Human Recombinant Hyaluronidase Injections For Upper Limb Muscle Stiffness in Individuals With Cerebral Injury: A Case Series

Preeti Raghavan, Ying Lu, Mona Mirchandani, Antonio Stecco, Preeti Raghavan, Ying Lu, Mona Mirchandani, Antonio Stecco

Abstract

Keywords: Case series; Connective tissue; Fascia; Hyaluronidase; Hypertonia; Motor control; Spasticity; Stroke.

Figures

Fig. 1
Fig. 1
Muscles injected with Human Recombinant Hyaluronidase. Synergistically acting muscles contributing to the stiffness along the myofascial chain of the upper limb were selected for injection with Hylauronidase mixed with normal saline in a 1:1 ratio.

References

    1. Al'Qteishat A., Gaffney J., Krupinski J., Rubio F., West D., Kumar S. Changes in hyaluronan production and metabolism following ischaemic stroke in man. Brain. 2006;129(Pt 8):2158–2176.
    1. Bensadoun E.S., Burke A.K., Hogg J.C., Roberts C.R. Proteoglycan deposition in pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 1996;154(6 Pt 1):1819–1828.
    1. Budasz-Rwiderska M., Jank M., Motyl T. Transforming growth factor-beta1 upregulates myostatin expression in mouse C2C12 myoblasts. J. Physiol. Pharmacol. 2005;56(Suppl. 3):195–214.
    1. Burke D., Wissel J., Donnan G.A. Pathophysiology of spasticity in stroke. Neurology. 2013;80(3 Suppl. 2):S20–S26.
    1. Colombaro V., Jadot I., Decleves A.E., Voisin V., Giordano L., Habsch I. Lack of hyaluronidases exacerbates renal post-ischemic injury, inflammation, and fibrosis. Kidney Int. 2015;88(1):61–71.
    1. Cowman M.K., Schmidt T.A., Raghavan P., Stecco A. Vol. 4. 2015. Viscoelastic properties of hyaluronan in physiological conditions; p. 622. (F1000Research).
    1. de Bruin M., Smeulders M.J., Kreulen M., Huijing P.A., Jaspers R.T. Intramuscular connective tissue differences in spastic and control muscle: a mechanical and histological study. PLoS ONE. 2014;9(6)
    1. de la Motte C.A., Hascall V.C., Drazba J., Bandyopadhyay S.K., Strong S.A. Mononuclear leukocytes bind to specific hyaluronan structures on colon mucosal smooth muscle cells treated with polyinosinic acid:polycytidylic acid: inter-alpha-trypsin inhibitor is crucial to structure and function. Am. J. Pathol. 2003;163(1):121–133.
    1. Dubaybo B.A., Thet L.A. Effect of transforming growth factor beta on synthesis of glycosaminoglycans by human lung fibroblasts. Exp. Lung Res. 1990;16(5):389–403.
    1. Evanko S.P., Potter-Perigo S., Petty L.J., Workman G.A., Wight T.N. Hyaluronan controls the deposition of fibronectin and collagen and modulates TGF-beta1 induction of lung myofibroblasts. Matrix Biol. 2015;42:74–92.
    1. Fawcett J.W. The extracellular matrix in plasticity and regeneration after CNS injury and neurodegenerative disease. Prog. Brain Res. 2015;218:213–226.
    1. Fleuren J.F., Voerman G.E., Erren-Wolters C.V., Snoek G.J., Rietman J.S., Hermens H.J. Stop using the Ashworth Scale for the assessment of spasticity. J. Neurol. Neurosurg. Psychiatry. 2010;81(1):46–52.
    1. Halfon P., Bourliere M., Penaranda G., Deydier R., Renou C., Botta-Fridlund D. Accuracy of hyaluronic acid level for predicting liver fibrosis stages in patients with hepatitis C virus. Comp. Hepatol. 2005;4:6.
    1. Hechter O. Studies on spreading factors: I. The importance of mechanical factors in hyaluronidase action in skin. J. Exp. Med. 1947;85(1):77–97.
    1. Hechter O. Reconstitution of the dermal barrier to fluid diffusion following administration of hyaluronidase. Proc. Soc. Exp. Biol. Med. 1948;67(3):343.
