Patient Selection and Clinical Indication for Chronic Total Occlusion Revascularization-A Workflow Focusing on Non-Invasive Cardiac Imaging

Kevin Hamzaraj, Andreas Kammerlander, Mariann Gyöngyösi, Bernhard Frey, Klaus Distelmaier, Senta Graf, Kevin Hamzaraj, Andreas Kammerlander, Mariann Gyöngyösi, Bernhard Frey, Klaus Distelmaier, Senta Graf

Abstract

Percutaneous coronary intervention of chronic total occlusion (CTO PCI) is a challenging procedure with high complication rates and, as not yet fully understood long-term clinical benefits. Ischemic symptom relief in patients with high ischemic burden is to date the only established clinical indication to undergo CTO PCI, supported by randomized controlled trials. In this context, current guidelines suggest attempting CTO PCI only in non-invasively assessed viable CTO correspondent myocardial territories, with large ischemic areas. Hence, besides a comprehensive coronary angiography lesion evaluation, the information derived from non-invasive cardiac imaging techniques is crucial to selecting candidates who may benefit from the revascularization of the occluded vessel. Currently, there are no clear recommendations for a non-invasive myocardial evaluation or choice of imaging modality pre-CTO PCI. Therefore, selecting among available options is left to the physician's discretion. As CTO PCI is strongly recommended to be carried out explicitly in experienced centers, full access to non-invasive imaging for risk-benefit assessment as well as a systematic institutional evaluation process has to be encouraged. In this framework, we opted to review the current myocardial imaging tools and their use for indicating a CTO PCI. Furthermore, based on our experience, we propose a cost-effective systematic approach for myocardial assessment to help guide clinical decision-making for patients presenting with chronic total occlusions.

Keywords: cardiac magnetic resonance; chronic total occlusion; coronary artery disease; echocardiography; positron emission tomography; single photon emission computer tomography.

Conflict of interest statement

The authors declare no conflict of interest. Non-invasive myocardial PET and CMR images are presented with permission on behalf of the University Clinic of Radiology and Nuclear Medicine, Medical University of Vienna. Myocardial SPECT images are presented with permission on behalf of the University Clinic of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria.

Figures

Figure 5
Figure 5
Limitations: Non-invasive cardiac imaging modalities for CTO evaluation: CTO–chronic total occlusion, TTE–transthoracic echocardiography, SPECT–single positron emission computer tomography, CMR–cardiac magnetic resonance, PET–positron emission tomography.
Figure 1
Figure 1
Non-invasive cardiac imaging modalities for CTO evaluation CTO–chronic total occlusion, TTE–transthoracic echocardiography, SPECT–single positron emission computer tomography, CMR–cardiac magnetic resonance, PET–positron emission tomography, LV–left ventricle, Tc–technetium, Tl–thallium.
Figure 2
Figure 2
Thallium 201-SPECT study in a patient with a CTO CX as described in the coronary angiography. Short axis views are displayed in row 1–4 and vertical and horizontal long axis views in row 5–8. No significant tracer uptake in stress (row 1,3,5,7) and rest (row 2,4,6,8) acquisitions can be interpreted as lack of viability in the lateral and basal part of inferior myocardial segments (a). On the right, a semi-quantification of tracer uptake from the stress (top) and rest (bottom) acquisitions in a polar map (b).
Figure 3
Figure 3
Combined perfusion (performed with N-13 ammonia) and metabolism (performed with F-18 FDG) PET study allows a differentiation between viable and non-viable myocardium. On the left side (a) is shown a perfusion/metabolism match in the posterior-lateral segments with equally reduced NH3 (top) and FDG (bottom) uptake reflecting scar in this myocardial region. On the right side (b) a perfusion/metabolism mismatch: perfusion (short axis views at the top) and metabolism (short axis views on the bottom) with reduced NH3 uptake and enhanced FDG uptake in the lateral wall. This reflects preserved viability in the hypo-perfused lateral myocardial segments.
Figure 4
Figure 4
Cardiac magnetic resonance stress acquisition on a short axis view (a) with a reduced contrast uptake in posterior-septal segments. (a) On the right side (b) a late gadolinium enhancement in subendocardial posterior-lateral myocardial segments shows significant preserved viability (<50% trans-murality).
Figure 6
Figure 6
Workflow for clinical indication of CTO PCI, TTE—trans-thoracic echocardiography; LM—left main coronary artery; LAD—left anterior descending coronary artery; LVEF—left ventricular ejection fraction; SPECT—single photon emission computer tomography; CMR—cardiac magnetic resonance; PET—positron emission tomography; OMT—optimal medical therapy; PCI—percutaneous coronary intervention.

References

    1. Brilakis E.S., Mashayekhi K., Burke M.N. How DECISION-CTO Can Help Guide the Decision to Perform Chronic Total Occlusion Percutaneous Coronary Intervention. Circulation. 2019;139:1684–1687. doi: 10.1161/CIRCULATIONAHA.119.039835.
