An oral health optimized diet reduces the load of potential cariogenic and periodontal bacterial species in the supragingival oral plaque: A randomized controlled pilot study

Christian Tennert, Ann-Christin Reinmuth, Katharina Bremer, Ali Al-Ahmad, Lamprini Karygianni, Elmar Hellwig, Kirstin Vach, Petra Ratka-Krüger, Annette Wittmer, Johan Peter Woelber, Christian Tennert, Ann-Christin Reinmuth, Katharina Bremer, Ali Al-Ahmad, Lamprini Karygianni, Elmar Hellwig, Kirstin Vach, Petra Ratka-Krüger, Annette Wittmer, Johan Peter Woelber

Abstract

This study aimed to investigate the effects of an oral health optimized diet on the composition of the supragingival oral plaque in a randomized controlled trial. Participants of the standard diet group (n = 5) had a diet high in processed carbohydrates and did not change their dietary behavior during the observation. The healthy diet group (n = 9) had to change the diet after 2 weeks from a diet high in processed carbohydrates to a diet low in carbohydrates, rich in omega-3 fatty acids, rich in vitamins C and D, antioxidants and fiber for 4 weeks. Saliva and supragingival plaque samples were taken at the end of week two and eight of the observation period to investigate the composition of microbiota in saliva and supragingival plaque. Data were subjected to an exploratory analysis to identify significant differences. Statistically significant differences were only found in the healthy diet group between the baseline (week 2) and the final sample (week 8) for specific species in plaque and saliva samples. A reduction of the total counts of Streptococcus mitis group, Granulicatella adiacens, Actinomyces spp., and Fusobacterium spp. was found in plaque samples of the healthy diet group. In saliva samples of the healthy diet group, the total counts of Actinomyces spp. and Capnocytophaga spp. decreased. A diet low in carbohydrates, rich in omega-3 fatty acids, rich in vitamins C and D, and rich in fiber reduced Streptococcus mitis group, Granulicatella adiacens, Actinomyces spp., and Fusobacterium spp. in the supragingival plaque.

Keywords: fatty acids; low-carb diet; nutrition; omega 3; oral microbiota; vitamins.

Conflict of interest statement

None declared.

© 2020 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

Figures

FIGURE 1
FIGURE 1
Dietary pattern of both groups. The standard diet group followed a diet primarily based on carbohydrates. The healthy diet group changed their diet after 2 weeks to the health optimized diet for the following 6 weeks, in which the first 2 weeks were a transition period and a strict oral health optimized diet should be performed during the following 4 weeks
FIGURE 2
FIGURE 2
Boxplots of CFU counts, demonstrating the impact of diet on (a) dental plaque and (b) salivary microorganisms among 14 study probands after 2 weeks (baseline) and 8 weeks (final phase) following either a healthy‐ (n = 9) or a standard (n = 5) diet. Box plots represent the CFUs determined by selective agar plating, while horizontal lines indicate their median values. Undetectable values were ascribed to the lowest detection limit value of the assay to allow for log transformation. The CFUs are presented on a log10 scale per square centimeter (log10/ml). Error bars indicate from 5% to 95% percentile. The p‐values (t test) of the significantly different data (p ≤ .05) are marked on the graphs
FIGURE 3
FIGURE 3
Heatmap demonstrating the absolute distribution (in log10/ml) of different bacterial groups/species among 14 study probands after 2 weeks (baseline) and 8 weeks (final phase) following either a healthy‐ (n = 9) or a standard (n = 5) diet. The influence of diet on the dental plaque‐ and salivary microorganisms after two‐ and eight weeks is demonstrated on panels (a) and (b), respectively. Participant numbers for each treatment group are shown in columns and variables (bacterial groups, species, and genera) in rows. The colors as depicted on the color scale bars on the right vary to indicate data values change for the different samples; Plaque: low: 0–4, moderate: 4–8, high: 8–12; Saliva: low: 0–3, moderate: 3–6, high: 6–9

