Eicosapentaenoic and Docosahexaenoic Acids Attenuate Progression of Albuminuria in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease

Tarec K Elajami, Abdulhamied Alfaddagh, Dharshan Lakshminarayan, Michael Soliman, Madhuri Chandnani, Francine K Welty, Tarec K Elajami, Abdulhamied Alfaddagh, Dharshan Lakshminarayan, Michael Soliman, Madhuri Chandnani, Francine K Welty

Abstract

Background: Albuminuria is a marker of inflammation and an independent predictor of cardiovascular morbidity and mortality. The current study evaluated whether eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplementation attenuates progression of albuminuria in subjects with coronary artery disease.

Methods and results: Two-hundred sixty-two subjects with stable coronary artery disease were randomized to either Lovaza (1.86 g of EPA and 1.5 g of DHA daily) or no Lovaza (control) for 1 year. Percent change in urine albumin-to-creatinine ratio (ACR) was compared. Mean (SD) age was 63.3 (7.6) years; 17% were women and 30% had type 2 diabetes mellitus. In nondiabetic subjects, no change in urine ACR occurred in either the Lovaza or control groups. In contrast, ACR increased 72.3% (P<0.001) in diabetic subjects not receiving Lovaza, whereas those receiving Lovaza had no change. In diabetic subjects on an angiotensin-converting enzyme-inhibitor or angiotensin-receptor blocker, those receiving Lovaza had no change in urine ACR, whereas those not receiving Lovaza had a 64.2% increase (P<0.001). Change in ACR was directly correlated with change in systolic blood pressure (r=0.394, P=0.01).

Conclusions: EPA and DHA supplementation attenuated progression of albuminuria in subjects with type 2 diabetes mellitus and coronary artery disease, most of whom were on an angiotensin-converting enzyme-inhibitor or angiotensin-receptor blocker. Thus, EPA and DHA supplementation should be considered as additional therapy to an angiotensin-converting enzyme-inhibitor or angiotensin-receptor blocker in subjects with type 2 diabetes mellitus and coronary artery disease.

Clinical trial registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01624727.

Keywords: albuminuria; angiotensin‐converting enzyme inhibitor; coronary artery disease; omega‐3 fatty acids; type 2 diabetes mellitus.

© 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

Figures

Figure 1
Figure 1
Participant flow through the trial.

