Fascia Mobility, Proprioception, and Myofascial Pain

Helene M Langevin, Helene M Langevin

Abstract

The network of fasciae is an important part of the musculoskeletal system that is often overlooked. Fascia mobility, especially along shear planes separating muscles, is critical for musculoskeletal function and may play an important, but little studied, role in proprioception. Fasciae, especially the deep epimysium and aponeuroses, have recently been recognized as highly innervated with small diameter fibers that can transmit nociceptive signals, especially in the presence of inflammation. Patients with connective tissue hyper- and hypo-mobility disorders suffer in large number from musculoskeletal pain, and many have abnormal proprioception. The relationships among fascia mobility, proprioception, and myofascial pain are largely unstudied, but a better understanding of these areas could result in improved care for many patients with musculoskeletal pain.

Keywords: connective tissue; fascia; fascia mobility; interoception; myofascial pain; proprioception.

Conflict of interest statement

The author declares no conflict of interest.

Figures

Figure 1
Figure 1
Types of strain resulting from normal and shear forces.
Figure 2
Figure 2
Relationship between stiffness and shear strain.
Figure 3
Figure 3
Hypothetical model relating fascia mobility, proprioception, and myofascial pain.

References

    1. Stecco C., Porzionato A., Lancerotto L., Stecco A., Macchi V., Day J.A., De Caro R. Histological study of the deep fasciae of the limbs. J. Bodyw. Mov. Ther. 2008;12:225–230. doi: 10.1016/j.jbmt.2008.04.041.
    1. Langevin H.M., Huijing P.A. Communicating about fascia: History, pitfalls, and recommendations. Int. J. Ther. Massage Bodyw. 2009;2:3–8.
    1. Langevin H.M., Fox J.R., Koptiuch C., Badger G.J., Greenan-Naumann A.C., Bouffard N.A., Konofagou E.E., Lee W.-N., Triano J.J., Henry S.M. Reduced thoracolumbar fascia shear strain in human chronic low back pain. BMC Musculoskelet. Disord. 2011;12:203. doi: 10.1186/1471-2474-12-203.
    1. Skootsky S.A., Jaeger B., Oye R.K. Prevalence of myofascial pain in general internal medicine practice. West. J. Med. 1989;151:157–160.
    1. Fricton J. Myofascial pain: Mechanisms to management. Oral. Maxillofac. Surg. Clin. N. Am. 2016;28:289–311. doi: 10.1016/j.coms.2016.03.010.
    1. National Institutes of Health NIH HEAL Initiative Workshop on Myofascial Pain. [(accessed on 16 September 2020)]; Available online: .
    1. National Institutes of Health Neurocircuitry of Force-Based Manipulations. [(accessed on 17 September 2020)]; Available online: .
    1. National Institutes of Health The Science of Interoception and Its Roles in Nervous System Disorders. [(accessed on 16 April 2019)]; Available online: .
    1. Hoheisel U., Rosner J., Mense S. Innervation changes induced by inflammation of the rat thoracolumbar fascia. Neuroscience. 2015;300:351–359. doi: 10.1016/j.neuroscience.2015.05.034.
    1. Mense S. Innervation of the thoracolumbar fascia. Eur. J. Transl. Myol. 2019;29:8297. doi: 10.4081/ejtm.2019.8297.
    1. Stecco C., Pirri C., Fede C., Fan C., Giordani F., Stecco L., Foti C., De Caro R. Dermatome and fasciatome. Clin. Anat. 2019;32:896–902. doi: 10.1002/ca.23408.
    1. Chen W.G., Schloesser D., Arensdorf A.M., Simmons J.M., Cui C., Valentino R., Gnadt J.W., Nielsen L., St Hillaire-Clarke C., Spruance V., et al. The emerging science of interoception: Sensing, integrating, interpreting, and regulating signals within the self. Trends Neurosci. 2021;44:3–16. doi: 10.1016/j.tins.2020.10.007.