    1. Heldin P., Laurent T.C., Heldin C.H. Effect of growth factors on hyaluronan synthesis in cultured human fibroblasts. Biochem. J. 1989;258(3):919–922.
    1. Hernnas J., Nettelbladt O., Bjermer L., Sarnstrand B., Malmstrom A., Hallgren R. Alveolar accumulation of fibronectin and hyaluronan precedes bleomycin-induced pulmonary fibrosis in the rat. Eur. Respir. J. 1992;5(4):404–410.
    1. Hommel G. A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika. 1988;75(2):383–386.
    1. Hufschmidt A., Mauritz K.H. Chronic transformation of muscle in spasticity: a peripheral contribution to increased tone. J. Neurol. Neurosurg. Psychiatry. 1985;48(7):676–685.
    1. Huijing P.A., Jaspers R.T. Adaptation of muscle size and myofascial force transmission: a review and some new experimental results. Scand. J. Med. Sci. Sports. 2005;15(6):349–380.
    1. Jenkins R.H., Thomas G.J., Williams J.D., Steadman R. Myofibroblastic differentiation leads to hyaluronan accumulation through reduced hyaluronan turnover. J. Biol. Chem. 2004;279(40):41453–41460.
    1. Jun Z., Hill P.A., Lan H.Y., Foti R., Mu W., Atkins R.C. CD44 and hyaluronan expression in the development of experimental crescentic glomerulonephritis. Clin. Exp. Immunol. 1997;108(1):69–77.
    1. Kaestner S., Dimitriou I. TGF beta1 and TGF beta2 and their role in posthemorrhagic hydrocephalus following SAH and IVH. J. Neurol. Surg. A Cen. Eur. Neurosurg. 2013;74(5):279–284.
    1. Khadilkar L., MacDermid J.C., Sinden K.E., Jenkyn T.R., Birmingham T.B., Athwal G.S. An analysis of functional shoulder movements during task performance using Dartfish movement analysis software. Int. J. Should. Surg. 2014;8(1):1–9.
    1. Lance J.W. The control of muscle tone, reflexes, and movement: Robert Wartenberg lecture. Neurology. 1980;30(12):1303–1313.
    1. Lauer M.E., Glant T.T., Mikecz K., DeAngelis P.L., Haller F.M., Husni M.E. Irreversible heavy chain transfer to hyaluronan oligosaccharides by tumor necrosis factor-stimulated gene-6. J. Biol. Chem. 2013;288(1):205–214.
    1. Laurent C., Johnson-Wells G., Hellstrom S., Engstrom-Laurent A., Wells A.F. Localization of hyaluronan in various muscular tissues. A morphological study in the rat. Cell Tissue Res. 1991;263(2):201–205.
    1. Locke R.K. Treatment of spastic flatfoot with procaine-hyaluronidase and stretching. J. Natl. Assoc. Chirop. 1952;42(11):36–38.
    1. Logan A., Frautschy S.A., Gonzalez A.M., Sporn M.B., Baird A. Enhanced expression of transforming growth factor beta 1 in the rat brain after a localized cerebral injury. Brain Res. 1992;587(2):216–225.
    1. Lundstrom E., Terent A., Borg J. Prevalence of disabling spasticity 1 year after first-ever stroke. Eur. J. Neurol. 2008;15(6):533–539.
    1. Lundstrom E., Smits A., Borg J., Terent A. Four-fold increase in direct costs of stroke survivors with spasticity compared with stroke survivors without spasticity: the first year after the event. Stroke. 2010;41(2):319–324.
    1. Matteini P., Dei L., Carretti E., Volpi N., Goti A., Pini R. Structural behavior of highly concentrated hyaluronan. Biomacromolecules. 2009;10(6):1516–1522.
    1. Melton C., Mullineaux D.R., Mattacola C.G., Mair S.D., Uhl T.L. Reliability of video motion-analysis systems to measure amplitude and velocity of shoulder elevation. J. Sport Rehabil. 2011;20(4):393–405.
    1. Midgley A.C., Duggal L., Jenkins R., Hascall V., Steadman R., Phillips A.O. Hyaluronan regulates bone morphogenetic protein-7-dependent prevention and reversal of myofibroblast phenotype. J. Biol. Chem. 2015;290(18):11218–11234.