References

    1. Montero RM, Covic A, Gnudi L, Goldsmith D. Diabetic nephropathy: what does the future hold? Int Urol Nephrol. 2016;48:99–113.
    1. National Kidney Foundation . KDOQI clinical practice guideline for diabetes and CKD: 2012 update. Am J Kidney Dis. 2012;60:850–886.
    1. Keen H, Chlouverakis C, Fuller J, Jarrett RJ. The concomitants of raised blood sugar: studies in newly‐detected hyperglycemics II. Urinary albumin excretion, blood pressure and their relation to blood sugar levels. Guys Hosp Rep. 1969;118:247–254.
    1. Parving HH, Mogensen CE, Jensen HA, Evrin PE. Increase urinary albumin‐excretion rate in benign essential hypertension. Lancet. 1974;1:1190–1192.
    1. Hillege HL, Janssen WM, Bak AA, Diercks GF, Grobbee DE, Crijns HJ, Van Gilst WH, De Zeeuw D, De Jong PE; Prevend Study Group . Microalbuminuria is common, also in a nondiabetic, nonhypertensive population, and an independent indicator of cardiovascular risk factors and cardiovascular morbidity. J Intern Med. 2001;249:519–526.
    1. Jones CA, Francis ME, Eberbardt MS, Chavers B, Coresh J, Engelgau M, Kusek JW, Byrd‐Holt D, Naravan KM, Herman WH, Jones CP, Salive M, Agodoa LY. Microalbuminuria in the US population: third National Health and Nutrition Examination Survey. Am J Kidney Dis. 2002;39:445–459.
    1. Jager A, Kostense PJ, Ruhé HG, Heine RJ, Nijpels G, Dekker JM, Bouter LM, Stehouwer CD. Microalbuminuria and peripheral arterial disease are independent predictors of cardiovascular and all‐cause mortality, especially among hypertensive subjects: five‐year follow‐up of the Hoorn Study. Arterioscler Thromb Vasc Biol. 1999;19:617–624.
    1. Bigazzi R, Bianchi S, Baldari D, Campese VM. Microalbuminuria predicts cardiovascular events and renal insufficiency in patients with essential hypertension. J Hypertens. 1998;16:1325–1333.
    1. Messent JW, Elliott TG, Hill RD, Jarrett RJ, Keen H, Viberti GC. Prognostic significance of microalbuminuria in insulin‐dependent diabetes mellitus: a twenty‐three year follow‐up study. Kidney Int. 1992;41:836–839.
    1. Rossing P, Hougaard P, Borch‐Johnsen K, Parving HH. Predictors of mortality in insulin dependent diabetes: 10‐year observational follow‐up study. BMJ. 1996;313:779–784.
    1. Gerstein HC, Mann JF, Yi Q, Zinman B, Dinneen SF, Hoogwerf B, Hallé JP, Young J, Rashkow A, Joyce C, Nawaz S, Yusuf S; HOPE Study Investigators . Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and non‐diabetic individuals. JAMA. 2001;286:421–426.
    1. Dinneen SF, Gerstein HC. The association of microalbuminuria and mortality in non‐insulin‐dependent diabetes mellitus. A systematic overview of the literature. Arch Intern Med. 1997;157:1413–1418.
    1. Yudkin JS, Forrest RD, Jackson CA. Microalbuminuria as predictor of vascular disease in non‐diabetic subjects. Islington Diabetes Survey. Lancet. 1998;2:530–533.
    1. Borch‐Johnsen K, Feldt‐Rasmussen B, Strandgaard S, Schroll M, Jensen JS. Urinary albumin excretion: an independent predictor of ischemic heart disease. Arterioscler Thromb Vasc Biol. 1999;19:1992–1997.
    1. Hillege HL, Fidler V, Diercks GF, van Gilst WH, de Zeeuw D, van Veldhuisen DJ, Gans RO, Janssen WM, Grobbee DE, de Jong PE; Prevention of Renal and Vascular End Stage Disease (PREVEND) Study Group . Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation. 2002;106:1777–1782.
    1. Yuyun MF, Khaw KT, Luben R, Welch A, Bingham S, Day NE, Wareham NJ; European Prospective Investigation into Cancer in Norfolk (EPIC‐Norfolk) population study . Microalbuminuria independently predicts all‐cause and cardiovascular mortality in a British population: the European Prospective Investigation into Cancer in Norfolk (EPIC‐Norfolk) population study. Int J Epidemiol. 2004;33:189–198.
    1. Arnlov J, Evans JC, Meigs JB, Wang TJ, Fox CS, Levy D, Benjamin EJ, D'Agostino RB, Vasan RS. Low‐grade albuminuria and incidence of cardiovascular disease events in nonhypertensive and nondiabetic individuals: the Framingham Heart Study. Circulation. 2005;112:969–975.
    1. Wang Y, Yuan A, Yu C. Correlation between microalbuminuria and cardiovascular events. Int J Clin Exp Med. 2013;6:973–978.
