The role of MicroRNAs in human cancer

Yong Peng, Carlo M Croce, Yong Peng, Carlo M Croce

Abstract

MicroRNAs (miRNAs) are endogenous, small non-coding RNAs that function in regulation of gene expression. Compelling evidences have demonstrated that miRNA expression is dysregulated in human cancer through various mechanisms, including amplification or deletion of miRNA genes, abnormal transcriptional control of miRNAs, dysregulated epigenetic changes and defects in the miRNA biogenesis machinery. MiRNAs may function as either oncogenes or tumor suppressors under certain conditions. The dysregulated miRNAs have been shown to affect the hallmarks of cancer, including sustaining proliferative signaling, evading growth suppressors, resisting cell death, activating invasion and metastasis, and inducing angiogenesis. An increasing number of studies have identified miRNAs as potential biomarkers for human cancer diagnosis, prognosis and therapeutic targets or tools, which needs further investigation and validation. In this review, we focus on how miRNAs regulate the development of human tumors by acting as tumor suppressors or oncogenes.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
microRNA biogenesis. miRNA genes are usually transcribed by RNA polymerase II to produce the large primary transcripts termed pri-miRNAs, which are cleaved by a microprocessor complex, composed of RNA-binding protein DGCR8 and type III RNase Drosha, into an ~85-nucleotide stem–loop structure called pre-miRNA. Following transportation by Ran/GTP/Exportin 5 complex from nucleus to cytoplasm, the pre-miRNAs are processed by another RNase III enzyme Dicer to a ~20–22-nucleotide miRNA/miRNA* duplex. After the duplex is unwound, the mature miRNA is incorporated into a protein complex termed RISC. A miRNA-loaded RISC mediates gene silencing via mRNA cleavage and degradation, or translational repression depending on the complementarity between the miRNA and the targeted mRNA transcript. In addition, miRNAs may function as ligands to directly binding with Toll-like receptor (TLR), triggering downstream signaling pathways. Methyltransferase-like 3 (METTL3) is recently discovered to methylate pri-miRNAs, marking them for recognition and processing by DGCR8 to yield mature miRNA.

References

    1. Lee RC , Feinbaum RL , Ambros V . The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843–854.
    1. Reinhart BJ , Slack FJ , Basson M , Pasquinelli AE , Bettinger JC , Rougvie AE et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403: 901–906.
    1. Lagos-Quintana M , Rauhut R , Lendeckel W , Tuschl T . Identification of novel genes coding for small expressed RNAs. Science 2001; 294: 853–858.
    1. Lau NC , Lim LP , Weinstein EG , Bartel DP . An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001; 294: 858–862.
    1. Lee RC , Ambros V . An extensive class of small RNAs in Caenorhabditis elegans. Science 2001; 294: 862–864.
    1. Calin GA , Dumitru CD , Shimizu M , Bichi R , Zupo S , Noch E et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529.
    1. Cimmino A , Calin GA , Fabbri M , Iorio MV , Ferracin M , Shimizu M et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005; 102: 13944–13949.
    1. Calin GA , Cimmino A , Fabbri M , Ferracin M , Wojcik SE , Shimizu M et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA 2008; 105: 5166–5171.
    1. Klein U , Lia M , Crespo M , Siegel R , Shen Q , Mo T et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 2010; 17: 28–40.
    1. Borchert GM , Lanier W , Davidson BL . RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 2006; 13: 1097–1101.
    1. Lee Y , Kim M , Han J , Yeom KH , Lee S et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004; 23: 4051–4060.
    1. Macfarlane LA , Murphy PR . MicroRNA: biogenesis, function and role in cancer. Curr Genomics 2010; 11: 537–561.
    1. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.
    1. Helwak A , Kudla G , Dudnakova T , Tollervey D . Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 2013; 153: 654–665.
    1. Vasudevan S , Tong Y , Steitz JA . Switching from repression to activation: microRNAs can up-regulate translation. Science 2007; 318: 1931–1934.
    1. Fabbri M , Paone A , Calore F , Galli R , Gaudio E , Santhanam R et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA 2012; 109: E2110–E2116.
    1. He S , Chu J , Wu LC , Mao H , Peng Y , Alvarez-Breckenridge CA et al. MicroRNAs activate natural killer cells through Toll-like receptor signaling. Blood 2013; 121: 4663–4671.
    1. Fukuda T , Yamagata K , Fujiyama S , Matsumoto T , Koshida I , Yoshimura K et al. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 2007; 9: 604–611.
