Accurate Screening for Early-Stage Breast Cancer by Detection and Profiling of Circulating Tumor Cells

Timothy Crook, Robert Leonard, Kefah Mokbel, Alastair Thompson, Michael Michell, Raymond Page, Ashok Vaid, Ravi Mehrotra, Anantbhushan Ranade, Sewanti Limaye, Darshana Patil, Dadasaheb Akolkar, Vineet Datta, Pradip Fulmali, Sachin Apurwa, Stefan Schuster, Ajay Srinivasan, Rajan Datar, Timothy Crook, Robert Leonard, Kefah Mokbel, Alastair Thompson, Michael Michell, Raymond Page, Ashok Vaid, Ravi Mehrotra, Anantbhushan Ranade, Sewanti Limaye, Darshana Patil, Dadasaheb Akolkar, Vineet Datta, Pradip Fulmali, Sachin Apurwa, Stefan Schuster, Ajay Srinivasan, Rajan Datar

Abstract

Background: The early detection of breast cancer (BrC) is associated with improved survival. We describe a blood-based breast cancer detection test based on functional enrichment of breast-adenocarcinoma-associated circulating tumor cells (BrAD-CTCs) and their identification via multiplexed fluorescence immunocytochemistry (ICC) profiling for GCDFP15, GATA3, EpCAM, PanCK, and CD45 status.

Methods: The ability of the test to differentiate BrC cases (N = 548) from healthy women (N = 9632) was evaluated in a case-control clinical study. The ability of the test to differentiate BrC cases from those with benign breast conditions was evaluated in a prospective clinical study of women (N = 141) suspected of BrC.

Results: The test accurately detects BrAD-CTCs in breast cancers, irrespective of age, ethnicity, disease stage, grade, or hormone receptor status. Analytical validation established the high accuracy and reliability of the test under intended use conditions. The test detects and differentiates BrC cases from healthy women with 100% specificity and 92.07% overall sensitivity in a case-control study. In a prospective clinical study, the test shows 93.1% specificity and 94.64% overall sensitivity in differentiating breast cancer cases (N = 112) from benign breast conditions (N = 29).

Conclusion: The findings reported in this manuscript support the clinical potential of this test for blood-based BrC detection.

Keywords: breast cancer; circulating tumor cells; immunocytochemistry; screening.

Conflict of interest statement

Timothy Crook, Robert Leonard, Alastair Thompson, Michael Michell, Ashok Vaid, Ravi Mehrotra, Anantbhushan Ranade, and Sewanti Limaye have no competing interests. Kefah Mokbel and Raymond Page are fractional stock holders of the Study Sponsor. Darshana Patil, Dadasaheb Akolkar, Vineet Datta, Pradip Fulmali, Sachin Apurwa, Stefan Schuster, and Ajay Srinivasan are employees of the Study Sponsor. Rajan Datar is the founder of the Study Sponsor.

Figures

Figure 1
Figure 1
Schema of test. Functional enrichment of circulating tumor cells (CTCs) is achieved using a cell culture medium that is cytotoxic towards all non-malignant cells, and permits survival of tumor-derived malignant cells. Peripheral blood mononuclear cells (PBMC) isolated from whole blood are treated with the medium for 120 h, after which the surviving cells and cell clusters are harvested and evaluated by multiplexed immunocytochemistry (ICC) profiling, to determine presence of breast-adenocarcinoma-associated CTCs (BrAD-CTCs), which are identified as CD45-negative cells that express GATA3, GCDFP15, and EpCAM in combination with PanCK.
Figure 2
Figure 2
Decision matrix for classifying samples. The detection threshold for breast-adenocarcinoma-associated CTCs (BrAD-CTCs) is ≥ 15 PanCK cells/5 mL, which is constituted by the detection of ≥ 5 GATA3+, PanCK+, and CD45-cells, along with ≥ 5 GCDFP15+, PanCK+, and CD45- cells, as well as ≥ 5 EpCAM+, PanCK+, and CD45-cells in the respective aliquots. Depending on the number of each type of marker positive cells, samples are marked as positive, equivocal or negative. The decision matrix bestows priority to GATA3 and GCDFP15 over EpCAM while classifying samples to ensure specificity for BrAD over other epithelial malignancies where EpCAM+ cells may be detected but breast-specific markers would be absent. Thus, while the test can detect EpCAM+, PanCK+, and CD45-cells, which may be present in various epithelial malignancies, it specifically reports only BrAD-CTCs.

