Arginine Metabolism in Bacterial Pathogenesis and Cancer Therapy

Lifeng Xiong, Jade L L Teng, Michael G Botelho, Regina C Lo, Susanna K P Lau, Patrick C Y Woo, Lifeng Xiong, Jade L L Teng, Michael G Botelho, Regina C Lo, Susanna K P Lau, Patrick C Y Woo

Abstract

Antibacterial resistance to infectious diseases is a significant global concern for health care organizations; along with aging populations and increasing cancer rates, it represents a great burden for government healthcare systems. Therefore, the development of therapies against bacterial infection and cancer is an important strategy for healthcare research. Pathogenic bacteria and cancer have developed a broad range of sophisticated strategies to survive or propagate inside a host and cause infection or spread disease. Bacteria can employ their own metabolism pathways to obtain nutrients from the host cells in order to survive. Similarly, cancer cells can dysregulate normal human cell metabolic pathways so that they can grow and spread. One common feature of the adaption and disruption of metabolic pathways observed in bacterial and cancer cell growth is amino acid pathways; these have recently been targeted as a novel approach to manage bacterial infections and cancer therapy. In particular, arginine metabolism has been illustrated to be important not only for bacterial pathogenesis but also for cancer therapy. Therefore, greater insights into arginine metabolism of pathogenic bacteria and cancer cells would provide possible targets for controlling of bacterial infection and cancer treatment. This review will summarize the recent progress on the relationship of arginine metabolism with bacterial pathogenesis and cancer therapy, with a particular focus on arginase and arginine deiminase pathways of arginine catabolism.

Keywords: arginase; arginine deiminase; arginine metabolism; bacterial pathogenesis; cancer therapy.

Figures

Figure 1
Figure 1
Simplified model for bacterial arginine catabolism by arginase and ADI pathways. In bacteria, arginine could be catalyzed by the arginase pathway (in blue) and/or the ADI pathway (in light salmon). For the arginase pathway, arginine is converted into urea and ornithine, which is subsequently catalyzed into glutamate. The ADI pathway catabolizes arginine to ornithine with the byproducts of ammonia, CO2 and ATP. The produced ornithine could be transported outside and exchange one molecule of arginine in the cell by the arginine–ornithine antiporter (ArcD) located in the bacterial membrane. Arginine may also be transported by some unknown transporters, which are shown by the question mark. RocD: ornithine aminotransferase; RocF: arginase; RocA: Δ-pyrroline-5-carboxylate dehydrogenase; ArcC: carbamate kinase; ArcA: arginine deiminase; ArcB: ornithine carbamoyltransferase; Pi: inorganic phosphate.
Figure 2
Figure 2
Proposed model for intracellular killing of bacteria by phagocyte and bacterial defense strategies against phagocytosis. Bacteria could be engulfed by a phagocyte into the phagosome (1), followed by fusion with a lysozyme to form a phagolysosome (2), being killed by varied strategies like pH decrease, enzymes (solid blue oval) release (2a), and production of antimicrobial NO by iNOS (2b). We propose that the bacteria containing ADI pathway genes may employ this pathway to defend these killing strategies in the following ways: firstly, the production of ammonia could probably raise the cytoplasmic pH, thereby inhibiting the formation of phagolysosome (3); secondly, the ADI pathway competes with iNOS for the common substrate (arginine), thereby reducing NO production (4); thirdly, arginine depletion would also activate the autophagy and/or apoptosis pathways, like that in cancer cells (Figure 3), to induce programmed cell death and release bacteria (5).
Figure 3
Figure 3
Schematic representation of argininosuccinate synthetase (ASS)-negative cell death induced by arginine deprivation. In ASS-negative cells, arginine cannot synthesize so arginine depletion by ADI or arginase would induce a quick response of cell autophagy by the mammalian Target of Rapamycin (mTOR) or MEK-ERK pathway. Autophagy could recycle limited arginine and prevent apoptosis as a survival response in the short term. Instead, in long-term arginine deprivation, autophagy would contribute to caspase-independent (CASP-IND) cell death and caspase dependent (CASP-DEP) apoptosis could also happen. The dashed lines ( and ) means the reactions are dependent on the availability of enzymes (panel A) or the reactions have not yet confirmed by experiments (panel B). MEK: mitogen-activated protein kinase, also known as extracellular signal-regulated kinase kinase; ERK: extracellular signal-regulated kinase.

References

    1. Egan S., Fernandes N.D., Kumar V., Gardiner M., Thomas T. Bacterial pathogens, virulence mechanism and host defence in marine macroalgae. Environ. Microbiol. 2014;16:925–938. doi: 10.1111/1462-2920.12288.
    1. Hornef M.W., Wick M.J., Rhen M., Normark S. Bacterial strategies for overcoming host innate and adaptive immune responses. Nat. Immunol. 2002;3:1033–1040. doi: 10.1038/ni1102-1033.
    1. Phillips M.M., Sheaff M.T., Szlosarek P.W. Targeting arginine-dependent cancers with arginine-degrading enzymes: Opportunities and challenges. Cancer Res. Treat. 2013;45:251–262. doi: 10.4143/crt.2013.45.4.251.
    1. Kuo M.T., Savaraj N., Feun L.G. Targeted cellular metabolism for cancer chemotherapy with recombinant arginine-degrading enzymes. Oncotarget. 2010;1:246–251. doi: 10.18632/oncotarget.135.