    1. Davis BN , Hilyard AC , Lagna G , Hata A . SMAD proteins control DROSHA-mediated microRNA maturation. Nature 2008; 454: 56–61.
    1. Trabucchi M , Briata P , Garcia-Mayoral M , Haase AD , Filipowicz W , Ramos A et al. The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 2009; 459: 1010–1014.
    1. Alarcón CR , Lee H , Goodarzi H , Halberg N , Tavazoie SF . N6-methyladenosine marks primary microRNAs for processing. Nature 2015; 519: 482–485.
    1. Calin GA , Croce CM . MicroRNAs and chromosomal abnormalities in cancer cells. Oncogene 2006; 25: 6202–6210.
    1. Tagawa H , Seto M . A microRNA cluster as a target of genomic amplification in malignant lymphoma. Leukemia 2005; 19: 2013–2016.
    1. Hayashita Y , Osada H , Tatematsu Y , Yamada H , Yanagisawa K , Tomida S et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 2005; 65: 9628–9632.
    1. Mavrakis KJ , Wolfe AL , Oricchio E , Palomero T , de Keersmaecker K , McJunkin K et al. Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nat Cell Biol 2010; 12: 372–379.
    1. Zhang L , Huang J , Yang N , Greshock J , Megraw MS , Giannakakis A et al. MicroRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA 2006; 103: 9136–9141.
    1. Calin GA , Sevignani C , Dumitru CD , Hyslop T , Noch E , Yendamuri S et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004; 101: 2999–3004.
    1. O’Donnell KA , Wentzel EA , Zeller KI , Dang CV , Mendell JT . c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005; 435: 839–843.
    1. Chang TC , Yu D , Lee YS , Wentzel EA , Arking DE , West KM et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 2008; 40: 43–50.
    1. Wang B , Hsu SH , Wang X , Kutay H , Bid HK , Yu J et al. Reciprocal regulation of microRNA-122 and c-Myc in hepatocellular cancer: role of E2F1 and transcription factor dimerization partner 2. Hepatology 2014; 59: 555–566.
    1. Han H , Sun D , Li W , Shen H , Zhu Y , Li C et al. c-Myc-MicroRNA functional feedback loop affects hepatocarcinogenesis. Hepatology 2013; 57: 2378–2389.
    1. He L , He X , Lim LP , de Stanchina E , Xuan Z , Liang Y et al. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447: 1130–1134.
    1. Hermeking H . The miR-34 family in cancer and apoptosis. Cell Death Differ 2010; 17: 193–199.
    1. Raver-Shapira N , Marciano E , Meiri E , Spector Y , Rosenfeld N , Moskovits N et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 2007; 26: 731–743.
    1. Chang TC , Wentzel EA , Kent OA , Ramachandran K , Mullendore M , Lee KH et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007; 26: 745–752.
    1. Yamakuchi M , Lowenstein CJ . MiR-34, SIRT1, and p53: The feedback loop. Cell Cycle 2009; 8: 712–715.
    1. Xiao J , Lin H , Luo X , Luo X , Wang Z . miR-605 joins p53 network to form a p53:miR-605:Mdm2 positive feedback loop in response to stress. EMBO J 2011; 30: 524–532.
    1. Zhang Y , Liao JM , Zeng SX , Lu H . p53 downregulates Down syndrome-associated DYRK1A through miR-1246. EMBO Rep 2011; 12: 811–817.
    1. Yamakuchi M , Lotterman CD , Bao C , Hruban RH , Karim B , Mendell JT et al. p53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci USA 2010; 107: 6334–6339.
    1. Johnnidis JB , Harris MH , Wheeler RT , Stehling-Sun S , Lam MH , Kirak O et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 2008; 451: 1125–1129.
    1. Wong QW , Lung RW , Law PT , Lai PB , Chan KY , To KF et al. MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stathmin1. Gastroenterology 2008; 135: 257–269.
    1. Eyholzer M , Schmid S , Schardt JA , Haefliger S , Mueller BU , Pabst T . Complexity of miR-223 regulation by CEBPA in human AML. Leuk Res 2010; 34: 672–676.
    1. Stamatopoulos B , Meuleman N , Haibe-Kains B , Saussoy P , Van Den Neste E et al. microRNA-29c and microRNA-223 down-regulation has in vivo significance in chronic lymphocytic leukemia and improves disease risk stratification. Blood 2009; 113: 5237–5245.
    1. Fukao T , Fukuda Y , Kiga K , Sharif J , Hino K , Enomoto Y et al. An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell 2007; 129: 617–631.
    1. Fazi F , Rosa A , Fatica A , Gelmetti V , De Marchis ML , Nervi C et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 2005; 123: 819–831.