    1. Seiler C., Stoller M., Pitt B., Meier P. The human coronary collateral circulation: Development and clinical importance. Eur. Heart J. 2013;34:2674–2682. doi: 10.1093/eurheartj/eht195.
    1. Brilakis E.S., Mashayekhi K., Tsuchikane E., Rafeh N.A., Alaswad K., Araya M., Avran A., Azzalini L., Babunashvili A.M., Bayani B., et al. Guiding Principles for Chronic Total Occlusion Percutaneous Coronary Intervention. Circulation. 2019;140:420–433. doi: 10.1161/CIRCULATIONAHA.119.039797.
    1. Henriques J.P., Hoebers L.P., Råmunddal T., Laanmets P., Eriksen E., Bax M., Ioanes D., Suttorp M.J., Strauss B.H., Barbato E., et al. Percutaneous Intervention for Concurrent Chronic Total Occlusions in Patients with STEMI. J. Am. Coll. Cardiol. 2016;68:1622–1632. doi: 10.1016/j.jacc.2016.07.744.
    1. Werner G.S., Martin-Yuste V., Hildick-Smith D., Boudou N., Sianos G., Gelev V., Rumoroso J.R., Erglis A., Christiansen E.H., Escaned J., et al. A randomized multicentre trial to compare revascularization with optimal medical therapy for the treatment of chronic total coronary occlusions. Eur. Heart J. 2018;39:2484–2493. doi: 10.1093/eurheartj/ehy220.
    1. Mashayekhi K., Nührenberg T.G., Toma A., Gick M., Ferenc M., Hochholzer W., Comberg T., Rothe J., Valina C.M., Löffelhardt N., et al. A Randomized Trial to Assess Regional Left Ventricular Function After Stent Implantation in Chronic Total Occlusion. JACC Cardiovasc. Interv. 2018;11:1982–1991. doi: 10.1016/j.jcin.2018.05.041.
    1. Lee S.-W., Lee P.H., Ahn J.-M., Park D.-W., Yun S.-C., Han S., Kang H., Kang S.-J., Kim Y.-H., Lee C.W., et al. Randomized Trial Evaluating Percutaneous Coronary Intervention for the Treatment of Chronic Total Occlusion. Circulation. 2019;139:1674–1683. doi: 10.1161/CIRCULATIONAHA.118.031313.
    1. Tajti P., Burke M.N., Karmpaliotis D., Alaswad K., Werner G.S., Azzalini L., Carlino M., Patel M., Mashayekhi K., Egred M., et al. Update in the Percutaneous Management of Coronary Chronic Total Occlusions. JACC Cardiovasc. Interv. 2018;11:615–625. doi: 10.1016/j.jcin.2017.10.052.
    1. Mashayekhi K., Neuser H., Kraus A., Zimmer M., Dalibor J., Akin I., Werner G., Aurel T., Neumann F.-J., Behnes M. Successful Percutaneous Coronary Intervention Improves Cardiopulmonary Exercise Capacity in Patients with Chronic Total Occlusions. J. Am. Coll. Cardiol. 2017;69:1095–1096. doi: 10.1016/j.jacc.2016.12.017.
    1. Sapontis J., Salisbury A.C., Yeh R.W., Cohen D.J., Hirai T., Lombardi W., McCabe J.M., Karmpaliotis D., Moses J., Nicholson W.J., et al. Early Procedural and Health Status Outcomes After Chronic Total Occlusion Angioplasty. JACC Cardiovasc. Interv. 2017;10:1523–1534. doi: 10.1016/j.jcin.2017.05.065.
    1. Claessen B.E., Dangas G.D., Weisz G., Witzenbichler B., Guagliumi G., Möckel M., Brener S.J., Xu K., Henriques J.P., Mehran R., et al. Prognostic impact of a chronic total occlusion in a non-infarct-related artery in patients with ST-segment elevation myocardial infarction: 3-year results from the HORIZONS-AMI trial. Eur. Heart J. 2012;33:768–775. doi: 10.1093/eurheartj/ehr471.
    1. Tajti P., Karmpaliotis D., Alaswad K., Jaffer F.A., Yeh R.W., Patel M., Mahmud E., Choi J.W., Burke M.N., Doing A.H., et al. The Hybrid Approach to Chronic Total Occlusion Percutaneous Coronary Intervention. JACC Cardiovasc. Interv. 2018;11:1325–1335. doi: 10.1016/j.jcin.2018.02.036.
    1. Wilson W.M., Walsh S.J., Yan A.T., Hanratty C.G., Bagnall A.J., Egred M., Smith E., Oldroyd K.G., McEntegart M., Irving J., et al. Hybrid approach improves success of chronic total occlusion angioplasty. Heart. 2016;102:1486–1493. doi: 10.1136/heartjnl-2015-308891.