References

    1. Adler, C. J. , Dobney, K. , Weyrich, L. S. , Kaidonis, J. , Walker, A. W. , Haak, W. , … Cooper, A. (2013). Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nature Genetics, 45(4), 450–455, 455e1.
    1. Aizawa, S. , Miyasawa‐Hori, H. , Nakajo, K. , Washio, J. , Mayanagi, H. , Fukumoto, S. , & Takahashi, N. (2009). Effects of alpha‐amylase and its inhibitors on acid production from cooked starch by oral streptococci. Caries Research, 43(1), 17–24.
    1. Al‐Ahmad, A. , Maier, J. , Follo, M. , Spitzmuller, B. , Wittmer, A. , Hellwig, E. , … Jonas, D. (2010). Food‐borne enterococci integrate into oral biofilm: An in vivo study. Journal of Endodontics, 36(11), 1812–1819. 10.1016/j.joen.2010.08.011
    1. Anderson, A. C. , Sanunu, M. , Schneider, C. , Clad, A. , Karygianni, L. , Hellwig, E. , & Al‐Ahmad, A. (2014). Rapid species‐level identification of vaginal and oral lactobacilli using MALDI‐TOF MS analysis and 16S rDNA sequencing. BMC Microbiology, 14, 312 10.1186/s12866-014-0312-5
    1. Baumgartner, S. , Imfeld, T. , Schicht, O. , Rath, C. , Persson, R. E. , & Persson, G. R. (2009). The impact of the stone age diet on gingival conditions in the absence of oral hygiene. Journal of Periodontology, 80(5), 759–768. 10.1902/jop.2009.080376
    1. Bowen, W. H. (2013). The Stephan Curve revisited. Odontology, 101(1), 2–8. 10.1007/s10266-012-0092-z
    1. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators (2016). Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet, 388(10053), 1545–1602. 10.1016/S0140-6736(16)31678-6
    1. Edelstein, B. L. (2006). The dental caries pandemic and disparities problem. BMC Oral Health, 6(Suppl 1), S2 10.1186/1472-6831-6-S1-S2
    1. Featherstone, J. D. (2004). The continuum of dental caries—Evidence for a dynamic disease process. Journal of Dental Research, 83(1 suppl), 39–42. 10.1177/154405910408301s08
    1. Feinman, R. D. , Pogozelski, W. K. , Astrup, A. , Bernstein, R. K. , Fine, E. J. , Westman, E. C. , … Worm, N. (2015). Dietary carbohydrate restriction as the first approach in diabetes management: Critical review and evidence base. Nutrition, 31(1), 1–13. 10.1016/j.nut.2014.06.011
    1. Gardenier, J. C. , Hranjec, T. , Sawyer, R. G. , & Bonatti, H. (2011). Granulicatella adiacens bacteremia in an elderly trauma patient. Surgical Infections (Larchmt), 12(3), 251–253.
    1. Griffen, A. L. , Beall, C. J. , Firestone, N. D. , Gross, E. L. , Difranco, J. M. , Hardman, J. H. , … Leys, E. J. (2011). CORE: A phylogenetically‐curated 16S rDNA database of the core oral microbiome. PLoS ONE, 6(4), e19051 10.1371/journal.pone.0019051
    1. Gross, E. L. , Beall, C. J. , Kutsch, S. R. , Firestone, N. D. , Leys, E. J. , & Griffen, A. L. (2012). Beyond Streptococcus mutans: Dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS ONE, 7(10), e47722 10.1371/journal.pone.0047722
    1. Hujoel, P. (2009). Dietary carbohydrates and dental‐systemic diseases. Journal of Dental Research, 88(6), 490–502. 10.1177/0022034509337700
    1. Jenkinson, H. F. , & Lamont, R. J. (2005). Oral microbial communities in sickness and in health. Trends in Microbiology, 13(12), 589–595. 10.1016/j.tim.2005.09.006
    1. Kassebaum, N. J. , Bernabe, E. , Dahiya, M. , Bhandari, B. , Murray, C. J. , & Marcenes, W. (2015). Global burden of untreated caries: A systematic review and metaregression. Journal of Dental Research, 94(5), 650–658. 10.1177/0022034515573272
    1. Konig, K. G. (2000). Diet and oral health. International Dental Journal, 50(3), 162–174. 10.1111/j.1875-595X.2000.tb00555.x
    1. Lingstrom, P. , van Houte, J. , & Kashket, S. (2000). Food starches and dental caries. Critical Reviews in Oral Biology and Medicine, 11(3), 366–380. 10.1177/10454411000110030601
    1. Loe, H. , & Silness, J. (1963). Periodontal disease in pregnancy. I. Prevalence and severity. Acta Odontologica Scandinavica, 21, 533–551.
    1. Loe, H. , Theilade, E. , & Jensen, S. B. (1965). Experimental gingivitis in man. Journal of Periodontology, 36, 177–187. 10.1902/jop.1965.36.3.177
    1. Marsh, P. D. (2005). Dental plaque: Biological significance of a biofilm and community life‐style. Journal of Clinical Periodontology, 32(Suppl 6), 7–15. 10.1111/j.1600-051X.2005.00790.x
