Qiao J., Han M. Effect of tea polyphenol compounds on anticancer drugs in terms of anti-tumor activity, toxicology, and pharmacokinetics. Nutrients. 2016;8:762. doi: 10.3390/nu8120762.
    1. Greenlee H., Balneaves L.G., Carlson L.E., Cohen M., Deng G., Hershman D., Mumber M., Perlmutter J., Seely D., Sen A., et al. Society for Integrative Oncology. Clinical practice guidelines on the use of integrative therapies as supportive care in patients treated for breast cancer. J. Natl. Cancer Inst. Monogr. 2014;2014:346–358. doi: 10.1093/jncimonographs/lgu041.
    1. Harvie M. Nutritional supplements and cancer: Potential benefits and proven harms. Am. Soc. Clin. Oncol. Educ. Book. 2014:478–486. doi: 10.14694/EdBook_AM.2014.34.e478.
    1. Kwan M.L., Greenlee H., Lee V.S., Castillo A., Gunderson E.P., Habel L.A., Kushi L.H., Sweeney C., Tam E.K., Caan B.J. Multivitamin use and breast cancer outcomes in women with early-stage breast cancer: The Life After Cancer Epidemiology study. Breast Cancer Res. Treat. 2011;130:195–205. doi: 10.1007/s10549-011-1557-4.
    1. Meulepas J.M., Newcomb P.A., Burnett-Hartman A.N., Hampton J.M., Trentham-Dietz A. Multivitamin supplement use and risk of invasive breast cancer. Public Health Nutr. 2010;13:1540–1545. doi: 10.1017/S1368980009992187.
    1. Chen Q., Espey M.G., Krishna M.C., Mitchell J.B., Corpe C.P., Buettner G.R., Shacter E., Levine M. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a pro-drug to deliver hydrogen peroxide to tissues. Proc. Natl. Acad. Sci. USA. 2005;102:13604–13609. doi: 10.1073/pnas.0506390102.
    1. Willcox J.K., Ash S.L., Catignani G.L. Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 2004;44:275–295. doi: 10.1080/10408690490468489.
    1. Harris H.R., Bergkvist L., Wolk A. Vitamin C intake and breast cancer mortality in a cohort of Swedish women. Brit. J. Cancer. 2013;109:257–264. doi: 10.1038/bjc.2013.269.
    1. Harris H.R., Orsini N., Wolk A. Vitamin C and survival among women with breast cancer: A meta-analysis. Eur. J. Cancer. 2014;50:1223–1231. doi: 10.1016/j.ejca.2014.02.013.
    1. Vollbracht C., Schneider B., Leendert V., Weiss G., Auerbach L., Beuth J. Intravenous vitamin C administration improves quality of life in breast cancer patients during chemo-/radiotherapy and aftercare: Results of a retrospective, multicenter, epidemiological cohort study in Germany. Vivo. 2011;25:983–990.
    1. Carr A.C., Vissers M.C., Cook J. Relief from cancer chemotherapy side effects with pharmacologic vitamin C. NZ Med. J. 2014;127:66–70.
    1. Saintot M., Mathieu-Daude H., Astre C., Grenier J., Simony-Lafontaine J., Gerber M. Oxidant-antioxidant status in relation to survival among breast cancer patients. Int. J. Cancer. 2002;97:574–579. doi: 10.1002/ijc.10099.
    1. Tam K.W., Ho C.T., Lee W.J., Tu S.H., Huang C.S., Chen C.S., Lee C.H., Wu C.H., Ho Y.S. Alteration of α-tocopherol-associated protein (TAP) expression in human breast epithelial cells during breast cancer development. Food Chem. 2013;138:1015–1521. doi: 10.1016/j.foodchem.2012.09.147.
    1. Pawłowicz Z., Zachara B.A., Trafikowska U., Maciag A., Marchaluk E., Nowicki A. Blood selenium concentrations and glutathione peroxidase activities in patients with breast cancer and with advanced gastrointestinal cancer. J. Trace Elem. Electrolytes Health Dis. 1991;5:275–277.
    1. Gröber U. Antioxidants and other micronutrients in complementary oncology. Breast Care. 2009;4:13–20. doi: 10.1159/000194972.
    1. Chung M., Balk E.M., Brendel M., Ip S., Lau J., Lee J., Lichtenstein A., Patel K., Raman G., Tatsioni A., et al. Vitamin D and calcium: A systematic review of health outcomes. Evid. Rep. Technol. Assess (Full Rep.) 2009;183:1–420.
    1. Picotto G., Liaudat A.C., Bohl L., Tolosa de Talamoni N. Molecular aspects of vitamin D anticancer activity. Cancer Investig. 2012;30:604–614. doi: 10.3109/07357907.2012.721039.