    1. Brilakis E.S., Banerjee S., Karmpaliotis D., Lombardi W.L., Tsai T.T., Shunk K.A., Kennedy K.F., Spertus J.A., Holmes D.R., Grantham J.A. Procedural Outcomes of Chronic Total Occlusion Percutaneous Coronary Intervention. JACC Cardiovasc. Interv. 2015;8:245–253. doi: 10.1016/j.jcin.2014.08.014.
    1. Patel M.R., Calhoon J.H., Dehmer G.J., Grantham J.A., Maddox T.M., Maron D.J., Smith P.K. ACC/AATS/AHA/ASE/ASNC/SCAI/SCCT/STS 2017 Appropriate Use Criteria for Coronary Revascularization in Patients with Stable Ischemic Heart Disease. J. Am. Coll. Cardiol. 2017;69:2212–2241. doi: 10.1016/j.jacc.2017.02.001.
    1. Neumann F.J., Sousa-Uva M., Ahlsson A., Alfonso F., Banning A.P., Benedetto U., Byrne R.A., Collet J.P., Falk V., Head S.J., et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019;40:87–165. doi: 10.1093/eurheartj/ehy394.
    1. Lawton J.S., Tamis-Holland J.E., Bangalore S., Bates E.R., Beckie T.M., Bischoff J.M., Bittl J.A., Cohen M.G., DiMaio J.M., Don C.W., et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization. J. Am. Coll. Cardiol. 2022;79:e21–e129. doi: 10.1016/j.jacc.2021.09.006.
    1. Camici P.G., Prasad S.K., Rimoldi O.E. Stunning, Hibernation, and Assessment of Myocardial Viability. Circulation. 2008;117:103–114. doi: 10.1161/CIRCULATIONAHA.107.702993.
    1. Al-Lamee R., Thompson D., Dehbi H.-M., Sen S., Tang K., Davies J., Keeble T., Mielewczik M., Kaprielian R., Malik I.S., et al. Percutaneous coronary intervention in stable angina (ORBITA): A double-blind, randomised controlled trial. Lancet. 2018;391:31–40. doi: 10.1016/S0140-6736(17)32714-9.
    1. Windecker S., Stortecky S., Stefanini G., da Costa B.R., Rutjes A.W.S., Di Nisio M., Siletta M.G., Maione A., Alfonso F., Clemmensen P.M., et al. Revascularisation versus medical treatment in patients with stable coronary artery disease: Network meta-analysis. BMJ. 2014;348:g3859. doi: 10.1136/bmj.g3859.
    1. Allman K.C., Shaw L.J., Hachamovitch R., E Udelson J. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: A meta-analysis. J. Am. Coll. Cardiol. 2002;39:1151–1158. doi: 10.1016/S0735-1097(02)01726-6.
    1. Zannad F., Ferreira J.P., Pocock S.J., Anker S.D., Butler J., Filippatos G., Brueckmann M., Ofstad A.P., Pfarr E., Jamal W., et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: A meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet. 2020;396:819–829. doi: 10.1016/S0140-6736(20)31824-9.
    1. McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Böhm M., Burri H., Butler J., Čelutkienė J., Chioncel O., et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021;42:3599–3726. doi: 10.1093/eurheartj/ehab368.
    1. Ryan M., Morgan H., Chiribiri A., Nagel E., Cleland J., Perera D. Myocardial viability testing: All STICHed up, or about to be REVIVED? Eur. Heart J. 2022;43:118–126. doi: 10.1093/eurheartj/ehab729.
    1. Velazquez E.J., Lee K.L., Deja M.A., Jain A., Sopko G., Marchenko A., Ali I.S., Pohost G., Gradinac S., Abraham W.T., et al. Coronary-Artery Bypass Surgery in Patients with Left Ventricular Dysfunction. N. Engl. J. Med. 2011;364:1607–1616. doi: 10.1056/NEJMoa1100356.
    1. Howlett J.G., Stebbins A., Petrie M.C., Jhund P.S., Castelvecchio S., Cherniavsky A., Sueta C.A., Roy A., Piña I.L., Wurm R., et al. CABG Improves Outcomes in Patients with Ischemic Cardiomyopathy. JACC Heart Fail. 2019;7:878–887. doi: 10.1016/j.jchf.2019.04.018.
    1. Fearon W.F., Zimmermann F.M., De Bruyne B., Piroth Z., van Straten A.H., Szekely L., Davidavičius G., Kalinauskas G., Mansour S., Kharbanda R., et al. Fractional Flow Reserve–Guided PCI as Compared with Coronary Bypass Surgery. N. Engl. J. Med. 2022;386:128–137. doi: 10.1056/NEJMoa2112299.
    1. Perera D., Clayton T., O’Kane P.D., Greenwood J.P., Weerackody R., Ryan M., Morgan H.P., Dodd M., Evans R., Canter R., et al. Percutaneous Revascularization for Ischemic Left Ventricular Dysfunction. N. Engl. J. Med. 2022;387:1351–1360. doi: 10.1056/NEJMoa2206606.