    1. Feun L., You M., Wu C.J., Kuo M.T., Wangpaichitr M., Spector S., Savaraj N. Arginine deprivation as a targeted therapy for cancer. Curr. Pharm. Des. 2008;14:1049–1057. doi: 10.2174/138161208784246199.
    1. Qiu F., Huang J., Sui M. Targeting arginine metabolism pathway to treat arginine-dependent cancers. Cancer Lett. 2015;364:1–7. doi: 10.1016/j.canlet.2015.04.020.
    1. Lu C.D. Pathways and regulation of bacterial arginine metabolism and perspectives for obtaining arginine overproducing strains. Appl. Microbiol. Biotechnol. 2006;70:261–272. doi: 10.1007/s00253-005-0308-z.
    1. Morris S.M., Jr. Arginine metabolism: Boundaries of our knowledge. J. Nutr. 2007;137:1602s–1609s.
    1. Maghnouj A., de Sousa Cabral T.F., Stalon V., Vander Wauven C. The arcABDC gene cluster, encoding the arginine deiminase pathway of Bacillus licheniformis, and its activation by the arginine repressor ArgR. J. Bacteriol. 1998;180:6468–6475.
    1. Calogero S., Gardan R., Glaser P., Schweizer J., Rapoport G., Debarbouille M. RocR, a novel regulatory protein controlling arginine utilization in Bacillus subtilis, belongs to the NtrC/NifA family of transcriptional activators. J. Bacteriol. 1994;176:1234–1241.
    1. Gardan R., Rapoport G., Debarbouille M. Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis. J. Mol. Biol. 1995;249:843–856. doi: 10.1006/jmbi.1995.0342.
    1. Belitsky B.R., Sonenshein A.L. An enhancer element located downstream of the major glutamate dehydrogenase gene of Bacillus subtilis. Proc. Natl. Acad. Sci. USA. 1999;96:10290–10295. doi: 10.1073/pnas.96.18.10290.
    1. Gardan R., Rapoport G., Debarbouille M. Role of the transcriptional activator RocR in the arginine-degradation pathway of Bacillus subtilis. Mol. Microbiol. 1997;24:825–837. doi: 10.1046/j.1365-2958.1997.3881754.x.
    1. Xiong L., Teng J.L., Watt R.M., Kan B., Lau S.K., Woo P.C. Arginine deiminase pathway is far more important than urease for acid resistance and intracellular survival in Laribacter hongkongensis: A possible result of arc gene cassette duplication. BMC Microbiol. 2014;14 doi: 10.1186/1471-2180-14-42.
    1. Ryan S., Begley M., Gahan C.G., Hill C. Molecular characterization of the arginine deiminase system in Listeria monocytogenes: Regulation and role in acid tolerance. Environ. Microbiol. 2009;11:432–445. doi: 10.1111/j.1462-2920.2008.01782.x.
    1. Degnan B.A., Fontaine M.C., Doebereiner A.H., Lee J.J., Mastroeni P., Dougan G., Goodacre J.A., Kehoe M.A. Characterization of an isogenic mutant of Streptococcus pyogenes Manfredo lacking the ability to make streptococcal acid glycoprotein. Infect. Immun. 2000;68:2441–2448. doi: 10.1128/IAI.68.5.2441-2448.2000.
    1. Choi Y., Choi J., Groisman E.A., Kang D.H., Shin D., Ryu S. Expression of STM4467-encoded arginine deiminase controlled by the STM4463 regulator contributes to Salmonella enterica serovar Typhimurium virulence. Infect. Immun. 2012;80:4291–4297. doi: 10.1128/IAI.00880-12.
    1. Fulde M., Willenborg J., Huber C., Hitzmann A., Willms D., Seitz M., Eisenreich W., Valentin-Weigand P., Goethe R. The arginine-ornithine antiporter ArcD contributes to biological fitness of Streptococcus suis. Front. Cell. Infect. Microbiol. 2014;4 doi: 10.3389/fcimb.2014.00107.
    1. Herrgard M.J., Covert M.W., Palsson B.O. Reconstruction of microbial transcriptional regulatory networks. Curr. Opin. Biotechnol. 2004;15:70–77. doi: 10.1016/j.copbio.2003.11.002.
    1. Huffman J.L., Brennan R.G. Prokaryotic transcription regulators: More than just the helix-turn-helix motif. Curr. Opin. Struct. Biol. 2002;12:98–106. doi: 10.1016/S0959-440X(02)00295-6.
    1. Debarbouille M., Martin-Verstraete I., Kunst F., Rapoport G. The Bacillus subtilis sigL gene encodes an equivalent of sigma 54 from gram-negative bacteria. Proc. Natl. Acad. Sci. USA. 1991;88:9092–9096. doi: 10.1073/pnas.88.20.9092.
    1. Klingel U., Miller C.M., North A.K., Stockley P.G., Baumberg S. A binding site for activation by the Bacillus subtilis AhrC protein, a repressor/activator of arginine metabolism. Mol. Gen. Genet. 1995;248:329–340. doi: 10.1007/BF02191600.
    1. North A.K., Smith M.C., Baumberg S. Nucleotide sequence of a Bacillus subtilis arginine regulatory gene and homology of its product to the Escherichia coli arginine repressor. Gene. 1989;80:29–38. doi: 10.1016/0378-1119(89)90247-3.