    1. Imtiaz S., Siddiqui N. Vitamin-D status at breast cancer diagnosis: Correlation with social and environmental factors and dietary intake. J. Ayub Med. Coll. Abbottabad. 2014;26:186–190.
    1. Vrieling A., Seibold P., Johnson T.S., Heinz J., Obi N., Kaaks R., Flesch-Janys D., Chang-Claude J. Circulating 25-hydroxyvitamin D and post-menopausal breast cancer survival: Influence of tumor characteristics and lifestyle factors? Int. J. Cancer. 2014;134:2972–2983. doi: 10.1002/ijc.28628.
    1. Kim Y., Je Y. Vitamin D intake, blood 25(OH)D levels, and breast cancer risk or mortality: A meta-analysis. Br. J. Cancer. 2014;110:2772–2784. doi: 10.1038/bjc.2014.175.
    1. Rose A.A., Elser C., Ennis M., Goodwin P.J. Blood levels of vitamin D and early stage breast cancer prognosis: A systematic review and meta-analysis. Breast Cancer Res. Treat. 2013;141:331–339. doi: 10.1007/s10549-013-2713-9.
    1. Yao S., Kwan M.L., Ergas I.J., Roh J.M., Cheng T.D., Hong C.C., McCann S.E., Tang L., Davis W., Liu S., et al. Association of serum level of vitamin D at diagnosis with breast cancer survival: A case-cohort analysis in the pathways study. JAMA Oncol. 2017;3:351–357. doi: 10.1001/jamaoncol.2016.4188.
    1. Vaughan-Shaw P.G., O’Sullivan F., Farrington S.M., Theodoratou E., Campbell H., Dunlop M.G., Zgaga L. The impact of vitamin D pathway genetic variation and circulating 25-hydroxyvitamin D on cancer outcome: Systematic review and meta-analysis. Br. J. Cancer. 2017;116:1092–1110. doi: 10.1038/bjc.2017.44.
    1. Crew K.D., Shane E., Cremers S., McMahon D.J., Irani D., Hershman D.L. High prevalence of vitamin D deficiency despite supplementation in premenopausal women with breast cancer undergoing adjuvant chemotherapy. J. Clin. Oncol. 2009;27:2151–2156. doi: 10.1200/JCO.2008.19.6162.
    1. Jacot W., Pouderoux S., Thezenas S., Chapelle A., Bleuse J.P., Romieu G., Lamy P.J. Increased prevalence of vitamin D insufficiency in patients with breast cancer after neoadjuvant chemotherapy. Breast Cancer Res. Treat. 2012;134:709–717. doi: 10.1007/s10549-012-2084-7.
    1. Hatse S., Lambrechts D., Verstuyf A., Smeets A., Brouwers B., Vandorpe T., Brouckaert O., Peuteman G., Laenen A., Verlinden L., et al. Vitamin D status at breast cancer diagnosis: Correlation with tumor characteristics, disease outcome, and genetic determinants of vitamin D insufficiency. Carcinogenesis. 2012;33:1319–1326. doi: 10.1093/carcin/bgs187.
    1. McKay J.D., McCullough M.L., Ziegler R.G., Kraft P., Saltzman B.S., Riboli E., Barricarte A., Berg C.D., Bergland G., Bingham S., et al. Vitamin D receptor polymorphisms and breast cancer risk: Results from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium. Cancer Epidemiol. Biomark. Prev. 2009;18:297–305. doi: 10.1158/1055-9965.EPI-08-0539.
    1. Datta M., Schwartz G.G. Calcium and vitamin D supplementation and loss of bone mineral density in women undergoing breast cancer therapy. Crit. Rev. Oncol. Hematol. 2013;88:613–624. doi: 10.1016/j.critrevonc.2013.07.002.
    1. Almquist M., Anagnostaki L., Bondeson L., Bondeson A.G., Borgquist S., Landberg G., Malina J., Malm J., Manjer J. Serum calcium and tumour aggressiveness in breast cancer: A prospective study of 7847 women. Eur. J. Cancer Prev. 2009;18:354–360. doi: 10.1097/CEJ.0b013e32832c386f.
    1. Bolland M.J., Avenell A., Baron J.A., Grey A., MacLennan G.S., Gamble G.D., Reid I.R. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: Meta-analysis. BMJ. 2010;341:c3691. doi: 10.1136/bmj.c3691.
    1. Lee C., Raffaghello L., Brandhorst S., Safdie F.M., Bianchi G., Martin-Montalvo A., Pistoia V., Wei M., Hwang S., Merlino A., et al. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci. Transl. Med. 2012;4:124ra27. doi: 10.1126/scitranslmed.3003293.