    1. Beanlands R.S., Nichol G., Huszti E., Humen D., Racine N., Freeman M., Gulenchyn K.Y., Garrard L., Dekemp R., Guo A., et al. F-18-Fluorodeoxyglucose Positron Emission Tomography Imaging-Assisted Management of Patients with Severe Left Ventricular Dysfunction and Suspected Coronary Disease: A Randomized, Controlled Trial (PARR-2) J. Am. Coll. Cardiol. 2007;50:2002–2012. doi: 10.1016/j.jacc.2007.09.006.
    1. Gerber B.L., Rousseau M.F., Ahn S.A., Waroux J.-B.L.P.D., Pouleur A.-C., Phlips T., Vancraeynest D., Pasquet A., Vanoverschelde J.-L.J. Prognostic Value of Myocardial Viability by Delayed-Enhanced Magnetic Resonance in Patients with Coronary Artery Disease and Low Ejection Fraction: Impact of Revascularization Therapy. J. Am. Coll. Cardiol. 2012;59:825–835. doi: 10.1016/j.jacc.2011.09.073.
    1. Safley D.M., Koshy S., Grantham J.A., Bybee K.A., House J.A., Ms K.F.K., Rutherford B.D. Changes in myocardial ischemic burden following percutaneous coronary intervention of chronic total occlusions. Catheter. Cardiovasc. Interv. 2011;78:337–343. doi: 10.1002/ccd.23002.
    1. Ling L.F., Marwick T.H., Flores D.R., Jaber W.A., Brunken R.C., Cerqueira M.D., Hachamovitch R. Identification of Therapeutic Benefit from Revascularization in Patients with Left Ventricular Systolic Dysfunction. Circ. Cardiovasc. Imaging. 2013;6:363–372. doi: 10.1161/CIRCIMAGING.112.000138.
    1. Frangogiannis N.G. The pathological basis of myocardial hibernation. Histol. Histopathol. 2003;18:647–655. doi: 10.14670/HH-18.647.
    1. Lim S.P., Mc Ardle B.A., Beanlands R.S., Hessian R.C. Myocardial Viability: It is Still Alive. Semin. Nucl. Med. 2014;44:358–374. doi: 10.1053/j.semnuclmed.2014.07.003.
    1. Roes S.D., Mollema S.A., Lamb H.J., van der Wall E.E., de Roos A., Bax J.J. Validation of Echocardiographic Two-Dimensional Speckle Tracking Longitudinal Strain Imaging for Viability Assessment in Patients with Chronic Ischemic Left Ventricular Dysfunction and Comparison with Contrast-Enhanced Magnetic Resonance Imaging. Am. J. Cardiol. 2009;104:312–317. doi: 10.1016/j.amjcard.2009.03.040.
    1. Cleland J., Pennell D., Ray S., Coats A., Macfarlane P., Murray G., Mule J.D., Vered Z., Lahiri A. Myocardial viability as a determinant of the ejection fraction response to carvedilol in patients with heart failure (CHRISTMAS trial): Randomised controlled trial. Lancet. 2003;362:14–21. doi: 10.1016/S0140-6736(03)13801-9.
    1. Hachamovitch R., Rozanski A., Shaw L.J., Stone G.W., Thomson L.E.J., Friedman J.D., Hayes S.W., Cohen I., Germano G., Berman D.S. Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy. Eur. Heart J. 2011;32:1012–1024. doi: 10.1093/eurheartj/ehq500.
    1. Boden W.E., O’Rourke R.A., Teo K.K., Hartigan P.M., Maron D.J., Kostuk W.J., Knudtson M., Dada M., Casperson P., Harris C.L., et al. Optimal Medical Therapy with or without PCI for Stable Coronary Disease. N. Engl. J. Med. 2007;356:1503–1516. doi: 10.1056/NEJMoa070829.
    1. D’Egidio G., Nichol G., Williams K.A., Guo A., Garrard L., Dekemp R., Ruddy T.D., DaSilva J., Humen D., Gulenchyn K.Y., et al. Increasing Benefit From Revascularization Is Associated with Increasing Amounts of Myocardial Hibernation: A Substudy of the PARR-2 Trial. JACC Cardiovasc. Imaging. 2009;2:1060–1068. doi: 10.1016/j.jcmg.2009.02.017.
    1. van Nunen L.X., Zimmermann F.M., Tonino P.A.L., Barbato E., Baumbach A., Engstrøm T., Klauss V., A MacCarthy P., Manoharan G., Oldroyd K.G., et al. Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME): 5-year follow-up of a randomised controlled trial. Lancet. 2015;386:1853–1860. doi: 10.1016/S0140-6736(15)00057-4.
    1. Johnson N.P., Gould K.L. Physiological Basis for Angina and ST-Segment Change: PET-Verified Thresholds of Quantitative Stress Myocardial Perfusion and Coronary Flow Reserve. JACC Cardiovasc. Imaging. 2011;4:990–998. doi: 10.1016/j.jcmg.2011.06.015.