    1. Wu G., Morris S.M., Jr. Arginine metabolism: Nitric oxide and beyond. Biochem. J. 1998;336:1–17. doi: 10.1042/bj3360001.
    1. Bogdan C. Of microbes, macrophages and nitric oxide. Behring Inst. Mitt. 1997;99:58–72.
    1. Bogdan C., Rollinghoff M., Diefenbach A. The role of nitric oxide in innate immunity. Immunol. Rev. 2000;173:17–26. doi: 10.1034/j.1600-065X.2000.917307.x.
    1. Boucher J.L., Moali C., Tenu J.P. Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for l-arginine utilization. Cell. Mol. Life Sci. 1999;55:1015–1028. doi: 10.1007/s000180050352.
    1. Gobert A.P., McGee D.J., Akhtar M., Mendz G.L., Newton J.C., Cheng Y., Mobley H.L., Wilson K.T. Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: A strategy for bacterial survival. Proc. Natl. Acad. Sci. USA. 2001;98:13844–13849. doi: 10.1073/pnas.241443798.
    1. Das P., Lahiri A., Lahiri A., Chakravortty D. Modulation of the arginase pathway in the context of microbial pathogenesis: A metabolic enzyme moonlighting as an immune modulator. PLoS Pathog. 2010;6:363. doi: 10.1371/journal.ppat.1000899.
    1. McGee D.J., Radcliff F.J., Mendz G.L., Ferrero R.L., Mobley H.L. Helicobacter pylori rocF is required for arginase activity and acid protection in vitro but is not essential for colonization of mice or for urease activity. J. Bacteriol. 1999;181:7314–7322.
    1. Chaturvedi R., Asim M., Lewis N.D., Algood H.M., Cover T.L., Kim P.Y., Wilson K.T. l-arginine availability regulates inducible nitric oxide synthase-dependent host defense against Helicobacter pylori. Infect. Immun. 2007;75:4305–4315. doi: 10.1128/IAI.00578-07.
    1. Zabaleta J., McGee D.J., Zea A.H., Hernandez C.P., Rodriguez P.C., Sierra R.A., Correa P., Ochoa A.C. Helicobacter pylori arginase inhibits T cell proliferation and reduces the expression of the TCR ζ-chain (CD3ζ) J. Immunol. 2004;173:586–593. doi: 10.4049/jimmunol.173.1.586.
    1. Bussiere F.I., Chaturvedi R., Cheng Y., Gobert A.P., Asim M., Blumberg D.R., Xu H., Kim P.Y., Hacker A., Casero R.A., Jr., et al. Spermine causes loss of innate immune response to Helicobacter pylori by inhibition of inducible nitric-oxide synthase translation. J. Biol. Chem. 2005;280:2409–2412. doi: 10.1074/jbc.C400498200.
    1. Lahiri A., Das P., Chakravortty D. Arginase modulates Salmonella induced nitric oxide production in RAW264.7 macrophages and is required for Salmonella pathogenesis in mice model of infection. Microbes Infect. 2008;10:1166–1174. doi: 10.1016/j.micinf.2008.06.008.
    1. Talaue M.T., Venketaraman V., Hazbon M.H., Peteroy-Kelly M., Seth A., Colangeli R., Alland D., Connell N.D. Arginine homeostasis in J774.1 macrophages in the context of Mycobacterium bovis BCG infection. J. Bacteriol. 2006;188:4830–4840. doi: 10.1128/JB.01687-05.
    1. El Kasmi K.C., Qualls J.E., Pesce J.T., Smith A.M., Thompson R.W., Henao-Tamayo M., Basaraba R.J., Konig T., Schleicher U., Koo M.S., et al. Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat. Immunol. 2008;9:1399–1406. doi: 10.1038/ni.1671.
    1. Aoki M.P., Guinazu N.L., Pellegrini A.V., Gotoh T., Masih D.T., Gea S. Cruzipain, a major Trypanosoma cruzi antigen, promotes arginase-2 expression and survival of neonatal mouse cardiomyocytes. Am. J. Physiol. Cell Physiol. 2004;286:C206–C212. doi: 10.1152/ajpcell.00282.2003.
    1. Ghosh S., Navarathna D.H., Roberts D.D., Cooper J.T., Atkin A.L., Petro T.M., Nickerson K.W. Arginine-induced germ tube formation in Candida albicans is essential for escape from murine macrophage line RAW264.7. Infect. Immun. 2009;77:1596–1605. doi: 10.1128/IAI.01452-08.
    1. Cunin R., Glansdorff N., Pierard A., Stalon V. Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev. 1986;50:314–352.
    1. Dong Y., Chen Y.Y., Burne R.A. Control of expression of the arginine deiminase operon of Streptococcus gordonii by CcpA and Flp. J. Bacteriol. 2004;186:2511–2514. doi: 10.1128/JB.186.8.2511-2514.2004.
    1. Maas W.K. The arginine repressor of Escherichia coli. Microbiol. Rev. 1994;58:631–640.
    1. Miller C.M., Baumberg S., Stockley P.G. Operator interactions by the Bacillus subtilis arginine repressor/activator, AhrC: Novel positioning and DNA-mediated assembly of a transcriptional activator at catabolic sites. Mol. Microbiol. 1997;26:37–48. doi: 10.1046/j.1365-2958.1997.5441907.x.
    1. Griswold A., Chen Y.Y., Snyder J.A., Burne R.A. Characterization of the arginine deiminase operon of Streptococcus rattus FA-1. Appl. Environ. Microbiol. 2004;70:1321–1327. doi: 10.1128/AEM.70.3.1321-1327.2004.