    1. Proske U., Gandevia S.C. The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 2012;92:1651–1697. doi: 10.1152/physrev.00048.2011.
    1. Turvey M.T., Carello C. Obtaining information by dynamic (effortful) touching. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011;366:3123–3132. doi: 10.1098/rstb.2011.0159.
    1. Chesler A.T., Szczot M., Bharucha-Goebel D., Cěko M., Donkervoort S., Laubacher C., Hayes L.H., Alter K., Zampieri C., Stanley C., et al. The role of PIEZO2 in human mechanosensation. N. Engl. J. Med. 2016;375:1355–1364. doi: 10.1056/NEJMoa1602812.
    1. Case L.K., Liljencrantz J., Madian N., Necaise A., Tubbs J., McCall M., Bradson M.L., Szczot M., Pitcher M.H., Ghitani N., et al. Innocuous pressure sensation requires A-type afferents but not functional PIEZO2 channels in humans. Nat. Commun. 2021;12:657. doi: 10.1038/s41467-021-20939-5.
    1. Mehling W.E., Gopisetty V., Daubenmier J., Price C.J., Hecht F.M., Stewart A. Body awareness: Construct and self-report measures. PLoS ONE. 2009;4:e5614. doi: 10.1371/journal.pone.0005614.
    1. Langevin H.M., Churchill D.L., Wu J., Badger G.J., Yandow J.A., Fox J.R., Krag M.H. Evidence of connective tissue involvement in acupuncture. FASEB J. 2002;16:872–874. doi: 10.1096/fj.01-0925fje.
    1. Wang X., Chan S.-T., Fang J., Nixon E.E., Liu J., Kwong K.K., Rosen B.R., Hui K.K.S. Neural encoding of acupuncture needling sensations: Evidence from a FMRI study. Evid. Based Complement. Altern. Med. 2013;2013:483105. doi: 10.1155/2013/483105.
    1. Klingberg F., Hinz B., White E.S. The myofibroblast matrix: Implications for tissue repair and fibrosis. J. Pathol. 2013;229:298–309. doi: 10.1002/path.4104.
    1. Elosegui-Artola A. The extracellular matrix viscoelasticity as a regulator of cell and tissue dynamics. Curr. Opin. Cell Biol. 2021;72:10–18. doi: 10.1016/j.ceb.2021.04.002.
    1. Chaudhuri O., Cooper-White J., Janmey P.A., Mooney D.J., Shenoy V.B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature. 2020;584:535–546. doi: 10.1038/s41586-020-2612-2.
    1. Stecco C., Pirri C., Fede C., Yuceosy C.A., De Caro R., Stecco A. Fascial or muscle Stretching? A narrative review. Appl. Sci. 2021;11:307. doi: 10.3390/app11010307.
    1. Fung Y.-C. Biomechanics: Mechanical Properties of Living Tissues. 2nd ed. Springer; New York, NY, USA: 1993.
    1. Pavan P.G., Stecco A., Stern R., Stecco C. Painful connections: Densification versus fibrosis of fascia. Curr. Pain Headache Rep. 2014;18:441. doi: 10.1007/s11916-014-0441-4.
    1. Pethő Z., Najder K., Bulk E., Schwab A. Mechanosensitive ion channels push cancer progression. Cell Calcium. 2019;80:79–90. doi: 10.1016/j.ceca.2019.03.007.
    1. Broders-Bondon F., Ho-Bouldoires T.H.N., Fernandez-Sanchez M.-E., Farge E. Mechanotransduction in tumor progression: The dark side of the force. J. Cell Biol. 2018;217:1571–1587. doi: 10.1083/jcb.201701039.
    1. Wu P.-H., Aroush D.R.-B., Asnacios A., Chen W.-C., Dokukin M.E., Doss B.L., Durand-Smet P., Ekpenyong A., Guck J., Guz N.V., et al. A comparison of methods to assess cell mechanical properties. Nat. Methods. 2018;15:491–498. doi: 10.1038/s41592-018-0015-1.
    1. Ophir J., Alam S.K., Garra B.S., Kallel F., Konofagou E.E., Krouskop T., Merritt C.R.B., Righetti R., Souchon R., Srinivasan S., et al. Elastography: Imaging the elastic properties of soft tissues with ultrasound. J. Med. Ultrason. 2002;29:155. doi: 10.1007/BF02480847.
    1. Ormachea J., Parker K.J. Elastography imaging: The 30-year perspective. Phys. Med. Biol. 2020;65:24TR06. doi: 10.1088/1361-6560/abca00.