References

    1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660.
    1. Guidi A.J., Fischer L., Harris J.R., Schnitt S.J. Microvessel density and distribution in ductal carcinoma in situ of the breast. J. Natl. Cancer Inst. 1994;86:614–619. doi: 10.1093/jnci/86.8.614.
    1. Teo N.B., Shoker B.S., Jarvis C., Martin L., Sloane J.P., Holcombe C. Vascular density and phenotype around ductal carcinoma in situ (DCIS) of the breast. Br. J. Cancer. 2002;86:905–911. doi: 10.1038/sj.bjc.6600053.
    1. Heffelfinger S.C., Yassin R., Miller M.A., Lower E. Vascularity of proliferative breast disease and carcinoma in situ correlates with histological features. Clin. Cancer Res. 1996;2:1873–1878.
    1. Sänger N., Effenberger K.E., Riethdorf S., Van Haasteren V., Gauwerky J., Wiegratz I., Strebhardt K., Kaufmann M., Pantel K. Disseminated tumor cells in the bone marrow of patients with ductal carcinoma in situ. Int. J. Cancer. 2011;129:2522–2526. doi: 10.1002/ijc.25895.
    1. Gruber I.V., Hartkopf A.D., Hahn M., Taran F.-A., Staebler A., Wallwiener D., Brucker S.Y., Hanke J., Fehm T. Relationship Between Hematogenous Tumor Cell Dissemination and Cellular Immunity in DCIS Patients. Anticancer Res. 2016;36:2345–2351.
    1. Hosseini H., Obradović M.M.S., Hoffmann M., Harper K.L., Sosa M.S., Werner-Klein M., Nanduri L.K., Werno C., Ehrl C., Maneck M., et al. Early dissemination seeds metastasis in breast cancer. Nature. 2016;540:552–558. doi: 10.1038/nature20785.
    1. Krol I., Schwab F.D., Carbone R., Ritter M., Picocci S., De Marni M.L., Stepien G., Franchi G.M., Zanardi A., Rissoglio M.D., et al. Detection of clustered circulating tumour cells in early breast cancer. Br. J. Cancer. 2021;125:23–27. doi: 10.1038/s41416-021-01327-8.
    1. Reduzzi C., Di Cosimo S., Gerratana L., Motta R., Martinetti A., Vingiani A., D’Amico P., Zhang Y., Vismara M., Depretto C., et al. Circulating Tumor Cell Clusters Are Frequently Detected in Women with Early-Stage Breast Cancer. Cancers. 2021;13:2356. doi: 10.3390/cancers13102356.
    1. Jin L., Zhao W., Zhang J., Chen W., Xie T., Wang L., Fan W., Xie S., Shen J., Zheng H., et al. Evaluation of the diagnostic value of circulating tumor cells with CytoSorter® CTC capture system in patients with breast cancer. Cancer Med. 2020;9:1638–1647. doi: 10.1002/cam4.2825.
    1. Fina E., Reduzzi C., Motta R., Di Cosimo S., Bianchi G., Martinetti A., Wechsler J., Cappelletti V., Daidone M.G. Did circulating tumor cells tell us all they could? The missed circulating tumor cell message in breast cancer. Int. J. Biol. Markers. 2015;30:e429–e433. doi: 10.5301/jbm.5000166.
    1. Fina E., Cleris L., Dugo M., Lecchi M., Ciniselli C.M., Lecis D., Bianchi G.V., Verderio P., Daidone M.G., Cappelletti V. Gene signatures of circulating breast cancer cell models are a source of novel molecular determinants of metastasis and improve circulating tumor cell detection in patients. J. Exp. Clin. Cancer Res. 2022;25:78. doi: 10.1186/s13046-022-02259-8.