    1. Park S.M., Lu C.D., Abdelal A.T. Purification and characterization of an arginine regulatory protein, ArgR, from Pseudomonas aeruginosa and its interactions with the control regions for the car, argF, and aru operons. J. Bacteriol. 1997;179:5309–5317.
    1. Lu C.D., Winteler H., Abdelal A., Haas D. The ArgR regulatory protein, a helper to the anaerobic regulator ANR during transcriptional activation of the arcD promoter in Pseudomonas aeruginosa. J. Bacteriol. 1999;181:2459–2464.
    1. Fulde M., Willenborg J., de Greeff A., Benga L., Smith H.E., Valentin-Weigand P., Goethe R. ArgR is an essential local transcriptional regulator of the arcABC operon in Streptococcus suis and is crucial for biological fitness in an acidic environment. Microbiology. 2011;157:572–582. doi: 10.1099/mic.0.043067-0.
    1. Park S.M., Lu C.D., Abdelal A.T. Cloning and characterization of argR, a gene that participates in regulation of arginine biosynthesis and catabolism in Pseudomonas aeruginosa PAO1. J. Bacteriol. 1997;179:5300–5308.
    1. Zuniga M., Miralles Md Mdel C., Perez-Martinez G. The product of arcR, the sixth gene of the arc operon of Lactobacillus sakei, is essential for expression of the arginine deiminase pathway. Appl. Environ. Microbiol. 2002;68:6051–6058. doi: 10.1128/AEM.68.12.6051-6058.2002.
    1. Barcelona-Andres B., Marina A., Rubio V. Gene structure, organization, expression, and potential regulatory mechanisms of arginine catabolism in Enterococcus faecalis. J. Bacteriol. 2002;184:6289–6300. doi: 10.1128/JB.184.22.6289-6300.2002.
    1. Woo P.C., Lau S.K., Teng J.L., Que T.L., Yung R.W., Luk W.K., Lai R.W., Hui W.T., Wong S.S., Yau H.H., et al. Association of Laribacter hongkongensis in community-acquired gastroenteritis with travel and eating fish: A multicentre case-control study. Lancet. 2004;363:1941–1947. doi: 10.1016/S0140-6736(04)16407-6.
    1. Yuen K.Y., Woo P.C., Teng J.L., Leung K.W., Wong M.K., Lau S.K. Laribacter hongkongensis gen. Nov., sp. Nov., a novel gram-negative bacterium isolated from a cirrhotic patient with bacteremia and empyema. J. Clin. Microbiol. 2001;39:4227–4232. doi: 10.1128/JCM.39.12.4227-4232.2001.
    1. Xiong L., Teng J.L., Watt R.M., Liu C., Lau S.K., Woo P.C. Molecular characterization of arginine deiminase pathway in Laribacter hongkongensis and unique regulation of arginine catabolism and anabolism by multiple environmental stresses. Environ. Microbiol. 2015;17:4469–4483. doi: 10.1111/1462-2920.12897.
    1. Spiro S. The FNR family of transcriptional regulators. Antonie van Leeuwenhoek. 1994;66:23–36. doi: 10.1007/BF00871630.
    1. Gamper M., Zimmermann A., Haas D. Anaerobic regulation of transcription initiation in the arcDABC operon of Pseudomonas aeruginosa. J. Bacteriol. 1991;173:4742–4750.
    1. Maghnouj A., Abu-Bakr A.A., Baumberg S., Stalon V., Vander Wauven C. Regulation of anaerobic arginine catabolism in Bacillus licheniformis by a protein of the Crp/Fnr family. FEMS Microbiol. Lett. 2000;191:227–234. doi: 10.1111/j.1574-6968.2000.tb09344.x.
    1. Gruening P., Fulde M., Valentin-Weigand P., Goethe R. Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis. J. Bacteriol. 2006;188:361–369. doi: 10.1128/JB.188.2.361-369.2006.
    1. Eiglmeier K., Honore N., Iuchi S., Lin E.C., Cole S.T. Molecular genetic analysis of FNR-dependent promoters. Mol. Microbiol. 1989;3:869–878. doi: 10.1111/j.1365-2958.1989.tb00236.x.
    1. Spiro S., Guest J.R. FNR and its role in oxygen-regulated gene expression in Escherichia coli. FEMS Microbiol. Rev. 1990;6:399–428.
    1. Makhlin J., Kofman T., Borovok I., Kohler C., Engelmann S., Cohen G., Aharonowitz Y. Staphylococcus aureus ArcR controls expression of the arginine deiminase operon. J. Bacteriol. 2007;189:5976–5986. doi: 10.1128/JB.00592-07.
    1. Zuniga M., Champomier-Verges M., Zagorec M., Perez-Martinez G. Structural and functional analysis of the gene cluster encoding the enzymes of the arginine deiminase pathway of Lactobacillus sake. J. Bacteriol. 1998;180:4154–4159.
    1. Titgemeyer F., Hillen W. Global control of sugar metabolism: A gram-positive solution. Antonie van Leeuwenhoek. 2002;82:59–71. doi: 10.1023/A:1020628909429.