    1. Han L , Witmer PD , Casey E , Valle D , Sukumar S . DNA methylation regulates MicroRNA expression. Cancer Biol Ther 2007; 6: 1284–1288.
    1. Saito Y , Jones PA . Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle 2006; 5: 2220–2222.
    1. Fazi F , Racanicchi S , Zardo G , Starnes LM , Mancini M , Travaglini L et al. Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 2007; 12: 457–466.
    1. Saito Y , Liang G , Egger G , Friedman JM , Chuang JC , Coetzee GA et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 2006; 9: 435–443.
    1. Lujambio A , Calin GA , Villanueva A , Ropero S , Sanchez-Cespedes M , Blanco D et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 2008; 105: 13556–13561.
    1. Lehmann U , Hasemeier B , Christgen M , Müller M , Römermann D , Länger F et al. Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol 2008; 214: 17–24.
    1. Lujambio A , Esteller M . CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle 2007; 6: 1455–1459.
    1. Donzelli S , Mori F , Bellissimo T , Sacconi A , Casini B , Frixa T et al. Epigenetic silencing of miR-145-5p contributes to brain metastasis. Oncotarget 2015; 6: 35183–35201.
    1. Thomson JM , Newman M , Parker JS , Morin-Kensicki EM , Wright T , Hammond SM . Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 2006; 20: 2202–2207.
    1. Walz AL , Ooms A , Gadd S , Gerhard DS , Smith MA , Guidry Auvil JM et al. Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors. Cancer Cell 2015; 27: 286–297.
    1. Iliou MS , da Silva-Diz V , Carmona FJ , Ramalho-Carvalho J , Heyn H , Villanueva A et al. Impaired DICER1 function promotes stemness and metastasis in colon cancer. Oncogene 2014; 33: 4003–4015.
    1. Merritt WM , Lin YG , Han LY , Kamat AA , Spannuth WA , Schmandt R et al. Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med 2008; 359: 2641–2650.
    1. Pampalakis G , Diamandis EP , Katsaros D , Sotiropoulou G . Down-regulation of dicer expression in ovarian cancer tissues. Clin Biochem 2010; 43: 324–327.
    1. Faggad A , Budczies J , Tchernitsa O , Darb-Esfahani S , Sehouli J , Müller BM et al. Prognostic significance of Dicer expression in ovarian cancer-link to global microRNA changes and oestrogen receptor expression. J Pathol 2010; 220: 382–391.
    1. Karube Y , Tanaka H , Osada H , Tomida S , Tatematsu Y , Yanagisawa K et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 2005; 96: 111–115.
    1. Dome JS , Coppes MJ . Recent advances in Wilms tumor genetics. Curr Opin Pediatr 2002; 14: 5–11.
    1. Zhang J , Fan XS , Wang CX , Liu B , Li Q , Zhou XJ . Up-regulation of Ago2 expression in gastric carcinoma. Med Oncol 2013; 30: 628.
    1. Völler D , Reinders J , Meister G , Bosserhoff AK . Strong reduction of AGO2 expression in melanoma and cellular consequences. Br J Cancer 2013; 109: 3116–3124.
    1. Melo SA , Moutinho C , Ropero S , Calin GA , Rossi S , Spizzo R et al. A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 2010; 18: 303–315.
    1. Hanahan D , Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.
    1. Trimarchi JM , Lees JA . Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 2002; 3: 11–20.
    1. Coller HA , Forman JJ , Legesse-Miller A . ‘Myc’ed messages’: Myc induces transcription of E2F1 while inhibiting its translation via a microRNA polycistron. PLoS Genet 2007; 3: e146.
    1. Sylvestre Y , De Guire V , Querido E , Mukhopadhyay UK , Bourdeau V et al. An E2F/miR-20a autoregulatory feedback loop. J Biol Chem 2007; 282: 2135–2143.
    1. Woods K , Thomson JM , Hammond SM . Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. J Biol Chem 2007; 282: 2130–2134.
    1. He L , Thomson JM , Hemann MT , Hernando-Monge E , Mu D , Goodson S et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435: 828–833.
    1. Hatfield SD , Shcherbata HR , Fischer KA , Nakahara K , Carthew RW et al. Stem cell division is regulated by the microRNA pathway. Nature 2005; 435: 974–978.
    1. Gillies JK , Lorimer IA . Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 2007; 6: 2005–2009.
    1. Galardi S , Mercatelli N , Giorda E , Massalini S , Frajese GV , Ciafrè SA et al. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 2007; 282: 23716–23724.