    1. Werner G.S., Surber R., Ferrari M., Fritzenwanger M., Figulla H.R. The functional reserve of collaterals supplying long-term chronic total coronary occlusions in patients without prior myocardial infarction. Eur. Heart J. 2006;27:2406–2412. doi: 10.1093/eurheartj/ehl270.
    1. Obedinskiy A.A., Kretov E.I., Boukhris M., Kurbatov V.P., Osiev A.G., Ibn Elhadj Z., Obedinskaya N.R., Kasbaoui S., Grazhdankin I.O., Prokhorikhin A.A., et al. The IMPACTOR-CTO Trial. JACC Cardiovasc. Interv. 2018;11:1309–1311. doi: 10.1016/j.jcin.2018.04.017.
    1. Flotats A., Knuuti J., Gutberlet M., Marcassa C., Bengel F., Kaufmann P.A., Rees M.R., Hesse B. Hybrid cardiac imaging: SPECT/CT and PET/CT. A joint position statement by the European Association of Nuclear Medicine (EANM), the European Society of Cardiac Radiology (ESCR) and the European Council of Nuclear Cardiology (ECNC) Eur. J. Pediatr. 2011;38:201–212. doi: 10.1007/s00259-010-1586-y.
    1. Bax J.J., Delgado V. Detection of viable myocardium and scar tissue: Table 1. Eur. Heart J. Cardiovasc. Imaging. 2015;16:1062–1064. doi: 10.1093/ehjci/jev200.
    1. Neglia D., Rovai D., Caselli C., Pietila M., Teresinska A., Aguadé-Bruix S., Pizzi M.N., Todiere G., Gimelli A., Schroeder S., et al. Detection of Significant Coronary Artery Disease by Noninvasive Anatomical and Functional Imaging. Circ. Cardiovasc. Imaging. 2015;8:e002179. doi: 10.1161/CIRCIMAGING.114.002179.
    1. Shah D.J., Kim H.W., James O., Parker M., Wu E., Bonow R.O., Judd R.M., Kim R.J. Prevalence of Regional Myocardial Thinning and Relationship with Myocardial Scarring in Patients with Coronary Artery Disease. JAMA. 2013;309:909–918. doi: 10.1001/jama.2013.1381.
    1. Sachdeva R., Agrawal M., Flynn S.E., Werner G.S., Uretsky B.F. The myocardium supplied by a chronic total occlusion is a persistently ischemic zone. Catheter. Cardiovasc. Interv. 2014;83:9–16. doi: 10.1002/ccd.25001.
    1. Cornel J.H., Bax J.J., Elhendy A., Maat A.P., Kimman G.-J.P., Geleijnse M.L., Rambaldi R., Boersma E., Fioretti P.M. Biphasic Response to Dobutamine Predicts Improvement of Global Left Ventricular Function After Surgical Revascularization in Patients with Stable Coronary Artery Disease: Implications of Time Course of Recovery on Diagnostic Accuracy. J. Am. Coll. Cardiol. 1998;31:1002–1010. doi: 10.1016/S0735-1097(98)00067-9.
    1. Pellikka P.A., Arruda-Olson A., Chaudhry F.A., Chen M.H., Marshall J.E., Porter T.R., Sawada S.G. Guidelines for Performance, Interpretation, and Application of Stress Echocardiography in Ischemic Heart Disease: From the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2020;33:1–41.e8. doi: 10.1016/j.echo.2019.07.001.
    1. Hickman M., Chelliah R., Burden L., Senior R. Resting myocardial blood flow, coronary flow reserve, and contractile reserve in hibernating myocardium: Implications for using resting myocardial contrast echocardiography vs. dobutamine echocardiography for the detection of hibernating myocardium. Eur. J. Echocardiogr. 2010;11:756–762. doi: 10.1093/ejechocard/jeq062.
    1. Sicari R., Nihoyannopoulos P., Evangelista A., Kasprzak J., Lancellotti P., Poldermans D., Voigt J.-U., Zamorano J.L. On behalf of the European Association of Echocardiography Stress echocardiography expert consensus statement: European Association of Echocardiography (EAE) (a registered branch of the ESC) Eur. J. Echocardiogr. 2008;9:415–437. doi: 10.1093/ejechocard/jen175.
    1. Cortigiani L., Urluescu M.-L., Coltelli M., Carpeggiani C., Bovenzi F., Picano E. Apparent Declining Prognostic Value of a Negative Stress Echocardiography Based on Regional Wall Motion Abnormalities in Patients with Normal Resting Left Ventricular Function Due to the Changing Referral Profile of the Population Under Study. Circ. Cardiovasc. Imaging. 2019;12:e008564. doi: 10.1161/CIRCIMAGING.118.008564.
    1. Kayden D.S., Sigal S., Soufer R., Mattera J., Zaret B.L., Wackers F.J.T. Thallium-201 for assessment of myocardial viability: Quantitative comparison of 24-hour redistribution imaging with imaging after reinjection at rest. J. Am. Coll. Cardiol. 1991;18:1480–1486. doi: 10.1016/0735-1097(91)90678-3.