    1. Safdie F.M., Dorff T., Quinn D., Fontana L., Wei M., Lee C., Cohen P., Longo V.D. Fasting and cancer treatment in humans: A case series report. Aging. 2009;1:988–1007. doi: 10.18632/aging.100114.
    1. De Groot S., Vreeswijk M.P., Welters M.J., Gravesteijn G., Boei J.J., Jochems A., Houtsma D., Putter H., van der Hoeven J.J., Nortier J.W., et al. The effects of short-term fasting on tolerance to (neo) adjuvant chemotherapy in HER2-negative breast cancer patients: A randomized pilot study. BMC Cancer. 2015;15:652. doi: 10.1186/s12885-015-1663-5.
    1. Chlebowski R.T., Blackburn G., Thomson C.A., Nixon D.W., Shapiro A., Hoy M.K., Goodman M.T., Giuliano A.E., Karanja N., McAndrew P., et al. Dietary fat reduction and breast cancer outcome: Interim efficacy results from the Women’s Intervention Nutrition Study (WINS) J. Natl. Cancer Inst. 2006;98:1767–1776. doi: 10.1093/jnci/djj494.
    1. Pierce J.P., Natarajan L., Caan B.L., Parker B.A., Greenberg E.R., Flatt S.W., Rock C.L., Kealey S., Al-Delaimy W.K., Bardwell W.A., et al. Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer: The Women’s Healthy Eating and Living (WHEL) randomized trial. JAMA. 2007;298:289–298. doi: 10.1001/jama.298.3.289.
    1. McCullough M.L., Gapstur S.M., Shah R., Campbell P.T., Wang Y., Doyle C., Gaudet M.M. Pre- and postdiagnostic diet in relation to mortality among breast cancer survivors in the CPS-II Nutrition Cohort. Cancer Causes Control. 2016;27:1303–1314. doi: 10.1007/s10552-016-0802-x.
    1. Kroenke C.H., Kwan M.L., Sweeney C., Castillo A., Caan B.J. High- and low-fat dairy intake, recurrence, and mortality after breast cancer diagnosis. J. Natl Cancer Inst. 2013;105:616–623. doi: 10.1093/jnci/djt027.
    1. Belle F.N., Kampman E., McTiernan A., Bernstein L., Baumgartner K., Baumgartner R., Ambs A., Ballard-Barbash R., Neuhouser M.L. Dietary fiber, carbohydrates, glycemic index, and glycemic load in relation to breast cancer prognosis in the HEAL cohort. Cancer Epidemiol. Biomark. Prev. 2011;20:890–899. doi: 10.1158/1055-9965.EPI-10-1278.
    1. McEligot A.J., Largent J., Ziogas A., Peel D., Anton-Culver H. Dietary fat, fiber, vegetable, and micronutrients are associated with overall survival in post-menopausal women diagnosed with breast cancer. Nutr. Cancer. 2006;55:132–140. doi: 10.1207/s15327914nc5502_3.
    1. Holmes M.D., Chen W.Y., Hankinson S.E., Willett W.C. Physical activity’s impact on the association of fat and fiber intake with survival after breast cancer. Am. J. Epidemiol. 2009;170:1250–1256. doi: 10.1093/aje/kwp291.
    1. Shu X.O., Zheng Y., Cai H., Gu K., Chen Z., Zheng W., Lu W. Soy food intake and breast cancer survival. JAMA. 2009;302:2437–2443. doi: 10.1001/jama.2009.1783.
    1. Chi F., Wu R., Zeng Y.C., Xing R., Liu Y., Xu Z.G. Post-diagnosis soy food intake and breast cancer survival: A meta-analysis of cohort studies. Asian Pac. J. Cancer Prev. 2013;14:2407–2412. doi: 10.7314/APJCP.2013.14.4.2407.
    1. Nechuta S.J., Caan B.J., Chen W.Y., Lu W., Chen Z., Kwan M.L., Flatt S.W., Zheng Y., Zheng W., Pierce J.P., et al. Soy food intake after diagnosis of breast cancer and survival: An in-depth analysis of combined evidence from cohort studies of US and Chinese women. Am. J. Clin. Nutr. 2012;96:123–132. doi: 10.3945/ajcn.112.035972.
    1. Zhang F.F., Haslam D.E., Terry M.B., Knight J.A., Andrulis I.L., Daly M.B., Buys S.S., John E.M. Dietary isoflavone intake and all-cause mortality in breast cancer survivors: The Breast Cancer Family Registry. Cancer. 2017;123:2070–2079. doi: 10.1002/cncr.30615.

Source: PubMed

3
Prenumerera