    1. Winterhoff N., Goethe R., Gruening P., Rohde M., Kalisz H., Smith H.E., Valentin-Weigand P. Identification and characterization of two temperature-induced surface-associated proteins of Streptococcus suis with high homologies to members of the arginine deiminase system of Streptococcus pyogenes. J. Bacteriol. 2002;184:6768–6776. doi: 10.1128/JB.184.24.6768-6776.2002.
    1. Fernandez M., Zuniga M. Amino acid catabolic pathways of lactic acid bacteria. Crit. Rev. Microbiol. 2006;32:155–183. doi: 10.1080/10408410600880643.
    1. Lindgren J.K., Thomas V.C., Olson M.E., Chaudhari S.S., Nuxoll A.S., Schaeffer C.R., Lindgren K.E., Jones J., Zimmerman M.C., Dunman P.M., et al. Arginine deiminase in Staphylococcus epidermidis functions to augment biofilm maturation through pH homeostasis. J. Bacteriol. 2014;196:2277–2289. doi: 10.1128/JB.00051-14.
    1. Casiano-Colon A., Marquis R.E. Role of the arginine deiminase system in protecting oral bacteria and an enzymatic basis for acid tolerance. Appl. Environ. Microbiol. 1988;54:1318–1324.
    1. Conte M.P., Petrone G., Di Biase A.M., Ammendolia M.G., Superti F., Seganti L. Acid tolerance in Listeria monocytogenes influences invasiveness of enterocyte-like cells and macrophage-like cells. Microb. Pathog. 2000;29:137–144. doi: 10.1006/mpat.2000.0379.
    1. Aderem A., Underhill D.M. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 1999;17:593–623. doi: 10.1146/annurev.immunol.17.1.593.
    1. Vieira O.V., Botelho R.J., Grinstein S. Phagosome maturation: Aging gracefully. Biochem. J. 2002;366:689–704. doi: 10.1042/bj20020691.
    1. Vergne I., Chua J., Singh S.B., Deretic V. Cell biology of Mycobacterium tuberculosis phagosome. Annu. Rev. Cell Dev. Biol. 2004;20:367–394. doi: 10.1146/annurev.cellbio.20.010403.114015.
    1. Pitt A., Mayorga L.S., Stahl P.D., Schwartz A.L. Alterations in the protein composition of maturing phagosomes. J. Clin. Investig. 1992;90:1978–1983. doi: 10.1172/JCI116077.
    1. Bassoe C.F., Bjerknes R. Phagocytosis by human leukocytes, phagosomal pH and degradation of seven species of bacteria measured by flow cytometry. J. Med. Microbiol. 1985;19:115–125. doi: 10.1099/00222615-19-1-115.
    1. O’Driscoll B., Gahan C.G., Hill C. Adaptive acid tolerance response in Listeria monocytogenes: Isolation of an acid-tolerant mutant which demonstrates increased virulence. Appl. Environ. Microbiol. 1996;62:1693–1698.
    1. Myers B.M., Tietz P.S., Tarara J.E., LaRusso N.F. Dynamic measurements of the acute and chronic effects of lysosomotropic agents on hepatocyte lysosomal pH using flow cytometry. Hepatology. 1995;22:1519–1526.
    1. Ohkuma S., Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc. Natl. Acad. Sci. USA. 1978;75:3327–3331. doi: 10.1073/pnas.75.7.3327.
    1. Flannagan R.S., Cosio G., Grinstein S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat. Rev. Microbiol. 2009;7:355–366. doi: 10.1038/nrmicro2128.
    1. Alderton W.K., Cooper C.E., Knowles R.G. Nitric oxide synthases: Structure, function and inhibition. Biochem. J. 2001;357:593–615. doi: 10.1042/bj3570593.
    1. Fang F.C. Antimicrobial reactive oxygen and nitrogen species: Concepts and controversies. Nat. Rev. Microbiol. 2004;2:820–832. doi: 10.1038/nrmicro1004.
    1. Mori M., Gotoh T. Arginine metabolic enzymes, nitric oxide and infection. J. Nutr. 2004;134:2820S–2825S.
    1. Yu H.H., Wu F.L., Lin S.E., Shen L.J. Recombinant arginine deiminase reduces inducible nitric oxide synthase iNOS-mediated neurotoxicity in a coculture of neurons and microglia. J. Neurosci. Res. 2008;86:2963–2972. doi: 10.1002/jnr.21740.
    1. Lee E.J., Pontes M.H., Groisman E.A. A bacterial virulence protein promotes pathogenicity by inhibiting the bacterium’s own F1Fo ATP synthase. Cell. 2013;154:146–156. doi: 10.1016/j.cell.2013.06.004.
    1. Xu L., Shen X., Bryan A., Banga S., Swanson M.S., Luo Z.Q. Inhibition of host vacuolar H+-ATPase activity by a Legionella pneumophila effector. PLoS Pathog. 2010;6:363. doi: 10.1371/journal.ppat.1000822.
    1. Wong D., Bach H., Sun J., Hmama Z., Av-Gay Y. Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification. Proc. Natl. Acad. Sci. USA. 2011;108:19371–19376. doi: 10.1073/pnas.1109201108.
    1. Cotter P.D., Gahan C.G., Hill C. Analysis of the role of the Listeria monocytogenes F0F1-ATPase operon in the acid tolerance response. Int. J. Food Microbiol. 2000;60:137–146. doi: 10.1016/S0168-1605(00)00305-6.
    1. Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013.