    1. Chu C.-A., Chen Y.-J., Chang K.-V., Wu W.-T., Özçakar L. Reliability of sonoelastography measurement of tongue muscles and its application on obstructive sleep apnea. Front. Physiol. 2021;12:394. doi: 10.3389/fphys.2021.654667.
    1. Chiu Y.-H., Chang K.-V., Chen I.-J., Wu W.-T., Özçakar L. Utility of sonoelastography for the evaluation of rotator cuff tendon and pertinent disorders: A systematic review and meta-analysis. Eur. Radiol. 2020;30:6663–6672. doi: 10.1007/s00330-020-07059-2.
    1. Manduca A., Bayly P.J., Ehman R.L., Kolipaka A., Royston T.J., Sack I., Sinkus R., Van Beers B.E. MR elastrography: Principles, guidelines, and terminology. Magn. Reson. Med. 2021;85:2377–2390. doi: 10.1002/mrm.28627.
    1. Bishop J.H., Fox J.R., Maple R., Loretan C., Badger G.J., Henry S.M., Vizzard M.A., Langevin H.M. Ultrasound evaluation of the combined effects of thoracolumbar fascia injury and movement restriction in a porcine model. PLoS ONE. 2016;11:e0147393. doi: 10.1371/journal.pone.0147393.
    1. Yin Z., Lu X., Cohen S.C., Sui Y., Manduca A., Van Gompel J.J., Ehman R.L., Huston J., 3rd A new method for quantification and 3D visualization of brain tumor adhesion using slip interface imaging in patients with meningiomas. Eur. Radiol. 2021;2021 doi: 10.1007/s00330-021-07918-6.
    1. Menon R.G., Oswald S.F., Raghavan P., Regatte R.R., Stecco A. T1ρ-mapping for musculoskeletal pain diagnosis: Case series of variation of water bound glycosaminoglycans quantification before and after fascial manipulation® in subjects with elbow pain. Int. J. Environ. Res. Public Health. 2020;17:708. doi: 10.3390/ijerph17030708.
    1. Tesarz J., Hoheisel U., Wiedenhöfer B., Mense S. Sensory innervation of the thoracolumbar fascia in rats and humans. Neuroscience. 2011;194:302–308. doi: 10.1016/j.neuroscience.2011.07.066.
    1. Simons D.G. New views of myofascial trigger points: Etiology and diagnosis. Arch. Phys. Med. Rehabil. 2008;89:157–159. doi: 10.1016/j.apmr.2007.11.016.
    1. Shah J.P., Thaker N., Heimur J., Aredo J.V., Sikdar S., Gerber L. Myofascial trigger points then and now: A historical and scientific perspective. PM R. 2015;7:746–761.
    1. Weller J.L., Comeau D., Otis J.A.D. Myofascial pain. Semin. Neurol. 2018;38:640–643.
    1. Stecco A., Gesi M., Stecco C., Stern R. Fascial components of the myofascial pain syndrome. Curr. Pain Headache Rep. 2013;17:352. doi: 10.1007/s11916-013-0352-9.
    1. Barbe M.F., Gallagher S., Massicotte V.S., Tytell M., Popoff S.N., Barr-Gillespie A.E. The interaction of force and repetition on musculoskeletal and neural tissue responses and sensorimotor behavior in a rat model of work-related musculoskeletal disorders. BMC Musculoskelet. Disord. 2013;14:303. doi: 10.1186/1471-2474-14-303.
    1. Deyo R.A., Weinstein J.N. Low back pain. N. Engl. J. Med. 2001;344:363–370. doi: 10.1056/NEJM200102013440508.
    1. Wassenaar M., van Rijn R.M., van Tulder M.W., Verhagen A.P., van der Windt D.A.W.M., Koes B.W., de Boer M.R., Ginai A.Z., Ostelo R.W.J.G. Magnetic resonance imaging for diagnosing lumbar spinal pathology in adult patients with low back pain or sciatica: A diagnostic systematic review. Eur. Spine J. 2012;21:220–227. doi: 10.1007/s00586-011-2019-8.
    1. Langevin H.M. Reconnecting the brain with the rest of the body in musculoskeletal pain research. J. Pain. 2021;22:1–8. doi: 10.1016/j.jpain.2020.02.006.
    1. Mazza D.F., Boutin R.D., Chaudhari A.J. Assessment of myofascial trigger points via imaging: A systematic review. Am. J. Phys. Med. Rehabil. 2021 doi: 10.1097/PHM.0000000000001789.