    1. Gewirtz H., A Beller G., Strauss H.W., E Dinsmore R., Zir L.M., A McKusick K., Pohost G.M. Transient defects of resting thallium scans in patients with coronary artery disease. Circulation. 1979;59:707–713. doi: 10.1161/01.CIR.59.4.707.
    1. Udelson J.E., Coleman P.S., Metherall J., Pandian N.G., Gomez A.R., Griffith J.L., Shea N.L., Oates E., A Konstam M. Predicting recovery of severe regional ventricular dysfunction. Comparison of resting scintigraphy with 201Tl and 99mTc-sestamibi. Circulation. 1994;89:2552–2561. doi: 10.1161/01.CIR.89.6.2552.
    1. Maes A.F., Borgers M., Flameng W., Nuyts J.L., van de Werf F., Ausma J.J., Sergeant P., A Mortelmans L. Assessment of Myocardial Viability in Chronic Coronary Artery Disease Using Technetium-99m Sestamibi SPECT: Correlation with Histologic and Positron Emission Tomographic Studies and Functional Follow-Up. J. Am. Coll. Cardiol. 1997;29:62–68. doi: 10.1016/S0735-1097(96)00442-1.
    1. Taillefer R., Amyot R., Turpin S., Lambert R., Pilon C., Jarry M. Comparison between dipyridamole and adenosine as pharmacologic coronary vasodilators in detection of coronary artery disease with thallium 201 imaging. J. Nucl. Cardiol. 1996;3:204–211. doi: 10.1016/S1071-3581(96)90034-3.
    1. Loong C.Y., Anagnostopoulos C. Diagnosis of coronary artery disease by radionuclide myocardial perfusion imaging. Heart. 2004;90:v2–v9. doi: 10.1136/hrt.2003.013581.
    1. Gimelli A., Liga R., Pasanisi E.M., Giorgetti A., Marras G., Favilli B., Marzullo P. Evaluation of left ventricular diastolic function with a dedicated cadmium-zinc-telluride cardiac camera: Comparison with Doppler echocardiography. Eur. Heart J. Cardiovasc. Imaging. 2014;15:972–979. doi: 10.1093/ehjci/jeu037.
    1. Hachamovitch R., Hayes S.W., Friedman J.D., Cohen I., Berman D.S. Comparison of the Short-Term Survival Benefit Associated with Revascularization Compared with Medical Therapy in Patients with No Prior Coronary Artery Disease Undergoing Stress Myocardial Perfusion Single Photon Emission Computed Tomography. Circulation. 2003;107:2900–2907. doi: 10.1161/01.CIR.0000072790.23090.41.
    1. Zhou T., Yang L.-F., Zhai J.-L., Li J., Wang Q.-M., Zhang R.-J., Wang S., Peng Z.-H., Li M., Sun G. SPECT myocardial perfusion versus fractional flow reserve for evaluation of functional ischemia: A meta analysis. Eur. J. Radiol. 2014;83:951–956. doi: 10.1016/j.ejrad.2014.02.018.
    1. Burrell S., MacDonald A. Artifacts and pitfalls in myocardial perfusion imaging. J. Nucl. Med. Technol. 2006;34:193–211.
    1. Acampa W., Gaemperli O., Gimelli A., Knaapen P., Schindler T.H., Verberne H.J., Zellweger M.J., Reviewers D., Kaufmann P.A., Rosenhek R., et al. Role of risk stratification by SPECT, PET, and hybrid imaging in guiding management of stable patients with ischaemic heart disease: Expert panel of the EANM cardiovascular committee and EACVI. Eur. Heart J. Cardiovasc. Imaging. 2015;16:1289–1298. doi: 10.1093/ehjci/jev093.
    1. Gould K.L., Johnson N.P., Bateman T.M., Beanlands R.S., Bengel F.M., Bober R., Camici P.G., Cerqueira M.D., Chow B.J., Di Carli M.F., et al. Anatomic Versus Physiologic Assessment of Coronary Artery Disease. J. Am. Coll. Cardiol. 2013;62:1639–1653. doi: 10.1016/j.jacc.2013.07.076.
    1. Perrin M., Djaballah W., Moulin F., Claudin M., Veran N., Imbert L., Poussier S., Morel O., Besseau C., Verger A., et al. Stress-first protocol for myocardial perfusion SPECT imaging with semiconductor cameras: High diagnostic performances with significant reduction in patient radiation doses. Eur. J. Nucl. Med. Mol. Imaging. 2015;42:1004–1011. doi: 10.1007/s00259-015-3016-7.
    1. Einstein A.J., Pascual T.N.B., Mercuri M., Karthikeyan G., Vitola J.V., Mahmarian J.J., Better N., Bouyoucef S.E., Bom H.H.-S., Lele V., et al. Current worldwide nuclear cardiology practices and radiation exposure: Results from the 65 country IAEA Nuclear Cardiology Protocols Cross-Sectional Study (INCAPS) Eur. Heart J. 2015;36:1689–1696. doi: 10.1093/eurheartj/ehv117.