    1. Savaraj N., You M., Wu C., Wangpaichitr M., Kuo M.T., Feun L.G. Arginine deprivation, autophagy, apoptosis (AAA) for the treatment of melanoma. Curr. Mol. Med. 2010;10:405–412. doi: 10.2174/156652410791316995.
    1. Changou C.A., Chen Y.R., Xing L., Yen Y., Chuang F.Y., Cheng R.H., Bold R.J., Ann D.K., Kung H.J. Arginine starvation-associated atypical cellular death involves mitochondrial dysfunction, nuclear DNA leakage, and chromatin autophagy. Proc. Natl. Acad. Sci. USA. 2014;111:14147–14152. doi: 10.1073/pnas.1404171111.
    1. Tennant D.A., Duran R.V., Gottlieb E. Targeting metabolic transformation for cancer therapy. Nat. Rev. Cancer. 2010;10:267–277. doi: 10.1038/nrc2817.
    1. Wheatley D.N., Campbell E. Arginine catabolism, liver extracts and cancer. Pathol. Oncol. Res. 2002;8:18–25. doi: 10.1007/BF03033696.
    1. Qiu F., Chen Y.R., Liu X., Chu C.Y., Shen L.J., Xu J., Gaur S., Forman H.J., Zhang H., Zheng S., et al. Arginine starvation impairs mitochondrial respiratory function in ASS1-deficient breast cancer cells. Sci. Signal. 2014;7 doi: 10.1126/scisignal.2004761.
    1. Dillon B.J., Prieto V.G., Curley S.A., Ensor C.M., Holtsberg F.W., Bomalaski J.S., Clark M.A. Incidence and distribution of argininosuccinate synthetase deficiency in human cancers: A method for identifying cancers sensitive to arginine deprivation. Cancer. 2004;100:826–833. doi: 10.1002/cncr.20057.
    1. Bowles T.L., Kim R., Galante J., Parsons C.M., Virudachalam S., Kung H.J., Bold R.J. Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase. Int. J. Cancer. 2008;123:1950–1955. doi: 10.1002/ijc.23723.
    1. Scott L., Lamb J., Smith S., Wheatley D.N. Single amino acid (arginine) deprivation: Rapid and selective death of cultured transformed and malignant cells. Br. J. Cancer. 2000;83:800–810. doi: 10.1054/bjoc.2000.1353.
    1. Liu J., Ma J., Wu Z., Li W., Zhang D., Han L., Wang F., Reindl K.M., Wu E., Ma Q. Arginine deiminase augments the chemosensitivity of argininosuccinate synthetase-deficient pancreatic cancer cells to gemcitabine via inhibition of NF-κB signaling. BMC Cancer. 2014;14 doi: 10.1186/1471-2407-14-686.
    1. Miraki-Moud F., Ghazaly E., Ariza-McNaughton L., Hodby K.A., Clear A., Anjos-Afonso F., Liapis K., Grantham M., Sohrabi F., Cavenagh J., et al. Arginine deprivation using pegylated arginine deiminase has activity against primary acute myeloid leukemia cells in vivo. Blood. 2015;125:4060–4068. doi: 10.1182/blood-2014-10-608133.
    1. Savaraj N., Wu C., Kuo M.T., You M., Wangpaichitr M., Robles C., Spector S., Feun L. The relationship of arginine deprivation, argininosuccinate synthetase and cell death in melanoma. Drug Target Insights. 2007;2:119–128.
    1. Lam T.L., Wong G.K., Chow H.Y., Chong H.C., Chow T.L., Kwok S.Y., Cheng P.N., Wheatley D.N., Lo W.H., Leung Y.C. Recombinant human arginase inhibits the in vitro and in vivo proliferation of human melanoma by inducing cell cycle arrest and apoptosis. Pigment Cell Melanoma Res. 2011;24:366–376. doi: 10.1111/j.1755-148X.2010.00798.x.
    1. Sugimura K., Ohno T., Kusuyama T., Azuma I. High sensitivity of human melanoma cell lines to the growth inhibitory activity of mycoplasmal arginine deiminase in vitro. Melanoma Res. 1992;2:191–196. doi: 10.1097/00008390-199209000-00007.
    1. Ni Y., Schwaneberg U., Sun Z.H. Arginine deiminase, a potential anti-tumor drug. Cancer Lett. 2008;261:1–11. doi: 10.1016/j.canlet.2007.11.038.
    1. Yoon J.K., Frankel A.E., Feun L.G., Ekmekcioglu S., Kim K.B. Arginine deprivation therapy for malignant melanoma. Clin. Pharmacol. 2013;5:11–19.
    1. Ensor C.M., Holtsberg F.W., Bomalaski J.S., Clark M.A. Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res. 2002;62:5443–5450.
    1. Kim R.H., Bold R.J., Kung H.J. ADI, autophagy and apoptosis: Metabolic stress as a therapeutic option for prostate cancer. Autophagy. 2009;5:567–568.
    1. Kim R.H., Coates J.M., Bowles T.L., McNerney G.P., Sutcliffe J., Jung J.U., Gandour-Edwards R., Chuang F.Y., Bold R.J., Kung H.J. Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res. 2009;69:700–708. doi: 10.1158/0008-5472.CAN-08-3157.
    1. Zeng X., Li Y., Fan J., Zhao H., Xian Z., Sun Y., Wang Z., Wang S., Zhang G., Ju D. Recombinant human arginase induced caspase-dependent apoptosis and autophagy in non-hodgkin’s lymphoma cells. Cell Death Dis. 2013;4 doi: 10.1038/cddis.2013.359.