    1. le Sage C , Nagel R , Egan DA , Schrier M , Mesman E , Mangiola A et al. Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 2007; 26: 3699–3708.
    1. Visone R , Russo L , Pallante P , De Martino I , Ferraro A , Leone V et al. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer 2007; 14: 791–798.
    1. Lal A , Kim HH , Abdelmohsen K , Kuwano Y , Pullmann Jr R , Srikantan S et al. p16(INK4a) translation suppressed by miR-24. PLoS One 2008; 3: e1864.
    1. Dolezalova D , Mraz M , Barta T , Plevova K , Vinarsky V , Holubcova Z et al. MicroRNAs regulate p21(Waf1/Cip1) protein expression and the DNA damage response in human embryonic stem cells. Stem Cells 2012; 30: 1362–1372.
    1. Yi C , Wang Q , Wang L , Huang Y , Li L , Liu L et al. MiR-663, a microRNA targeting p21WAF1/CIP1, promotes the proliferation and tumorigenesis of nasopharyngeal carcinoma. Oncogene 2012; 31: 4421–4433.
    1. Du B , Wang Z , Zhang X , Feng S , Wang G , He J et al. MicroRNA-545 suppresses cell proliferation by targeting cyclin D1 and CDK4 in lung cancer cells. PLoS One 2014; 9: e88022.
    1. Peng Y , Dai Y , Hitchcock C , Yang X , Kassis ES , Liu L et al. Insulin growth factor signaling is regulated by microRNA-486, an underexpressed microRNA in lung cancer. Proc Natl Acad Sci USA 2013; 110: 15043–15048.
    1. Lima RT , Busacca S , Almeida GM , Gaudino G , Fennell DA , Vasconcelos MH . MicroRNA regulation of core apoptosis pathways in cancer. Eur J Cancer 2011; 47: 163–174.
    1. Li C , Hashimi SM , Good DA , Cao S , Duan W , Plummer PN et al. Apoptosis and microRNA aberrations in cancer. Clin Exp Pharmacol Physiol 2012; 39: 739–746.
    1. Pichiorri F , Suh SS , Rocci A , De Luca L , Taccioli C , Santhanam R et al. Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 2010; 18: 367–381.
    1. Fornari F , Gramantieri L , Giovannini C , Veronese A , Ferracin M , Sabbioni S et al. MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 2009; 69: 5761–5767.
    1. Burns DM , D’Ambrogio A , Nottrott S , Richter JD . CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation. Nature 2011; 473: 105–108.
    1. Yan HL , Xue G , Mei Q , Wang YZ , Ding FX , Liu MF et al. Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J 2009; 28: 2719–2732.
    1. Sacconi A , Biagioni F , Canu V , Mori F , Di Benedetto A , Lorenzon L et al. miR-204 targets Bcl-2 expression and enhances responsiveness of gastric cancer. Cell Death Dis 2012; 3: e423.
    1. Zhang H , Li Y , Huang Q , Ren X , Hu H , Sheng H et al. MiR-148a promotes apoptosis by targeting Bcl-2 in colorectal cancer. Cell Death Differ 2011; 18: 1702–1710.
    1. Nie J , Liu L , Zheng W , Chen L , Wu X , Xu Y et al. microRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2. Carcinogenesis 2012; 33: 220–225.
    1. Denoyelle C , Lambert B , Meryet-Figuière M , Vigneron N , Brotin E , Lecerf C et al. miR-491-5p-induced apoptosis in ovarian carcinoma depends on the direct inhibition of both BCL-XL and EGFR leading to BIM activation. Cell Death Dis 2014; 5: e1445.
    1. Zhang CZ , Zhang JX , Zhang AL , Shi ZD , Han L , Jia ZF et al. MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol Cancer 2010; 9: 229.
    1. Hatley ME , Patrick DM , Garcia MR , Richardson JA , Bassel-Duby R , van Rooij E et al. Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell 2010; 18: 282–293.
    1. Wang P , Zhuang L , Zhang J , Fan J , Luo J , Chen H et al. The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol Oncol 2013; 7: 334–345.
    1. Shaffiey F , Cross E , Sathyanarayana P . Mir-590 is a novel STAT5 regulated oncogenic miRNA and targets FasL in acute myeloid leukemia. Blood 2013; 122: 3811–3811.
    1. Razumilava N , Bronk SF , Smoot RL , Fingas CD , Werneburg NW , Roberts LR et al. miR-25 targets TNF-related apoptosis inducing ligand (TRAIL) death receptor-4 and promotes apoptosis resistance in cholangiocarcinoma. Hepatology 2012; 55: 465–475.