    1. Stanley S., Balic Z., Hubmacher D. Acromelic dysplasias: How rare musculoskeletal disorders reveal biological functions of extracellular matrix proteins. Ann. N. Y. Acad. Sci. 2021;1490:57–76. doi: 10.1111/nyas.14465.
    1. Varjú C., Kumánovics G., Czirják L., Matucci-Cerinic M., Minier T. Sclerodermalike syndromes: Great imitators. Clin. Dermatol. 2020;38:235–249. doi: 10.1016/j.clindermatol.2019.10.010.
    1. Willems L.M., Kwakkenbos L., Leite C.C., Thombs B.D., van den Hoogen F.H.J., Maia A.C., Vlieland T.P.M.V., van den Ende C.H.M. Frequency and impact of disease symptoms experienced by patients with systemic sclerosis from five European countries. Clin. Exp. Rheumatol. 2014;32:S88–S93.
    1. Xiong X., Berrueta L., Urso K., Olenich S., Muskaj I., Badger G.J., Aliprantis A., Lafyatis R., Langevin H.M. Stretching reduces skin thickness and improves subcutaneous tissue mobility in a murine model of systemic sclerosis. Front. Immunol. 2017;8:124. doi: 10.3389/fimmu.2017.00124.
    1. Song B., Yeh P., Harrell J. Systemic manifestations of Ehlers-Danlos syndrome. Proc. Bayl. Univ. Med. Cent. 2020;34:49–53. doi: 10.1080/08998280.2020.1805714.
    1. Stern C.M., Pepin M.J., Stoler J.M., Kramer D.E., Spencer S.A., Stein C.J. Musculoskeletal conditions in a pediatric population with Ehlers-Danlos syndrome. J. Pediatr. 2017;181:261–266. doi: 10.1016/j.jpeds.2016.10.078.
    1. Yucesoy C.A., Koopman B.H.F.J.M., Baan G.C., Grootenboer H.J., Huijing P.A. Extramuscular myofascial force transmission: Experiments and finite element modeling. Arch. Physiol. Biochem. 2003;111:377–388. doi: 10.3109/13813450312331337630.
    1. Wilke J., Schleip R., Yucesoy C.A., Banzer W. Not merely a protective packing organ? A review of fascia and its force transmission capacity. J. Appl. Physiol. 2018;124:234–244.
    1. Smith T.O., Jerman E., Easton V., Bacon H., Armon K., Poland F., Macgregor A.J. Do people with benign joint hypermobility syndrome (BJHS) have reduced joint proprioception? A systematic review and meta-analysis. Rheumatol. Int. 2013;33:2709–2716. doi: 10.1007/s00296-013-2790-4.
    1. Haliloglu G., Becker K., Temucin C., Talim B., Küçükşahin N., Pergande M., Motameny S., Nürnberg P., Aydingoz U., Topaloglu H., et al. Recessive PIEZO2 stop mutation causes distal arthrogryposis with distal muscle weakness, scoliosis and proprioception defects. J. Hum. Genet. 2017;62:497–501. doi: 10.1038/jhg.2016.153.
    1. Alper S.L. Genetic diseases of PIEZO1 and PIEZO2 dysfunction. Curr. Top. Membr. 2017;79:97–134.
    1. Chou R., Qaseem A., Snow V., Casey D., Cross J.T., Jr., Shekelle P., Owens D.K., Clinical Efficacy Assessment Subcommittee of the American College of Physicians. American College of Physicians. American Pain Society Low Back Pain Guidelines Panel Diagnosis and treatment of low back pain: A joint clinical practice guideline from the American College of Physicians and the American Pain Society. Ann. Intern. Med. 2007;147:478–491. doi: 10.7326/0003-4819-147-7-200710020-00006.
    1. Bassel M., Hudson M., Baron M., Taillefer S.S., Mouthon L., Poiraudeau S., Poole J.L., Thombs B.D. Physical and occupational therapy referral and use among systemic sclerosis patients with impaired hand function: Results from a Canadian national survey. Clin. Exp. Rheumatol. 2012;30:574–577.
    1. Cramer H., Quinker D., Schumann D., Wardle J., Dobos G., Lauche R. Adverse effects of yoga: A national cross-sectional survey. BMC Complement. Altern. Med. 2019;19:190. doi: 10.1186/s12906-019-2612-7.

Source: PubMed

3
Prenumerera