    1. Marsh, P. D. (2006). Dental plaque as a biofilm and a microbial community – Implications for health and disease. BMC Oral Health, 6(Suppl 1), S14 10.1186/1472-6831-6-S1-S14
    1. Mikkelsen, L. , Theilade, E. , & Poulsen, K. (2000). Abiotrophia species in early dental plaque. Oral Microbiology and Immunology, 15(4), 263–268. 10.1034/j.1399-302x.2000.150409.x
    1. Miller, W. D. (1884). Micro‐organisms and dental caries. American Journal of Dental Science, 18(4), 164–173.
    1. Nascimento, M. M. , Zaura, E. , Mira, A. , Takahashi, N. , & Ten Cate, J. M. (2017). Second era of OMICS in caries research: Moving past the phase of disillusionment. Journal of Dental Research, 96(7), 733–740. 10.1177/0022034517701902
    1. Paster, B. J. , Olsen, I. , Aas, J. A. , & Dewhirst, F. E. (2000). The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontology 2000, 42(1), 80–87. 10.1111/j.1600-0757.2006.00174.x
    1. Peterson, S. N. , Snesrud, E. , Liu, J. , Ong, A. C. , Kilian, M. , Schork, N. J. & Bretz, W. (2013). The dental plaque microbiome in health and disease. PLoS ONE, 8(3), e58487 10.1371/journal.pone.0058487
    1. Saini, R. , Marawar, P. P. , Shete, S. , & Saini, S. (2009). Periodontitis, a true infection. Journal of Global Infectious Diseases, 1(2), 149–150. 10.4103/0974-777X.56251
    1. Sato, S. , Kanamoto, T. , & Inoue, M. (1999). Abiotrophia elegans strains comprise 8% of the nutritionally variant streptococci isolated from the human mouth. Journal of Clinical Microbiology, 37(8), 2553–2556. 10.1128/JCM.37.8.2553-2556.1999
    1. Scheie, A. A. , & Petersen, F. C. (2004). The biofilm concept: Consequences for future prophylaxis of oral diseases? Critical Reviews in Oral Biology and Medicine, 15(1), 4–12.
    1. Schirrmeister, J. F. , Liebenow, A. L. , Pelz, K. , Wittmer, A. , Serr, A. , Hellwig, E. , & Al‐Ahmad, A. (2009). New bacterial compositions in root‐filled teeth with periradicular lesions. Journal of Endodontics, 35(2), 169–174. 10.1016/j.joen.2008.10.024
    1. Serhan, C. N. , Chiang, N. , & Dalli, J. (2015). The resolution code of acute inflammation: Novel pro‐resolving lipid mediators in resolution. Seminars in Immunology, 27(3), 200–215. 10.1016/j.smim.2015.03.004
    1. Socransky, S. S. , & Haffajee, A. D. (2000). Dental biofilms: Difficult therapeutic targets. Periodontology 2000, 28(1), 12–55. 10.1034/j.1600-0757.2002.280102.x
    1. Takahashi, N. , & Nyvad, B. (2011). The role of bacteria in the caries process: Ecological perspectives. Journal of Dental Research, 90(3), 294–303. 10.1177/0022034510379602
    1. ten Cate, J. M. (2006). Biofilms, a new approach to the microbiology of dental plaque. Odontology, 94(1), 1–9. 10.1007/s10266-006-0063-3
    1. van Woudenbergh, G. J. , Theofylaktopoulou, D. , Kuijsten, A. , Ferreira, I. , van Greevenbroek, M. M. , van der Kallen, C. J. , … Feskens, E. J. M. (2013). Adapted dietary inflammatory index and its association with a summary score for low‐grade inflammation and markers of glucose metabolism: The Cohort study on Diabetes and Atherosclerosis Maastricht (CODAM) and the Hoorn study. American Journal of Clinical Nutrition, 98(6), 1533–1542. 10.3945/ajcn.112.056333
    1. Vielkind, P. , Jentsch, H. , Eschrich, K. , Rodloff, A. C. , & Stingu, C.‐S. (2015). Prevalence of Actinomyces spp. in patients with chronic periodontitis. International Journal of Medical Microbiology, 305(7), 682–688. 10.1016/j.ijmm.2015.08.018
    1. Von der Fehr, F. R. , Loe, H. , & Theilade, E. (1970). Experimental caries in man. Caries Research, 4(2), 131–148. 10.1159/000259635
    1. Wade, W. G. (2004). Non‐culturable bacteria in complex commensal populations. Advances in Applied Microbiology, 54, 93–106.
    1. Wade, W. G. (2013). The oral microbiome in health and disease. Pharmacological Research, 69(1), 137–143. 10.1016/j.phrs.2012.11.006
    1. Woelber, J. P. , Bremer, K. , Vach, K. , Konig, D. , Hellwig, E. , Ratka‐Kruger, P. , … Tennert, C. (2016). An oral health optimized diet can reduce gingival and periodontal inflammation in humans – A randomized controlled pilot study. BMC Oral Health, 17(1), 28 10.1186/s12903-016-0257-1

Source: PubMed

3
Prenumerera