Preanalytical sample handling recommendations for Alzheimer's disease plasma biomarkers

Małgorzata Rózga, Tobias Bittner, Richard Batrla, Johann Karl, Małgorzata Rózga, Tobias Bittner, Richard Batrla, Johann Karl

Abstract

Introduction: We examined the influence of common preanalytical factors on the measurement of Alzheimer's disease-specific biomarkers in human plasma.

Methods: Amyloid β peptides (Aβ[1-40], Aβ[1-42]) and total Tau plasma concentrations were quantified using fully automated Roche Elecsys assays.

Results: Aβ(1-40), Aβ(1-42), and total Tau plasma concentrations were not affected by up to three freeze/thaw cycles, up to five tube transfers, the collection tube material, or the size; circadian rhythm had a minor effect. All three biomarkers were influenced by the anticoagulant used, particularly total Tau. Aβ concentrations began decreasing 1 hour after blood draw/before centrifugation and decreased by up to 5% and 10% at 2 and 6 hours, respectively. For separated plasma, time to measurement influenced Aβ levels by up to 7% after 6 hours and 10% after 24 hours.

Discussion: Our findings provide guidance for standardizing blood sample collection, handling, and storage to ensure reliable analysis of Alzheimer's disease plasma biomarkers in routine practice and clinical trials.

Keywords: AD; Alzheimer's disease; Alzheimer's disease-specific biomarkers; Amyloid; Biomarkers; Elecsys immunoassay; Fully automated; Plasma; Preanalytics; Sample handling; Tau.