    1. Spizzo G., Fong D., Wurm M., Ensinger C., Obrist P., Hofer C., Mazzoleni G., Gastl G., Went P. EpCAM expression in primary tumour tissues and metastases: An immunohistochemical analysis. J. Clin. Pathol. 2011;64:415–420. doi: 10.1136/jcp.2011.090274.
    1. Soysal S.D., Muenst S., Barbie T., Fleming T., Gao F., Spizzo G., Oertli D., Viehl C.T., Obermann E.C., Gillanders W.E. EpCAM expression varies significantly and is differentially associated with prognosis in the luminal B HER2+, basal-like, and HER2 intrinsic subtypes of breast cancer. Br. J. Cancer. 2013;108:1480–1487. doi: 10.1038/bjc.2013.80.
    1. Rao C.G., Chianese D., Doyle G.V., Miller M.C., Russell T., Sanders R.A.J., Terstappen L.W.M.M. Expression of epithelial cell adhesion molecule in carcinoma cells present in blood and primary and metastatic tumors. Int. J. Oncol. 2005;27:49–57. doi: 10.3892/ijo.27.1.49.
    1. de Wit S., Manicone M., Rossi E., Lampignano R., Yang L., Zill B., Rengel-Puertas A., Ouhlen M., Crespo M., Berghuis A.M.S., et al. EpCAM(high) and EpCAM(low) circulating tumor cells in metastatic prostate and breast cancer patients. Oncotarget. 2018;9:35705–35716. doi: 10.18632/oncotarget.26298.
    1. Adams D.L., Stefansson S., Haudenschild C., Martin S.S., Charpentier M., Chumsri S., Cristofanilli M., Tang C.-M., Alpaugh R.K. Cytometric characterization of circulating tumor cells captured by microfiltration and their correlation to the CellSearch® CTC test. Cytometry A. 2015;87:137–144. doi: 10.1002/cyto.a.22613.
    1. Deng G., Herrler M., Burgess D., Manna E., Krag D., Burke J.F. Enrichment with anti-cytokeratin alone or combined with anti-EpCAM antibodies significantly increases the sensitivity for circulating tumor cell detection in metastatic breast cancer patients. Breast Cancer Res. 2008;10:R69. doi: 10.1186/bcr2131.
    1. Sheng Y., Wang T., Li H., Zhang Z., Chen J., He C., Li Y., Lv Y., Zhang J., Xu C., et al. Comparison of analytic performances of Cellsearch and iFISH approach in detecting circulating tumor cells. Oncotarget. 2017;8:8801–8806. doi: 10.18632/oncotarget.6688.
    1. Akolkar D., Patil D., Crook T., Limaye S., Page R., Datta V., Patil R., Sims C., Ranade A., Fulmali P., et al. Circulating ensembles of tumor-associated cells: A redoubtable new systemic hallmark of cancer. Int. J. Cancer. 2020;146:3485–3494. doi: 10.1002/ijc.32815.
    1. Gaya A., Crook T., Plowman N., Ranade A., Limaye S., Bhatt A., Page R., Patil R., Fulmali P., Datta V., et al. Evaluation of circulating tumor cell clusters for pan-cancer noninvasive diagnostic triaging. Cancer Cytopathol. 2021;129:226–238. doi: 10.1002/cncy.22366.
    1. von Elm E., Altman D.G., Egger M., Pocock S.J., Gøtzsche P.C., Vandenbroucke J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. 2014;12:1495–1499. doi: 10.1016/j.ijsu.2014.07.013.
    1. Crook T., Gaya A., Page R., Limaye S., Ranade A., Bhatt A., Patil S., Kumar P., Patil D., Akolkar D. Clinical utility of circulating tumor-associated cells to predict and monitor chemo-response in solid tumors. Cancer Chemother. Pharmacol. 2021;87:197–205. doi: 10.1007/s00280-020-04189-8.