    1. Romundstad S, Holmen J, Kvenild K, Hallan H, Ellekjaer H. Microalbuminuria and all‐cause mortality in 2,089 apparently healthy individuals: a 4.4‐year follow‐up study. The Nord‐Trondelag Health Study (HUNT), Norway. Am J Kidney Dis. 2003;42:466–473.
    1. Sung KC, Ryu S, Lee JY, Lee SH, Cheong E, Hyun YY, Lee KB, Kim H, Byrne CD. Urine albumin/creatinine ratio below 30 mg/g is a predictor of incident hypertension and cardiovascular mortality. J Am Heart Assoc. 2016;5:e003245 DOI: .
    1. Berton G, Cordiano R, Palmieri R, Cavuto F, Buttazzi P, Palatini P. Comparison of C‐reactive protein and albumin excretion as prognostic markers for 10‐year mortality after myocardial infarction. Clin Cardiol. 2010;33:508–515.
    1. Stehouwer CD, Smulders YM. Microalbuminuria and risk for cardiovascular disease: analysis of potential mechanisms. J Am Soc Nephrol. 2006;17:2106–2111.
    1. Kshirsagar AV, Bomback AS, Bang H, Gerber LM, Vupputuri S, Shoham DA, Mazmudar M, Ballantyne CM, Paparello JJ, Klemmer PJ. Association of C‐reactive protein and microalbuminuria (from the National Health and Nutrition Examination Surveys, 1999 to 2004). Am J Cardiol. 2008;101:401–406.
    1. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993;362:801–809.
    1. Choi BJ, Prasad A, Gulati R, Best PJ, Lennon RJ, Barsness GW, Lerman LO, Lerman A. Coronary endothelial dysfunction in patients with early coronary artery disease is associated with the increase in intravascular lipid core plaque. Eur Heart J. 2013;34:2047–2054.
    1. Deckert T, Feldt‐Rasmussen B, Borch‐Johnsen K, Jensen T, Kofoed‐Enevoldsen A. Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia. 1989;32:219–226.
    1. HOPE Study Investigators . Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO‐HOPE substudy. Heart Outcomes Prevention Evaluation Study Investigators. Lancet. 2000;355:253–259.
    1. Ibsen H, Olsen MH, Wachtell K, Borch‐Johnsen K, Lindholm LH, Mogensen CE, Dahlof B, Devereux RB, de Faire U, Fyhrquist F, Julius S, Kjeldsen SE, Lederballe‐Pedersen O, Nieminen MS, Omvik P, Oparil S, Wan Y. Reduction in albuminuria translates to reduction in cardiovascular events in hypertensive patients: losartan intervention for endpoint reduction in hypertension study. Hypertension. 2005;45:198–202.
    1. Ibsen H, Wachtell K, Olsen MH, Borch‐Johnsen K, Lindholm LH, Mogensen CE, Dahlof B, Devereux RB, de Faire U, Fyhrquist F, Julius S, Kjeldsen SE, Lederballe‐Pedersen O, Nieminen MS, Omvik P, Oparil S, Wan Y; LIFE substudy . Does albuminuria predict cardiovascular outcome on treatment with losartan versus atenolol in hypertension with left ventricular hypertrophy? A LIFE substudy. J Hypertens. 2004;22:1805–1811.
    1. Microvascular complications and foot care. Diabetes Care. 2016;39(suppl 1):S72–S80.
    1. Lee CC, Adler AI. Recent findings on the effects of marine‐derived n‐3 polyunsaturated fatty acids on urinary albumin excretion and renal function. Curr Atheroscler Rep. 2012;14:535–554.
    1. Miller ER III, Juraschek ST, Appel LJ, Mandala M, Anderson CA, Bleys J, Guallar E. The effect of n‐3 long chain polyunsaturated fatty acid supplementation on urine protein excretion and kidney function: meta‐analysis of clinical trials. Am J Clin Nutr. 2009;89:1937–1945.
    1. Shimizu H, Ohtani K, Tanaka Y, Sato N, Mori M, Shimomura Y. Long‐term effect of eicosapentaenoic acid ethyl (EPA‐E) on albuminuria of non‐insulin dependent diabetic patients. Diabetes Res Clin Pract. 1995;28:35–40.
    1. Okuda Y, Mizutani M, Ogawa M, Sone H, Asano M, Asakura Y, Isaka M, Suzuki S, Kawakami Y, Field JB, Yamashita K. Long‐term effects of eicosapentaenoic acid on diabetic peripheral neuropathy and serum lipids in patients with type II diabetes mellitus. J Diabetes Complications. 1996;10:280–287.
    1. Zeman M, Zak A, Vecka M, Tvrzická E, Písaríková A, Stanková B. N‐3 fatty acid supplementation decreases plasma homocysteine in diabetic dyslipidemia treated with statin‐fibrate combination. J Nutr Biochem. 2006;17:379–384.
    1. Miller ER III, Juraschek SP, Anderson CA, Guallar E, Henoch‐Ryugo K, Charleston J, Turban S, Bennett MR, Appel LJ. The effects of n‐3 long‐chain polyunsaturated fatty acid supplementation on biomarkers of kidney injury in adults with diabetes: results of the GO‐FISH trial. Diabetes Care. 2013;36:1462–1469.