Figures

Fig. 1
Fig. 1
The effect of parameters related to blood sample collection on plasma levels of Aβ peptides and tTau. Circadian rhythm (A): plasma Aβ(1-40), Aβ(1-42), Aβ(1-42): Aβ(1-40) ratio, and tTau throughout the day (8:00 AM, 12:00 PM, and 3:00 PM) and across 1, 2, and 7 days (8:00 AM). Values for each time point are normalized to the baseline 8:00 AM values on day 1. D1–8 = day 1 at 8:00 AM; D1–12 = day 1 at 12:00 PM; D1–15 = day 1 at 3:00 PM; D2–8 = day 2 at 8:00 AM; D7–8 = day 7 at 8:00 AM. Type of anticoagulant (B): Aβ(1-40), Aβ(1-42), Aβ(1-42): Aβ(1-40) ratio, and tTau in K3-EDTA, Li-heparin, and Na-citrate plasma. Values for heparinized and citrated plasma were normalized to the values in K3-EDTA plasma. Type of collection tube (C): Aβ(1-40), Aβ(1-42), Aβ(1-42): Aβ(1-40) ratio, and tTau in plasma separated from blood collected into different primary collection tubes. Values for different tubes are normalized to the S-Monovette® K3-EDTA 9 mL tube. Filling height (D): Aβ(1-40), Aβ(1-42), Aβ(1-42): Aβ(1-40) ratio, and tTau in half-filled tubes. Values for different tubes are normalized to fully filled S-Monovette® K3-EDTA 9 mL tube. Horizontal lines and filled squares within each box represent the median and the mean of the sample, respectively. The bottom and the top of each box represent the first and the fourth quartiles. Error bars represent the standard deviation. Outliers are represented as small stars. Abbreviations: Aβ, amyloid β; gel, presence of gel separator in a tube; K2E, K2-EDTA; K3E, K3-EDTA; Li-heparin, lithium heparin; Na-citrate, sodium citrate; PET, polyethylene terephthalate; PP, polypropylene; tTau, total Tau, 9F, 9 mL tube filled 100%; 9H, 9 mL tube filled 50%; 4-9H, 4.9 mL tube filled 50%; 10H, 10 mL tube filled 50%. For tube type abbreviations, please see Supplementary Table 1.
Fig. 2
Fig. 2
The effect of time to centrifugation and storage conditions before analysis on plasma levels of Aβ peptides and tTau. Time to centrifugation (A): Aβ(1-40), Aβ(1-42), Aβ(1-42): Aβ(1-40) ratio, and tTau in plasma separated after 0.5 (Aβ peptides only), 1, 2, 6, and 24 hours at RT after blood collection. Values for each time point were normalized to the baseline 0.5 hour and 1 hour for Aβ(1-40), Aβ(1-42), Aβ(1-42): Aβ(1-40) ratio, and tTau, respectively. Time to measurement in plasma samples that were frozen and thawed once (B): Aβ(1-40), Aβ(1-42), Aβ(1-42): Aβ(1-40) ratio, and tTau stored at +4°C or at RT for 1, 6, and 24 hours after thawing. Values were normalized to baseline levels in freshly thawed plasma. Time to measurement–fresh plasma (C): Aβ(1-40), Aβ(1-42), and Aβ(1-42): Aβ(1-40) ratio in freshly separated plasma after storage for 1, 3, 6, and 24 hours at +4°C. Values were normalized to baseline (time = 0) in freshly separated plasma. Horizontal lines and filled squares within each box represent the median and the mean of the sample, respectively. The bottom and the top of each box represent the first and the fourth quartiles. Error bars represent the standard deviation. Outliers are represented as small stars. Abbreviations: Aβ, amyloid β; RT, room temperature; tTau, total Tau.
Fig. 3
Fig. 3
The effect of additional handling procedures on plasma levels of Aβ peptides and tTau. Tube transfer (A): Aβ1-40, Aβ1-42, Aβ42/40 ratio, and tTau in plasma after five consecutive transfers. Type of tube used after single freeze/thaw cycle (B): Aβ(1-40), Aβ(1-42), Aβ(1-42): Aβ(1-40) ratio, and tTau in plasma separated from blood collected into different primary tubes after one freeze/thaw cycle at –80°C. Values for different tubes were normalized to S-Monovette® K3-EDTA 9 mL tube. Number of freeze/thaw cycles (C): Aβ(1-40), Aβ(1-42), Aβ(1-42): Aβ(1-40) ratio, and tTau in plasma after one, two or three freeze/thaw cycles at –80°C. Values were normalized to baseline levels in freshly separated plasma before freezing. Storage temperatures (D): Aβ1-40, Aβ1-42, Aβ42/40 ratio, and tTau in plasma samples frozen and stored for 14 days at −20°C, −25°C, and −80°C. The values for each temperature were normalized to baseline levels in freshly separated plasma before freezing. Horizontal lines and filled squares within each box represent the median and the mean of the sample, respectively. The bottom and the top of each box represent the first and the fourth quartiles. Error bars represent the standard deviation. Outliers are represented as small stars. Abbreviations: Aβ, amyloid β; gel, presence of gel separator in a tube; K2E, K2-EDTA; K3E, K3-EDTA; PET, polyethylene terephthalate; PP, polypropylene; tTau, total Tau. For tube type abbreviations, please see Supplementary Table 1.
Fig. 4
Fig. 4
Recommendations for blood collection and sample handling for the analysis of AD-specific biomarkers. Abbreviations: EDTA, ethylenediaminetetraacetic acid; F/T, freeze/thaw. *If Aβ peptides are reported individually. †If Aβ(1-42): Aβ(1-40) ratio or tTau is reported. ‡Longer storage times have not been tested.