    1. World Health Organization . WHO Position Paper on Mammography Screening. World Health Organization; Geneva, Switzerland: 2014.
    1. Siu A.L. Screening for Breast Cancer: U.S. Preventive Services Task Force Recommendation Statement. Ann. Intern. Med. 2016;164:279–296. doi: 10.7326/M15-2886.
    1. NCCN Guidelines: Breast Cancer Screening and Diagnosis version 1. 2021. [(accessed on 25 July 2021)]. Available online: .
    1. Cardoso F., Kyriakides S., Ohno S., Penault-Llorca F., Poortmans P., Rubio I.T., Zackrisson S., Senkus E. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019;30:1194–1220. doi: 10.1093/annonc/mdz173.
    1. National Guideline Alliance (UK) Early and Locally Advanced Breast Cancer: Diagnosis and Management. National Guideline Alliance; London, UK: 2018.
    1. Wöckel A., Festl J., Stüber T., Brust K., Stangl S., Heuschmann P.U., Albert U.-S., Budach W., Follmann M., Janni W., et al. Interdisciplinary Screening, Diagnosis, Therapy and Follow-up of Breast Cancer. Guideline of the DGGG and the DKG (S3-Level, AWMF Registry Number 032/045OL, December 2017)-Part 1 with Recommendations for the Screening, Diagnosis and Therapy of Breast C. Geburtshilfe Frauenheilkd. 2018;78:927–948. doi: 10.1055/a-0646-4522.
    1. Schünemann H.J., Lerda D., Quinn C., Follmann M., Alonso-Coello P., Rossi P.G., Lebeau A., Nyström L., Broeders M., Ioannidou-Mouzaka L., et al. Breast Cancer Screening and Diagnosis: A Synopsis of the European Breast Guidelines. Ann. Intern. Med. 2020;172:46–56. doi: 10.7326/M19-2125.
    1. Abdullah P., Alabousi M., Ramadan S., Zawawi I., Zawawi M., Bhogadi Y., Freitas V., Patlas M.N., Alabousi A. Synthetic 2D Mammography Versus Standard 2D Digital Mammography: A Diagnostic Test Accuracy Systematic Review and Meta-Analysis. Am. J. Roentgenol. 2021;217:314–325. doi: 10.2214/AJR.20.24204.
    1. Salim M., Dembrower K., Eklund M., Lindholm P., Strand F. Range of Radiologist Performance in a Population-based Screening Cohort of 1 Million Digital Mammography Examinations. Radiology. 2020;297:33–39. doi: 10.1148/radiol.2020192212.
    1. Lehman C.D., Wellman R.D., Buist D.S.M., Kerlikowske K., Tosteson A.N.A., Miglioretti D.L. Diagnostic Accuracy of Digital Screening Mammography With and Without Computer-Aided Detection. JAMA Intern. Med. 2015;175:1828–1837. doi: 10.1001/jamainternmed.2015.5231.
    1. McNeil C. Screening Mammograms in Younger Women Have Low Accuracy and Detect Few Cancers. JNCI J. Natl. Cancer Inst. 2010;102:841–842. doi: 10.1093/jnci/djq176.
    1. Nelson H.D., Fu R., Cantor A., Pappas M., Daeges M., Humphrey L. Effectiveness of Breast Cancer Screening: Systematic Review and Meta-analysis to Update the 2009 U.S. Preventive Services Task Force Recommendation. Ann. Intern. Med. 2016;164:244–255. doi: 10.7326/M15-0969.
    1. Hubbard R.A., Kerlikowske K., Flowers C.I., Yankaskas B.C., Zhu W., Miglioretti D.L. Cumulative probability of false-positive recall or biopsy recommendation after 10 years of screening mammography: A cohort study. Ann. Intern. Med. 2011;155:481–492. doi: 10.7326/0003-4819-155-8-201110180-00004.