    1. Poggio ED, Wang X, Greene T, Van Lente F, Hall PM. Performance of the modification of diet in renal disease and Cockcroft‐Gault equations in the estimation of GFR in health and in chronic kidney disease. J Am Soc Nephrol. 2005;16:459–466.
    1. Welty FK, Alfaddagh A, Elajami TK. Targeting inflammation in metabolic syndrome. Transl Res. 2016;167:257–280.
    1. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC Jr; International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity . Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–1645.
    1. Chachati A, von Frenckell R, Foidart‐Willems J, Godon JP, Lefebvre PJ. Variability of albumin excretion in insulin‐dependent diabetics. Diabet Med. 1987;4:441–445.
    1. Gomes MB, Goncalves MF. Is there a physiological variability for albumin excretion rate? Study in patients with diabetes type 1 and non‐diabetic individuals. Clin Chim Acta. 2001;304:117–123.
    1. Hansen HP, Hovind P, Jensen BR, Parving HH. Diurnal variations of glomerular filtration rate and albuminuria in diabetic nephropathy. Kidney Int. 2002;61:163–168.
    1. Naresh CN, Hayen A, Craig JC, Chadban SJ. Day‐to‐day variability in spot urine protein‐creatinine ratio measurements. Am J Kidney Dis. 2012;60:561–566.
    1. Witte EC, Lambers Heerspink HJ, de Zeeuw D, Bakker SJ, de Jong PE, Gansevoort R. First morning voids are more reliable than spot urine samples to assess microalbuminuria. J Am Soc Nephrol. 2009;20:436–443.
    1. Miller WG, Bruns DE, Hortin GL, Sandberg S, Aakre KM, McQueen MJ, Itoh Y, Lieske JC, Seccombe DW, Jones G, Bunk DM, Curhan GC, Narva AS; National Kidney Disease Education Program IWGoSoAiU . Current issues in measurement and reporting of urinary albumin excretion. Clin Chem. 2009;55:24–38.
    1. Mogensen CE, Vestbo E, Poulsen PL, Christiansen C, Damsgaard EM, Eiskjaer H, Froland A, Hansen KW, Nielsen S, Pedersen MM. Microalbuminuria and potential confounders. A review and some observations on variability of urinary albumin excretion. Diabetes Care. 1995;18:572–581.
    1. Brinkman JW, de Zeeuw D, Duker JJ, Gansevoort RT, Kema IP, Hillege HL, de Jong PE, Bakker SJ. Falsely low urinary albumin concentrations after prolonged frozen storage of urine samples. Clin Chem. 2005;51:2181–2183.
    1. Brinkman JW, de Zeeuw D, Gansevoort RT, Duker JJ, Kema IP, de Jong PE, Bakker SJ. Prolonged frozen storage of urine reduces the value of albuminuria for mortality prediction. Clin Chem. 2007;53:153–154.
    1. Xie X, Atkins E, Lv J, Bennett A, Neal B, Ninomiya T, Woodward M, MacMahon S, Turnbull F, Hillis GS, Chalmers J, Mant J, Salam A, Rahimi K, Perkovic V, Rodgers A. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta‐analysis. Lancet. 2016;387:435–443.
    1. Schmieder RE, Mann JF, Schumacher H, Gao P, Mancia G, Weber MA, McQueen M, Koon T, Yusuf S; ONTARGET Investigators . Changes in albuminuria predict mortality and morbidity in patients with vascular disease. J Am Soc Nephrol. 2011;22:1353–1364.
    1. de Zeeuw D, Hillege HL, de Jong PE. The kidney, a cardiovascular risk marker and a new target for therapy. Kidney Int. 2005;98:S25–S29.
    1. Shapiro H, Theilla M, Attal‐Singer J, Singer P. Effects of polyunsaturated fatty acid consumption in diabetic nephropathy. Nat Rev Nephrol. 2011;7:110–121.
    1. Stirban A, Nandrean S, Götting C, Tamler R, Pop A, Negrean M, Gawlowski T, Stratmann B, Tschoepe D. Effects of n‐3 fatty acids on macro‐ and microvascular function in subjects with type 2 diabetes mellitus. Am J Clin Nutr. 2010;91:808–813.
    1. Thomas G, Sehgal AR, Kashyap SR, Srinivas TR, Kirwan JP, Navaneethan SD. Metabolic syndrome and kidney disease: a systematic review and meta‐analysis. Clin J Am Soc Nephrol. 2011;6:2364–2373.
    1. Keane WF. The role of lipids in renal disease: future challenges. Kidney Int Suppl. 2000;75:S27–S31.
    1. Oda H, Keane WF. Lipids in progression of renal disease. Kidney Int Suppl. 1997;62:S36–S38.
    1. Basu R, Chandramouli V, Dicke B, Landau B, Rizza R. Obesity and type 2 diabetes impair insulin‐induced suppression of glycogenolysis as well as gluconeogenesis. Diabetes. 2005;54:1942–1948.
    1. Glauber H, Wallace P, Griver K, Brechtel G. Adverse metabolic effect of omega‐3 fatty acids in non‐insulin‐dependent diabetes mellitus. Ann Intern Med. 1988;108:663–668.

Source: PubMed

3
Prenumerera