References

    1. Waldemar G., Phung K.T., Burns A., Georges J., Hansen F.R., Iliffe S. Access to diagnostic evaluation and treatment for dementia in Europe. Int J Geriatr Psychiatry. 2007;22:47–54.
    1. Beach T.G., Monsell S.E., Phillips L.E., Kukull W. Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005-2010. J Neuropathol Exp Neurol. 2012;71:266–273.
    1. Sabbagh M.N., Lue L.F., Fayard D., Shi J. Increasing precision of clinical diagnosis of Alzheimer's disease using a combined algorithm incorporating clinical and novel biomarker data. Neurol Ther. 2017;6:83–95.
    1. Simonsen A.H., Herukka S.K., Andreasen N., Baldeiras I., Bjerke M., Blennow K. Recommendations for CSF AD biomarkers in the diagnostic evaluation of dementia. Alzheimers Dement. 2017;13:274–284.
    1. Blennow K., Zetterberg H. Cerebrospinal fluid biomarkers for Alzheimer's disease. J Alzheimers Dis. 2009;18:413–417.
    1. Holtzman D.M. CSF biomarkers for Alzheimer's disease: current utility and potential future use. Neurobiol Aging. 2011;32:S4–S9.
    1. Engelborghs S., De Vreese K., Van de Casteele T., Vanderstichele H., Van Everbroeck B., Cras P. Diagnostic performance of a CSF-biomarker panel in autopsy-confirmed dementia. Neurobiol Aging. 2008;29:1143–1159.
    1. McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R., Jr., Kawas C.H. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:263–269.
    1. Dubois B., Feldman H.H., Jacova C., Hampel H., Molinuevo J.L., Blennow K. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–629.
    1. Jack C.R., Jr., Bennett D.A., Blennow K., Carrillo M.C., Dunn B., Haeberlein S.B. NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease. Alzheimers Dement. 2018;14:535–562.
    1. Hampel H., O'Bryant S.E., Molinuevo J.L., Zetterberg H., Masters C.L., Lista S. Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic. Nat Rev Neurol. 2018;14:639–652.
    1. O'Bryant S.E., Mielke M.M., Rissman R.A., Lista S., Vanderstichele H., Zetterberg H. Blood-based biomarkers in Alzheimer disease: Current state of the science and a novel collaborative paradigm for advancing from discovery to clinic. Alzheimers Dement. 2017;13:45–58.
    1. Hansson O., Mikulskis A., Fagan A.M., Teunissen C., Zetterberg H., Vanderstichele H. The impact of preanalytical variables on measuring cerebrospinal fluid biomarkers for Alzheimer's disease diagnosis: A review. Alzheimers Dement. 2018;14:1313–1333.
    1. Ovod V., Ramsey K.N., Mawuenyega K.G., Bollinger J.G., Hicks T., Schneider T. Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement. 2017;13:841–849.
    1. Nakamura A., Kaneko N., Villemagne V.L., Kato T., Doecke J., Doré V. High performance plasma amyloid-β biomarkers for Alzheimer's disease. Nature. 2018;554:249–254.
    1. Verberk I.M.W., Slot R.E., Verfaillie S.C.J., Heijst H., Prins N.D., van Berckel B.N.M. Plasma amyloid as prescreener for the earliest Alzheimer pathological changes. Ann Neurol. 2018;84:648–658.
    1. Teunissen C.E., Chiu M.J., Yang C.C., Yang S.Y., Scheltens P., Zetterberg H. Plasma amyloid-β (Aβ42) correlates with cerebrospinal fluid Aβ42 in Alzheimer's disease. J Alzheimers Dis. 2018;62:1857–1863.
    1. Bittner T., Zetterberg H., Teunissen C.E., Ostlund R.E., Jr., Militello M., Andreasson U. Technical performance of a novel, fully automated electrochemiluminescence immunoassay for the quantitation of β-amyloid (1-42) in human cerebrospinal fluid. Alzheimers Dement. 2016;12:517–526.
    1. England J.M., Rowan R.M., van Assendelft O.W., Bull B.S., Coulter W., Fujimoto K. Recommendations of the International Council for Standardization in Haematology for Ethylenediaminetetraacetic Acid Anticoagulation of Blood for Blood Cell Counting and Sizing. International Council for Standardization in Haematology: Expert Panel on Cytometry. Am J Clin Pathol. 1993;100:371–372.
