EEG based Classification of Long-term Stress Using Psychological Labeling

Sanay Muhammad Umar Saeed, Syed Muhammad Anwar, Humaira Khalid, Muhammad Majid, And Ulas Bagci, Sanay Muhammad Umar Saeed, Syed Muhammad Anwar, Humaira Khalid, Muhammad Majid, And Ulas Bagci

Abstract

Stress research is a rapidly emerging area in the field of electroencephalography (EEG) signal processing. The use of EEG as an objective measure for cost effective and personalized stress management becomes important in situations like the nonavailability of mental health facilities. In this study, long-term stress was classified with machine learning algorithms using resting state EEG signal recordings. The labeling for the stress and control groups was performed using two currently accepted clinical practices: (i) the perceived stress scale score and (ii) expert evaluation. The frequency domain features were extracted from five-channel EEG recordings in addition to the frontal and temporal alpha and beta asymmetries. The alpha asymmetry was computed from four channels and used as a feature. Feature selection was also performed to identify statistically significant features for both stress and control groups (via t-test). We found that support vector machine was best suited to classify long-term human stress when used with alpha asymmetry as a feature. It was observed that the expert evaluation-based labeling method had improved the classification accuracy by up to 85.20%. Based on these results, it is concluded that alpha asymmetry may be used as a potential bio-marker for stress classification, when labels are assigned using expert evaluation.

Keywords: electroencephalography; expert evaluation; long-term stress; machine learning; perceived stress scale.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
The proposed methodology for long-term human stress classification.
Figure 2
Figure 2
Experimental sequence and the data acquisition process.
Figure 3
Figure 3
The Emotiv headset with five electrodes marked at positions AF3,AF4,T7,T8,andPz.
Figure 4
Figure 4
A graphical representation of Perceived Stress Scale (PSS) scores for participants showing labels assigned using the PSS based labeling method (green: control group, red: stress group, yellow: neutral).
Figure 5
Figure 5
Box plots of features. (a) Alpha asymmetry; (b) beta; (c) gamma; (d) alpha asymmetry (EE); (e) beta (EE); (f) gamma (EE); EE represents the labeling method of expert evaluation.