    1. Kalluri R , Weinberg RA . The basics of epithelial mesenchymal transition. J Clin Invest 2009; 119: 1420–1428.
    1. Kong W , Yang H , He L , Zhao JJ , Coppola D , Dalton WS et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 2008; 28: 6773–6784.
    1. Gregory PA , Bert AG , Paterson EL , Barry SC , Tsykin A , Farshid G et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593–601.
    1. Bracken CP , Gregory PA , Kolesnikoff N , Bert AG , Wang J , Shannon MF et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 2008; 68: 7846–7854.
    1. Hurteau GJ , Carlson JA , Spivack SD , Brock GJ . Over-expression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res 2007; 67: 7972–7976.
    1. Korpal M , Lee ES , Hu G , Kang Y . The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 2008; 283: 14910–14914.
    1. Chang CJ , Chao CH , Xia W , Yang JY , Xiong Y , Li CW et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 2011; 13: 317–323.
    1. Kim T , Veronese A , Pichiorri F , Lee TJ , Jeon YJ , Volinia S et al. p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med 2011; 208: 875–883.
    1. Ma L , Teruya-Feldstein J , Weinberg RA . Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007; 449: 682–688.
    1. Ding X , Park SI , McCauley LK , Wang CY . Signaling between transforming growth factor β (TGF-β) and transcription factor SNAI2 represses expression of microRNA miR-203 to promote epithelial-mesenchymal transition and tumor metastasis. J Biol Chem 2013; 88: 10241–10253.
    1. Zhang Z , Zhang B , Li W , Fu L , Fu L , Zhu Z et al. Epigenetic silencing of miR-203 upregulates SNAI2 and contributes to the invasiveness of malignant breast cancer cells. Genes Cancer 2011; 2: 782–791.
    1. Ma L , Young J , Prabhala H , Pan E , Mestdagh P , Muth D et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 2010; 12: 247–256.
    1. Almeida MI , Reis RM , Calin GA . MYC-microRNA-9-metastasis connection in breast cancer. Cell Res 2010; 20: 602–603.
    1. Meng X , Wu J , Pan C , Wang H , Ying X , Zhou Y et al. Genetic and epigenetic down-regulation of microRNA-212 promotes colorectal tumor metastasis via dysregulation of MnSOD. Gastroenterology 2013; 145: 426–436.
    1. Carmeliet P . Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000; 6: 389–595.
    1. Ferrara N . VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2002; 2: 795–803.
    1. Camps C , Buffa FM , Colella S , Moore J , Sotiriou C , Sheldon H et al. hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res 2008; 14: 1340–1348.
    1. Fasanaro P , D’Alessandra Y , Di Stefano V , Melchionna R , Romani S , Pompilio G et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 2008; 283: 15878–15883.
    1. Lou YL , Guo F , Liu FL , Gao FL , Zhang PQ , Niu X et al. MiR-210 activates notch signaling pathway in angiogenesis induced by cerebral ischemia. Mol Cell Biochem 2012; 370: 45–51.
    1. Liu F , Lou YL , Wu J , Ruan QF , Xie A , Guo F et al. Upregulation of MicroRNA-210 regulates renal angiogenesis mediated by activation of VEGF signaling pathway under ischemia/perfusion injury in vivo and in vitro. Kidney Blood Press Res 2012; 35: 182–191.
    1. Ghosh G , Subramanian IV , Adhikari N , Zhang X , Joshi HP , Basi D et al. Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-alpha isoforms and promotes angiogenesis. J Clin Invest 2010; 120: 4141–4154.
    1. Liu LZ , Li C , Chen Q , Jing Y , Carpenter R , Jiang Y et al. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1alpha expression. PLoS One 2011; 6: e19139.
    1. Lei Z , Li B , Yang Z , Fang H , Zhang GM , Feng ZH et al. Regulation of HIF-1alpha and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration. PLoS One 2009; 4: e7629.
    1. Cha ST , Chen PS , Johansson G , Chu CY , Wang MY , Jeng YM et al. MicroRNA-519c suppresses hypoxia-inducible factor-1alpha expression and tumor angiogenesis. Cancer Res 2010; 70: 2675–2685.
    1. Yamakuchi M , Lotterman CD , Bao C , Hruban RH , Karim B , Mendell JT et al. p53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci USA 2010; 107: 6334–6339.
    1. Umezu T , Tadokoro H , Azuma K , Yoshizawa S , Ohyashiki K , Ohyashiki JH . Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood 2014; 124: 3748–3757.

Source: PubMed

3
Prenumerera