    1. Ben-Haim S., Murthy V., Breault C., Allie R., Sitek A., Roth N., Fantony J., Moore S.C., Park M.-A., Kijewski M., et al. Quantification of Myocardial Perfusion Reserve Using Dynamic SPECT Imaging in Humans: A Feasibility Study. J. Nucl. Med. 2013;54:873–879. doi: 10.2967/jnumed.112.109652.
    1. Garcia E.V. Are SPECT measurements of myocardial blood flow and flow reserve ready for clinical use? Eur. J. Pediatr. 2014;41:2291–2293. doi: 10.1007/s00259-014-2924-2.
    1. Gimelli A., Bottai M., Giorgetti A., Genovesi D., Kusch A., Ripoli A., Marzullo P. Comparison Between Ultrafast and Standard Single-Photon Emission CT in Patients with Coronary Artery Disease. Circ. Cardiovasc. Imaging. 2011;4:51–58. doi: 10.1161/CIRCIMAGING.110.957399.
    1. Nakae I., Matsuo S., Tsutamoto T., Matsumoto T., Mitsunami K., Horie M. Assessment of cardiac function in patients with heart disease by quantitative gated myocardial perfusion SPECT. Ann. Nucl. Med. 2007;21:315–323. doi: 10.1007/s12149-007-0032-0.
    1. Dilsizian V., Bacharach S.L., Beanlands R.S., Bergmann S.R., Delbeke D., Dorbala S., Gropler R.J., Knuuti J., Schelbert H.R., Travin M.I. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J. Nucl. Cardiol. 2016;23:1187–1226. doi: 10.1007/s12350-016-0522-3.
    1. Anavekar N.S., Chareonthaitawee P., Narula J., Gersh B.J. Revascularization in Patients with Severe Left Ventricular Dysfunction. J. Am. Coll. Cardiol. 2016;67:2874–2887. doi: 10.1016/j.jacc.2016.03.571.
    1. Taqueti V.R., Hachamovitch R., Murthy V., Naya M., Foster C.R., Hainer J., Dorbala S., Blankstein R., Di Carli M.F. Global Coronary Flow Reserve Is Associated with Adverse Cardiovascular Events Independently of Luminal Angiographic Severity and Modifies the Effect of Early Revascularization. Circulation. 2015;131:19–27. doi: 10.1161/CIRCULATIONAHA.114.011939.
    1. Ziadi M.C., Dekemp R.A., Williams K., Guo A., Renaud J., Chow B., Klein R., Ruddy T.D., Aung M., Garrard L., et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J. Nucl. Cardiol. 2012;19:670–680. doi: 10.1007/s12350-011-9506-5.
    1. Hutchins G.D., Schwaiger M., Rosenspire K.C., Krivokapich J., Schelbert H., Kuhl D.E. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J. Am. Coll. Cardiol. 1990;15:1032–1042. doi: 10.1016/0735-1097(90)90237-J.
    1. Cerqueira M.D., Weissman N.J., Dilsizian V., Jacobs A.K., Kaul S., Laskey W.K., Pennell D.J., Rumberger J.A., Ryan T., Verani M.S. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539–542. doi: 10.1161/hc0402.102975.
    1. Danad I., Uusitalo V., Kero T., Saraste A., Raijmakers P.G., Lammertsma A., Heymans M., Kajander S.A., Pietilä M., James S., et al. Quantitative Assessment of Myocardial Perfusion in the Detection of Significant Coronary Artery Disease. J. Am. Coll. Cardiol. 2014;64:1464–1475. doi: 10.1016/j.jacc.2014.05.069.
    1. Parker M.W., Iskandar A., Limone B., Perugini A., Kim H., Jones C., Calamari B., Coleman C.I., Heller G.V. Diagnostic accuracy of cardiac positron emission tomography versus single photon emission computed tomography for coronary artery disease: A bivariate meta-analysis. Circ. Cardiovasc. Imaging. 2012;5:700–707. doi: 10.1161/CIRCIMAGING.112.978270.
    1. Wolk M.J., Bailey S.R., Doherty J.U., Douglas P.S., Hendel R.C., Kramer C.M., Min J.K., Patel M.R., Rosenbaum L., Shaw L.J., et al. ACCF/AHA/ASE/ASNC/HFSA/HRS/SCAI/SCCT/SCMR/STS 2013 Multimodality Appropriate Use Criteria for the Detection and Risk Assessment of Stable Ischemic Heart Disease. J. Am. Coll. Cardiol. 2014;63:380–406. doi: 10.1016/j.jacc.2013.11.009.
    1. Pegg T.J., Selvanayagam J.B., Jennifer J., Francis J.M., Karamitsos T.D., Dall’Armellina E., Smith K.L., Taggart D.P., Neubauer S. Prediction of global left ventricular functional recovery in patients with heart failure undergoing surgical revascularisation, based on late gadolinium enhancement Cardiovascular Magnetic Resonance. J. Cardiovasc. Magn. Reson. 2010;12:1–10. doi: 10.1186/1532-429X-12-56.