References

    1. Selye H. The stress syndrome. Am. J. Nurs. 1965;65:97–99.
    1. Heim C., Nemeroff C.B. Neurobiology of early life stress: Clinical studies. Semin. Clin. Neuropsychiatry. 2002;7:147–159. doi: 10.1053/scnp.2002.33127.
    1. McGonagle K.A., Kessler R.C. Chronic stress, acute stress, and depressive symptoms. Am. J. Commun. Psychol. 1990;18:681–706. doi: 10.1007/BF00931237.
    1. Cohen S., Janicki-Deverts D., Miller G.E. Psychological stress and disease. JAMA. 2007;298:1685–1687. doi: 10.1001/jama.298.14.1685.
    1. Steptoe A., Kivimäki M. Stress and cardiovascular disease. Nat. Rev. Cardiol. 2012;9:360. doi: 10.1038/nrcardio.2012.45.
    1. Van Praag H. Can stress cause depression? Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2004;28:891–907. doi: 10.1016/j.pnpbp.2004.05.031.
    1. Hammen C., Dalton E.D., Thompson S.M. Measurement of chronic stress. Encycl. Clin. Psychol. 2014:1–7. doi: 10.1002/9781118625392.wbecp047.
    1. Sobell L.C., Toneatto T., Sobell M.B., Schuller R., Maxwell M. A procedure for reducing errors in reports of life events. J. Psychosom. Res. 1990;34:163–170. doi: 10.1016/0022-3999(90)90050-E.
    1. McQuaid J.R., Monroe S.M., Roberts J.R., Johnson S.L., Garamoni G.L., Kupfer D.J., Frank E. Toward the standardization of life stress assessment: Definitional discrepancies and inconsistencies in methods. Stress Med. 1992;8:47–56. doi: 10.1002/smi.2460080107.
    1. Peng H., Hu B., Zheng F., Fan D., Zhao W., Chen X., Yang Y., Cai Q. A method of identifying chronic stress by EEG. Pers. Ubiquitous Comput. 2013;17:1341–1347. doi: 10.1007/s00779-012-0593-3.
    1. Zheng R., Yamabe S., Nakano K., Suda Y. Biosignal analysis to assess mental stress in automatic driving of trucks: Palmar perspiration and masseter electromyography. Sensors. 2015;15:5136–5150. doi: 10.3390/s150305136.
    1. Ahn J.W., Ku Y., Kim H.C. A Novel Wearable EEG and ECG Recording System for Stress Assessment. Sensors. 2019;19:1991. doi: 10.3390/s19091991.
    1. Mehreen A., Anwar S.M., Haseeb M., Majid M., Ullah M.O. A Hybrid Scheme for Drowsiness Detection using Wearable Sensors. IEEE Sens. J. 2019;19:5119–5126. doi: 10.1109/JSEN.2019.2904222.
    1. Asif A., Majid M., Anwar S.M. Human stress classification using EEG signals in response to music tracks. Comput. Biol. Med. 2019 doi: 10.1016/j.compbiomed.2019.02.015.
    1. Saeed U., Muhammad S., Anwar S.M., Majid M., Awais M., Alnowami M. Selection of Neural Oscillatory Features for Human Stress Classification with Single Channel EEG Headset. BioMed Res. Int. 2018;2018:1049257. doi: 10.1155/2018/1049257.
    1. Raheel A., Anwar S.M., Majid M. Emotion recognition in response to traditional and tactile enhanced multimedia using electroencephalography. Mult. Tools Appl. 2018;78:1–15. doi: 10.1007/s11042-018-6907-3.
    1. Anwar S., Saeed S., Majid M., Usman S., Mehmood C., Liu W. A Game Player Expertise Level Classification System Using Electroencephalography (EEG) Appl. Sci. 2018;8:18. doi: 10.3390/app8010018.
    1. Sanei S., Chambers J.A. EEG Signal Processing. Wiely; Hoboken, NJ, USA: 2007.
    1. Al-shargie F., Tang T.B., Badruddin N., Kiguchi M. Towards multilevel mental stress assessment using SVM with ECOC: An EEG approach. Med. Biol. Eng. Comput. 2018;56:125–136. doi: 10.1007/s11517-017-1733-8.
    1. Fisch B. Fisch and Spehlmann’s EEG Primer: Basic Principles of Digital and Analog EEG. 3rd ed. Elsevier; Amsterdam, The Netherlands: 1999. p. 642.
    1. Davidson R.J. What does the prefrontal cortex “do” in affect: Perspectives on frontal EEG asymmetry research. Biol. Psychiatry. 2004;67:219–234. doi: 10.1016/j.biopsycho.2004.03.008.
    1. Papousek I., Schulter G. Covariations of EEG asymmetries and emotional states indicate that activity at frontopolar locations is particularly affected by state factors. Psychophysiology. 2002;39:350–360. doi: 10.1017/S0048577201393083.
    1. Lobo I., Portugal L.C., Figueira I., Volchan E., David I., Pereira M.G., de Oliveira L. EEG correlates of the severity of posttraumatic stress symptoms: A systematic review of the dimensional PTSD literature. J. Affect. Disord. 2015;183:210–220. doi: 10.1016/j.jad.2015.05.015.
    1. Goncharova I.I., Barlow J.S. Changes in EEG mean frequency and spectral purity during spontaneous alpha blocking. Electroencephalogr. Clin. Neurophysiol. 1990;76:197–204. doi: 10.1016/0013-4694(90)90015-C.
    1. Subhani A.R., Mumtaz W., Saad M.N.B.M., Kamel N., Malik A.S. Machine learning framework for the detection of mental stress at multiple levels. IEEE Access. 2017;5:13545–13556. doi: 10.1109/ACCESS.2017.2723622.