    1. Delage B., Luong P., Maharaj L., O'Riain C., Syed N., Crook T., Hatzimichael E., Papoudou-Bai A., Mitchell T.J., Whittaker S.J., et al. Promoter methylation of argininosuccinate synthetase-1 sensitises lymphomas to arginine deiminase treatment, autophagy and caspase-dependent apoptosis. Cell Death Dis. 2012;3 doi: 10.1038/cddis.2012.83.
    1. Izzo F., Marra P., Beneduce G., Castello G., Vallone P., De Rosa V., Cremona F., Ensor C.M., Holtsberg F.W., Bomalaski J.S., et al. Pegylated arginine deiminase treatment of patients with unresectable hepatocellular carcinoma: Results from phase I/II studies. J. Clin. Oncol. 2004;22:1815–1822. doi: 10.1200/JCO.2004.11.120.
    1. Glazer E.S., Piccirillo M., Albino V., Di Giacomo R., Palaia R., Mastro A.A., Beneduce G., Castello G., De Rosa V., Petrillo A., et al. Phase II study of pegylated arginine deiminase for nonresectable and metastatic hepatocellular carcinoma. J. Clin. Oncol. 2010;28:2220–2226. doi: 10.1200/JCO.2009.26.7765.
    1. McAlpine J.A., Lu H.T., Wu K.C., Knowles S.K., Thomson J.A. Down-regulation of argininosuccinate synthetase is associated with cisplatin resistance in hepatocellular carcinoma cell lines: Implications for pegylated arginine deiminase combination therapy. BMC Cancer. 2014;14 doi: 10.1186/1471-2407-14-621.
    1. Daylami R., Muilenburg D.J., Virudachalam S., Bold R.J. Pegylated arginine deiminase synergistically increases the cytotoxicity of gemcitabine in human pancreatic cancer. J. Exp. Clin. Cancer Res. 2014;33 doi: 10.1186/s13046-014-0102-9.
    1. Tokunaga C., Yoshino K., Yonezawa K. mTOR integrates amino acid- and energy-sensing pathways. Biochem. Biophys. Res. Commun. 2004;313:443–446. doi: 10.1016/j.bbrc.2003.07.019.
    1. Mussai F., Egan S., Higginbotham-Jones J., Perry T., Beggs A., Odintsova E., Loke J., Pratt G., U K.P., Lo A., et al. Arginine dependence of acute myeloid leukemia blast proliferation: A novel therapeutic target. Blood. 2015;125:2386–2396. doi: 10.1182/blood-2014-09-600643.
    1. Zwaan C.M., Kolb E.A., Reinhardt D., Abrahamsson J., Adachi S., Aplenc R., De Bont E.S., De Moerloose B., Dworzak M., Gibson B.E., et al. Collaborative efforts driving progress in pediatric acute myeloid leukemia. J. Clin. Oncol. 2015;33:2949–2962. doi: 10.1200/JCO.2015.62.8289.
    1. Syed N., Langer J., Janczar K., Singh P., Lo Nigro C., Lattanzio L., Coley H.M., Hatzimichael E., Bomalaski J., Szlosarek P., et al. Epigenetic status of argininosuccinate synthetase and argininosuccinate lyase modulates autophagy and cell death in glioblastoma. Cell Death Dis. 2013;4 doi: 10.1038/cddis.2012.197.
    1. Szlosarek P.W., Klabatsa A., Pallaska A., Sheaff M., Smith P., Crook T., Grimshaw M.J., Steele J.P., Rudd R.M., Balkwill F.R., et al. In vivo loss of expression of argininosuccinate synthetase in malignant pleural mesothelioma is a biomarker for susceptibility to arginine depletion. Clin. Cancer Res. 2006;12:7126–7131. doi: 10.1158/1078-0432.CCR-06-1101.
    1. Yoon C.Y., Shim Y.J., Kim E.H., Lee J.H., Won N.H., Kim J.H., Park I.S., Yoon D.K., Min B.H. Renal cell carcinoma does not express argininosuccinate synthetase and is highly sensitive to arginine deprivation via arginine deiminase. Int. J. Cancer. 2007;120:897–905. doi: 10.1002/ijc.22322.
    1. Kelly M.P., Jungbluth A.A., Wu B.W., Bomalaski J., Old L.J., Ritter G. Arginine deiminase PEG20 inhibits growth of small cell lung cancers lacking expression of argininosuccinate synthetase. Br. J. Cancer. 2012;106:324–332. doi: 10.1038/bjc.2011.524.
    1. Kuhn N.J., Talbot J., Ward S. pH-sensitive control of arginase by Mn(II) ions at submicromolar concentrations. Arch. Biochem. Biophys. 1991;286:217–221. doi: 10.1016/0003-9861(91)90031-D.
    1. Cheng P.N., Lam T.L., Lam W.M., Tsui S.M., Cheng A.W., Lo W.H., Leung Y.C. Pegylated recombinant human arginase (rhArg-peg5,000mw) inhibits the in vitro and in vivo proliferation of human hepatocellular carcinoma through arginine depletion. Cancer Res. 2007;67:309–317. doi: 10.1158/0008-5472.CAN-06-1945.