    1. Schuster A., Morton G., Chiribiri A., Perera D., Vanoverschelde J.-L., Nagel E. Imaging in the Management of Ischemic Cardiomyopathy: Special Focus on Magnetic Resonance. J. Am. Coll. Cardiol. 2012;59:359–370. doi: 10.1016/j.jacc.2011.08.076.
    1. Kim R.J., Wu E., Rafael A., Chen E.-L., Parker M.A., Simonetti O., Klocke F.J., Bonow R.O., Judd R.M. The Use of Contrast-Enhanced Magnetic Resonance Imaging to Identify Reversible Myocardial Dysfunction. N. Engl. J. Med. 2000;343:1445–1453. doi: 10.1056/NEJM200011163432003.
    1. Karamitsos T.D., Ab Ntusi N., Francis J.M., Holloway C.J., Myerson S.G., Neubauer S. Feasibility and safety of high-dose adenosine perfusion cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2010;12:66–68. doi: 10.1186/1532-429X-12-66.
    1. Jogiya R., Kozerke S., Morton G., De Silva K., Redwood S., Perera D., Nagel E., Plein S. Validation of Dynamic 3-Dimensional Whole Heart Magnetic Resonance Myocardial Perfusion Imaging Against Fractional Flow Reserve for the Detection of Significant Coronary Artery Disease. J. Am. Coll. Cardiol. 2012;60:756–765. doi: 10.1016/j.jacc.2012.02.075.
    1. Shin T., Hu H.H., Pohost G.M., Nayak K.S. Three dimensional first-pass myocardial perfusion imaging at 3T: Feasibility study. J. Cardiovasc. Magn. Reson. 2008;10:57. doi: 10.1186/1532-429X-10-57.
    1. Greenwood J.P., Maredia N., Younger J., Brown J.M., Nixon J., Everett C.C., Bijsterveld P., Ridgway J.P., Radjenovic A., Dickinson C.J., et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): A prospective trial. Lancet. 2012;379:453–460. doi: 10.1016/S0140-6736(11)61335-4.
    1. Nagel E., Greenwood J.P., McCann G.P., Bettencourt N., Shah A.M., Hussain S.T., Perera D., Plein S., Bucciarelli-Ducci C., Paul M., et al. Magnetic Resonance Perfusion or Fractional Flow Reserve in Coronary Disease. N. Engl. J. Med. 2019;380:2418–2428. doi: 10.1056/NEJMoa1716734.
    1. Pica S., Di Giovine G., Bollati M., Testa L., Bedogni F., Camporeale A., Pontone G., Andreini D., Monti L., Gasparini G., et al. Cardiac magnetic resonance for ischaemia and viability detection. Guiding patient selection to revascularization in coronary chronic total occlusions: The CARISMA_CTO study design. Int. J. Cardiol. 2018;272:356–362. doi: 10.1016/j.ijcard.2018.08.061.
    1. Christakopoulos G.E., Christopoulos G., Carlino M., Jeroudi O.M., Roesle M., Rangan B.V., Abdullah S., Grodin J., Kumbhani D.J., Vo M., et al. Meta-Analysis of Clinical Outcomes of Patients Who Underwent Percutaneous Coronary Interventions for Chronic Total Occlusions. Am. J. Cardiol. 2015;115:1367–1375. doi: 10.1016/j.amjcard.2015.02.038.
    1. Nkoulou R., Fuchs T.A., Pazhenkottil A.P., Kuest S.M., Ghadri J.R., Stehli J., Fiechter M., Herzog B.A., Gaemperli O., Buechel R.R., et al. Absolute Myocardial Blood Flow and Flow Reserve Assessed by Gated SPECT with Cadmium–Zinc–Telluride Detectors Using 99mTc-Tetrofosmin: Head-to-Head Comparison with 13N-Ammonia PET. J. Nucl. Med. 2016;57:1887–1892. doi: 10.2967/jnumed.115.165498.
    1. Johnson N.P., Kirkeeide R.L., Gould K.L. Coronary Steal: Mechanisms of a Misnomer. J. Am. Heart Assoc. 2021;10:e021000. doi: 10.1161/JAHA.121.021000.
    1. De Winter R.W., Schumacher S.S., Diemen P.v.D.v., Jukema R.J., Somsen Y.S., Stuijfzand W.S., Driessen R.D., Bom M.B., Everaars H., Rossum A.v.R.v., et al. Impact of percutaneous coronary intervention of chronic total occlusions on absolute perfusion in remote myocardium. EuroIntervention. 2022;18:e314–e323. doi: 10.4244/EIJ-D-21-00702.
    1. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories American Thoracic Society. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002;166:111–117. doi: 10.1164/ajrccm.166.1.at1102.

Source: PubMed

3
Prenumerera