    1. Cai H., Han J., Chen Y., Sha X., Wang Z., Hu B., Yang J., Feng L., Ding Z., Chen Y., et al. A Pervasive Approach to EEG-Based Depression Detection. Complexity. 2018;2018:5238028. doi: 10.1155/2018/5238028.
    1. Baghdadi A., Aribi Y., Alimi A.M. Efficient Human Stress Detection System Based on Frontal Alpha Asymmetry; Proceedings of the 24th International Conference, ICONIP 2017; Guangzhou, China. 14–18 November 2017; pp. 858–867.
    1. Aspinall P., Mavros P., Coyne R., Roe J. The urban brain: analysing outdoor physical activity with mobile EEG. Br. J. Sports Med. 2015;49:272–276. doi: 10.1136/bjsports-2012-091877.
    1. Düsing R., Tops M., Radtke E.L., Kuhl J., Quirin M. Relative frontal brain asymmetry and cortisol release after social stress: The role of action orientation. Biol. Psychiatry. 2016;115:86–93. doi: 10.1016/j.biopsycho.2016.01.012.
    1. Kaiser A.K., Doppelmayr M., Iglseder B. Electroencephalogram alpha asymmetry in geriatric depression. Zeit. Für Geront. Und Ger. 2018;51:200–205. doi: 10.1007/s00391-016-1108-z.
    1. Seo S.H., Lee J.T. Convergence and Hybrid Information Technologies. InTech; Rijeka, Croatia: 2010. Stress and EEG.
    1. Gärtner M., Grimm S., Bajbouj M. Frontal midline theta oscillations during mental arithmetic: Effects of stress. Front. Behav. Neurosci. 2015;9:96. doi: 10.3389/fnbeh.2015.00096.
    1. Saeed S.M.U., Anwar S.M., Majid M. Quantification of human stress using commercially available single channel EEG Headset. IEICE Trans. Inf. Syst. 2017;100:2241–2244. doi: 10.1587/transinf.2016EDL8248.
    1. Minguillon J., Lopez-Gordo M.A., Pelayo F. Stress assessment by prefrontal relative gamma. Front. Comput. Neurosci. 2016;10:101. doi: 10.3389/fncom.2016.00101.
    1. Arsalan A., Majid M., Butt A.R., Anwar S.M. Classification of Perceived Mental Stress Using a Commercially Available EEG Headband. IEEE J. Biomed. Health Inform. 2019;23:2257–2264. doi: 10.1109/JBHI.2019.2926407.
    1. Kotsiantis S.B., Zaharakis I., Pintelas P. Supervised machine learning: A review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 2007;160:3–24.
    1. Association W.M. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. J. Am. Coll. Dent. 2014;81:14.
    1. Knaus J., Wiese R., Janßen U. The processing of word stress: EEG studies on task-related components; Proceedings of the 16th International Congress of Phonetic Sciences; Saarbrücken, Germany. 6–10 August 2007; pp. 709–712.
    1. Matsunami K., Homma S., Han X.Y., Jiang Y.F. Generator sources of EEG large waves elicited by mental stress of memory recall or mental calculation. Jpn. J. Phys. 2001;51:621–624. doi: 10.2170/jjphysiol.51.621.
    1. Lewis R.S., Weekes N.Y., Wang T.H. The effect of a naturalistic stressor on frontal EEG asymmetry, stress, and health. Biol. Psychiatry. 2007;75:239–247. doi: 10.1016/j.biopsycho.2007.03.004.
    1. Seo S., Gil Y., Lee J. The relation between affective style of stressor on EEG asymmetry and stress scale during multimodal task; Proceedings of the Third International Conference on Convergence and Hybrid Information Technology, CCIT’08; Busan, Korea. 11–13 November 2008; pp. 461–466.
    1. Miller P.F., Light K.C., Bragdon E.E., Ballenger M.N., Herbst M.C., Maixner W., Hinderliter A.L., Atkinson S.S., Koch G.G., Sheps D.S. Beta-endorphin response to exercise and mental stress in patients with ischemic heart disease. J. Psychiatr. Res. 1993;37:455–465. doi: 10.1016/0022-3999(93)90002-W.
    1. Hassellund S.S., Flaa A., Sandvik L., Kjeldsen S.E., Rostrup M. Long-term stability of cardiovascular and catecholamine responses to stress tests: An 18-year follow-up study. Hypertension. 2010;55:131–136. doi: 10.1161/HYPERTENSIONAHA.109.143164.
    1. Khosrowabadi R., Quek C., Ang K.K., Tung S.W., Heijnen M. A Brain-Computer Interface for classifying EEG correlates of chronic mental stress; Proceedings of the 2011 International Joint Conference on Neural Networks; San Jose, CA, USA. 31 July–5 August 2011; pp. 757–762.
    1. Lin C.T., Ko L.W., Chiou J.C., Duann J.R., Huang R.S., Liang S.F., Chiu T.W., Jung T.P. Noninvasive neural prostheses using mobile and wireless EEG. IEEE. 2008;96:1167–1183.
    1. Vijean V., Hariharan M., Saidatul A., Yaacob S. Mental tasks classifications using S-transform for BCI applications; Proceedings of the 2011 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (STUDENT); Selangor Darul Ehsan, Malaysia. 20–21 October 2011; pp. 69–73.
    1. Jun G., Smitha K. EEG based stress level identification; Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC); Budapest, Hungary. 9–12 October 2016; pp. 3270–3274.

Source: PubMed

3
Prenumerera