    1. Stone E.M., Glazer E.S., Chantranupong L., Cherukuri P., Breece R.M., Tierney D.L., Curley S.A., Iverson B.L., Georgiou G. Replacing Mn2+ with Co2+ in human arginase I enhances cytotoxicity toward l-arginine auxotrophic cancer cell lines. ACS Chem. Biol. 2010;5:333–342. doi: 10.1021/cb900267j.
    1. Li L., Wang Y., Chen J., Cheng B., Hu J., Zhou Y., Gao X., Gao L., Mei X., Sun M., et al. An engineered arginase FC protein inhibits tumor growth in vitro and in vivo. Evid. Based Complement. Alternat. Med. 2013;2013 doi: 10.1155/2013/423129.
    1. Wheatley D.N. Arginine deprivation and metabolomics: Important aspects of intermediary metabolism in relation to the differential sensitivity of normal and tumour cells. Semin. Cancer Biol. 2005;15:247–253. doi: 10.1016/j.semcancer.2005.04.002.
    1. Miyazaki K., Takaku H., Umeda M., Fujita T., Huang W.D., Kimura T., Yamashita J., Horio T. Potent growth inhibition of human tumor cells in culture by arginine deiminase purified from a culture medium of a Mycoplasma-infected cell line. Cancer Res. 1990;50:4522–4527.
    1. Takaku H., Takase M., Abe S., Hayashi H., Miyazaki K. In vivo anti-tumor activity of arginine deiminase purified from Mycoplasma arginini. Int. J. Cancer. 1992;51:244–249. doi: 10.1002/ijc.2910510213.
    1. Holtsberg F.W., Ensor C.M., Steiner M.R., Bomalaski J.S., Clark M.A. Poly(ethylene glycol) (PEG) conjugated arginine deiminase: Effects of PEG formulations on its pharmacological properties. J. Control. Release. 2002;80:259–271. doi: 10.1016/S0168-3659(02)00042-1.
    1. Dillon B.J., Holtsberg F.W., Ensor C.M., Bomalaski J.S., Clark M.A. Biochemical characterization of the arginine degrading enzymes arginase and arginine deiminase and their effect on nitric oxide production. Med. Sci. Monit. 2002;8:Br248–Br253.
    1. Feun L., Savaraj N. Pegylated arginine deiminase: A novel anticancer enzyme agent. Expert Opin. Investig. Drugs. 2006;15:815–822. doi: 10.1517/13543784.15.7.815.
    1. Lin S.E., Wu F.L., Wei M.F., Shen L.J. Depletion of arginine by recombinant arginine deiminase induces nNOS-activated neurotoxicity in neuroblastoma cells. Biomed. Res. Int. 2014;2014 doi: 10.1155/2014/589424.
    1. Szlosarek P.W., Luong P., Phillips M.M., Baccarini M., Stephen E., Szyszko T., Sheaff M.T., Avril N. Metabolic response to pegylated arginine deiminase in mesothelioma with promoter methylation of argininosuccinate synthetase. J. Clin. Oncol. 2013;31:e111–e113. doi: 10.1200/JCO.2012.42.1784.
    1. Delage B., Fennell D.A., Nicholson L., McNeish I., Lemoine N.R., Crook T., Szlosarek P.W. Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int. J. Cancer. 2010;126:2762–2772. doi: 10.1002/ijc.25202.
    1. Huang J., Brumell J.H. Bacteria-autophagy interplay: A battle for survival. Nat. Rev. Microbiol. 2014;12:101–114. doi: 10.1038/nrmicro3160.
    1. Vellai T., Toth M.L., Kovacs A.L. Janus-faced autophagy: A dual role of cellular self-eating in neurodegeneration? Autophagy. 2007;3:461–463. doi: 10.4161/auto.4282.
    1. Maiuri M.C., Zalckvar E., Kimchi A., Kroemer G. Self-eating and self-killing: Crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 2007;8:741–752. doi: 10.1038/nrm2239.
    1. Jin S., White E. Role of autophagy in cancer: Management of metabolic stress. Autophagy. 2007;3:28–31. doi: 10.4161/auto.3269.
    1. Proud C.G. mTOR-mediated regulation of translation factors by amino acids. Biochem. Biophys. Res. Commun. 2004;313:429–436. doi: 10.1016/j.bbrc.2003.07.015.
    1. Sarbassov D.D., Ali S.M., Sabatini D.M. Growing roles for the mTOR pathway. Curr. Opin. Cell Biol. 2005;17:596–603. doi: 10.1016/j.ceb.2005.09.009.
    1. Wang J., Whiteman M.W., Lian H., Wang G., Singh A., Huang D., Denmark T. A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1. J. Biol. Chem. 2009;284:21412–21424. doi: 10.1074/jbc.M109.026013.
    1. Gong H., Zolzer F., von Recklinghausen G., Havers W., Schweigerer L. Arginine deiminase inhibits proliferation of human leukemia cells more potently than asparaginase by inducing cell cycle arrest and apoptosis. Leukemia. 2000;14:826–829. doi: 10.1038/sj.leu.2401763.
    1. Szlosarek P.W. Arginine deprivation and autophagic cell death in cancer. Proc. Natl. Acad. Sci. USA. 2014;111:14015–14016. doi: 10.1073/pnas.1416560111.
    1. Ouyang L., Shi Z., Zhao S., Wang F.T., Zhou T.T., Liu B., Bao J.K. Programmed cell death pathways in cancer: A review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45:487–498. doi: 10.1111/j.1365-2184.2012.00845.x.

Source: PubMed

3
Prenumerera