    1. Goldfrank D., Chuai S., Bernstein J.L., Ramon Y., Cajal T., Lee J.B., Alonso M.C., Diez O., Baiget M., Kauff N.D., et al. Effect of mammography on breast cancer risk in women with mutations in BRCA1 or BRCA2. Cancer Epidemiol. Biomark. Prev. 2006;15:2311–2313. doi: 10.1158/1055-9965.EPI-06-0176.
    1. Niraula S., Biswanger N., Hu P., Lambert P., Decker K. Incidence, Characteristics, and Outcomes of Interval Breast Cancers Compared With Screening-Detected Breast Cancers. JAMA Netw. Open. 2020;3:e2018179. doi: 10.1001/jamanetworkopen.2020.18179.
    1. Health, United States, 2019—Data Finder. [(accessed on 26 July 2021)]; Available online: .
    1. Locke W.J., Guanzon D., Ma C., Liew Y.J., Duesing K.R., Fung K.Y.C., Ross J.P. DNA Methylation Cancer Biomarkers: Translation to the Clinic. Front. Genet. 2019;10:1150. doi: 10.3389/fgene.2019.01150.
    1. Liu M.C., Oxnard G.R., Klein E.A., Swanton C., Seiden M. V Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann. Oncol. 2020;31:745–759. doi: 10.1016/j.annonc.2020.02.011.
    1. Klein E.A., Richards D., Cohn A., Tummala M., Lapham R., Cosgrove D., Chung G., Clement J., Gao J., Hunkapiller N., et al. Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set. Ann. Oncol. Off. 2021;32:1167–1177. doi: 10.1016/j.annonc.2021.05.806.
    1. Cohen J.D., Li L., Wang Y., Thoburn C., Afsari B., Danilova L., Douville C., Javed A.A., Wong F., Mattox A., et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359:926–930. doi: 10.1126/science.aar3247.
    1. Sieuwerts A.M., Kraan J., Bolt J., van der Spoel P., Elstrodt F., Schutte M., Martens J.W.M., Gratama J.-W., Sleijfer S., Foekens J.A. Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. J. Natl. Cancer Inst. 2009;101:61–66. doi: 10.1093/jnci/djn419.
    1. Aktas B., Tewes M., Fehm T., Hauch S., Kimmig R., Kasimir-Bauer S. Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res. 2009;11:R46. doi: 10.1186/bcr2333.
    1. Krawczyk N., Meier-Stiegen F., Banys M., Neubauer H., Ruckhaeberle E., Fehm T. Expression of stem cell and epithelial-mesenchymal transition markers in circulating tumor cells of breast cancer patients. BioMed Res. Int. 2014;2014:415721. doi: 10.1155/2014/415721.
    1. MQSA National Statistics. [(accessed on 17 September 2021)]; Available online: .
    1. John M. Eisenberg Center for Clinical Decisions and Communications Science Core-Needle Biopsy for Breast Abnormalities. [(accessed on 7 July 2022)]; Available online:
    1. Cancer Stat Facts: Female Breast Cancer. [(accessed on 17 September 2021)]; Available online: .
    1. Peintinger F. National Breast Screening Programs across Europe. Breast Care. 2019;14:354–358. doi: 10.1159/000503715.
    1. CLSI Evaluation of Linearity of Quantitative Measurement Procedures-Table 3. Deviations from True Ratios for Different Percentages of ADL; EP06Ed2. 2020. [(accessed on 24 May 2022)]. Available online:

Source: PubMed

3
Prenumerera