    1. Moore D.C. An evaluation of hyaluronidase in local and nerve block analgesia: a review of 519 cases. Anesthesiology. 1950;11(4):470–484.
    1. Okita M., Yoshimura T., Nakano J., Motomura M., Eguchi K. Effects of reduced joint mobility on sarcomere length, collagen fibril arrangement in the endomysium, and hyaluronan in rat soleus muscle. J. Muscle Res. Cell Motil. 2004;25(2):159–166.
    1. Phadke C.P., Balasubramanian C.K., Holz A., Davidson C., Ismail F., Boulias C. Adverse clinical effects of botulinum toxin intramuscular injections for spasticity. Can. J. Neurol. Sci. 2015;1-13
    1. Piehl-Aulin K., Laurent C., Engstrom-Laurent A., Hellstrom S., Henriksson J. Hyaluronan in human skeletal muscle of lower extremity: concentration, distribution, and effect of exercise. J. Appl. Physiol. 1985;71(6):2493–2498. (1991)
    1. Purslow P.P. Muscle fascia and force transmission. J. Bodyw. Mov. Ther. 2010;14(4):411–417.
    1. Samuel S.K., Hurta R.A., Spearman M.A., Wright J.A., Turley E.A., Greenberg A.H. TGF-beta 1 stimulation of cell locomotion utilizes the hyaluronan receptor RHAMM and hyaluronan. J. Cell Biol. 1993;123(3):749–758.
    1. Seifter J. Studies on the pharmacology and toxicology of testicular hyaluronidase. Ann. N. Y. Acad. Sci. 1950;52(7):1141–1155.
    1. Sheean G., McGuire J.R. Spastic hypertonia and movement disorders: pathophysiology, clinical presentation, and quantification. PM R. 2009;1(9):827–833.
    1. Shi L., Qin J., Song B., Wang Q.M., Zhang R., Liu X. Increased frequency of circulating regulatory T cells in patients with acute cerebral hemorrhage. Neurosci. Lett. 2015;591:115–120.
    1. Sinkjaer T., Magnussen I. Passive, intrinsic and reflex-mediated stiffness in the ankle extensors of hemiparetic patients. Brain. 1994;117(Pt 2):355–363.
    1. Springer J., Schust S., Peske K., Tschirner A., Rex A., Engel O. Catabolic signaling and muscle wasting after acute ischemic stroke in mice: indication for a stroke-specific sarcopenia. Stroke. 2014;45(12):3675–3683.
    1. Stecco C. Churchill Livingstone; London: 2015. The Functional Atlas of the Human Fascial System.
    1. Stecco C., Stern R., Porzionato A., Macchi V., Masiero S., Stecco A. Hyaluronan within fascia in the etiology of myofascial pain. Surg. Radiol. Anat. 2011;33(10):891–896.
    1. Stecco A., Stecco C., Raghavan P. Peripheral mechanisms of spasticity and treatment implications. Current Physical Medicine and Rehabilitation Reports. 2014;2(2):121–127.
    1. Stern R., Jedrzejas M.J. Hyaluronidases: their genomics, structures, and mechanisms of action. Chem. Rev. 2006;106(3):818–839.
    1. Wang X., Yue T.L., White R.F., Barone F.C., Feuerstein G.Z. Transforming growth factor-beta 1 exhibits delayed gene expression following focal cerebral ischemia. Brain Res. Bull. 1995;36(6):607–609.
    1. Webber J., Jenkins R.H., Meran S., Phillips A., Steadman R. Modulation of TGFbeta1-dependent myofibroblast differentiation by hyaluronan. Am. J. Pathol. 2009;175(1):148–160.
    1. Webber J., Meran S., Steadman R., Phillips A. Hyaluronan orchestrates transforming growth factor-beta1-dependent maintenance of myofibroblast phenotype. J. Biol. Chem. 2009;284(14):9083–9092.
    1. Westergren-Thorsson G., Sarnstrand B., Fransson L.A., Malmstrom A. TGF-beta enhances the production of hyaluronan in human lung but not in skin fibroblasts. Exp. Cell Res. 1990;186(1):192–195.
    1. Zhao M., Yoneda M., Ohashi Y., Kurono S., Iwata H., Ohnuki Y. Evidence for the covalent binding of SHAP, heavy chains of inter-alpha-trypsin inhibitor, to hyaluronan. J. Biol. Chem. 1995;270(44):26657–26663.

Source: PubMed

3
Prenumerera