    1. Lippi G., Guidi G.C., Mattiuzzi C., Plebani M. Preanalytical variability: the dark side of the moon in laboratory testing. Clin Chem Lab Med. 2006;44:358–365.
    1. Bjerke M., Portelius E., Minthon L., Wallin A., Anckarsäter H., Anckarsäter R. Confounding factors influencing amyloid beta concentration in cerebrospinal fluid. Int J Alzheimers Dis. 2010;2010 pii:986310.
    1. Fourier A., Portelius E., Zetterberg H., Blennow K., Quadrio I., Perret-Liaudet A. Pre-analytical and analytical factors influencing Alzheimer's disease cerebrospinal fluid biomarker variability. Clin Chim Acta. 2015;449:9–15.
    1. Vanderstichele H., Bibl M., Engelborghs S., Le Bastard N., Lewczuk P., Molinuevo J.L. Standardization of preanalytical aspects of cerebrospinal fluid biomarker testing for Alzheimer's disease diagnosis: a consensus paper from the Alzheimer's Biomarkers Standardization Initiative. Alzheimers Dement. 2012;8:65–73.
    1. Rivera-Coll A., Fuentes-Arderiu X., Díez-Noguera A. Circadian rhythms of serum concentrations of 12 enzymes of clinical interest. Chronobiol Int. 1993;10:190–200.
    1. Fournier S., Iten L., Marques-Vidal P., Boulat O., Bardy D., Beggah A. Circadian rhythm of blood cardiac troponin T concentration. Clin Res Cardiol. 2017;106:1026–1032.
    1. Lachno D.R., Vanderstichele H., De Groote G., Kostanjevecki V., De Meyer G., Siemers E.R. The influence of matrix type, diurnal rhythm and sample collection and processing on the measurement of plasma beta-amyloid isoforms using the INNO-BIA plasma Abeta forms multiplex assay. J Nutr Health Aging. 2009;13:220–225.
    1. Lewczuk P., Beck G., Esselmann H., Bruckmoser R., Zimmermann R., Fiszer M. Effect of sample collection tubes on cerebrospinal fluid concentrations of tau proteins and amyloid beta peptides. Clin Chem. 2006;52:332–334.
    1. Pica-Mendez A.M., Tanen M., Dallob A., Tanaka W., Laterza O.F. Nonspecific binding of Aβ42 to polypropylene tubes and the effect of Tween-20. Clin Chim Acta. 2010;411:1833.
    1. Perret-Liaudet A., Pelpel M., Tholance Y., Dumont B., Vanderstichele H., Zorzi W. Risk of Alzheimer's disease biological misdiagnosis linked to cerebrospinal collection tubes. J Alzheimers Dis. 2012;31:13–20.
    1. Clark S., Youngman L.D., Palmer A., Parish S., Peto R., Collins R. Stability of plasma analytes after delayed separation of whole blood: implications for epidemiological studies. Int J Epidemiol. 2003;32:125–130.
    1. Böttger R., Hoffmann R., Knappe D. Differential stability of therapeutic peptides with different proteolytic cleavage sites in blood, plasma and serum. PLoS One. 2017;12:e0178943.
    1. Dufresne J., Florentinus-Mefailoski A., Ajambo J., Ferwa A., Bowden P., Marshall J. The proteins cleaved by endogenous tryptic proteases in normal EDTA plasma by C18 collection of peptides for liquid chromatography micro electrospray ionization and tandem mass spectrometry. Clin Proteomics. 2017;14:39.
    1. Kaisar M., van Dullemen L.F.A., Thézénas M.L., Zeeshan Akhtar M., Huang H., Rendel S. Plasma degradome affected by variable storage of human blood. Clin Proteomics. 2016;13:26.
    1. Finder V.H., Glockshuber R. Amyloid-beta aggregation. Neurodegener Dis. 2007;4:13–27.
    1. Tiiman A., Krishtal J., Palumaa P., Tõugu V. In vitro fibrillization of Alzheimer's amyloid-β peptide (1-42) AIP Adv. 2015;5:092401.
    1. Lachno D.R., Emerson J.K., Vanderstichele H., Gonzales C., Martényi F., Konrad R.J. Validation of a multiplex assay for simultaneous quantification of amyloid-β peptide species in human plasma with utility for measurements in studies of Alzheimer's disease therapeutics. J Alzheimers Dis. 2012;32:905–918.
    1. Keshavan A., Heslegrave A., Zetterberg H., Schott J.M. Stability of blood-based biomarkers of Alzheimer's disease over multiple freeze-thaw cycles. Alzheimers Dement (Amst) 2018;10:448–451.

Source: PubMed

3
Prenumerera