Vaso-occlusive crisis in sickle cell disease: a vicious cycle of secondary events

Tim Jang, Maria Poplawska, Emanuela Cimpeanu, George Mo, Dibyendu Dutta, Seah H Lim, Tim Jang, Maria Poplawska, Emanuela Cimpeanu, George Mo, Dibyendu Dutta, Seah H Lim

Abstract

Painful vaso-occlusive crisis (VOC) remains the most common reason for presenting to the Emergency Department and hospitalization in patients with sickle cell disease (SCD). Although two new agents have been approved by the Food and Drug Administration for treating SCD, they both target to reduce the frequency of VOC. Results from studies investigating various approaches to treat and shorten VOC have so far been generally disappointing. In this paper, we will summarize the complex pathophysiology and downstream events of VOC and discuss the likely reasons for the disappointing results using monotherapy. We will put forward the rationale for exploring some of the currently available agents to either protect erythrocytes un-involved in the hemoglobin polymerization process from sickling induced by the secondary events, or a multipronged combination approach that targets the complex downstream pathways of VOC.

Keywords: Downstream events; Secondary vaso-occlusive crisis; Sickle cell disease; Treatment strategies.

Conflict of interest statement

All authors declare no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Origins of ongoing inflammatory processes in SCD patients. Endogenous stimuli arise due to erythrocyte membrane damage induced by a combination of background HbS polymerization and auto-oxidation. Exogenous stimuli contributing to the ongoing inflammatory process are due to increased intestinal permeability and enhanced translocation of bacteria/bacterial products into the systemic circulation to stimulate leukocytes and aged neutrophils. The inflammatory processes are compensated by various host adaptive mechanisms that prevent the progress of the process to VOC. Events such as infection/inflammation, stress, dehydration, increased hemolysis, and hypoxemia tilt the equilibrium and result in a decompensation state that precipitates the development of VOC. Cytokine reactions associated with ischemia/reperfusion injury induced by VOC may further feed into increasing the intestinal permeability (represented by dashed lines) and form part of the vicious cycle of vaso-occlusion
Fig. 2
Fig. 2
The complex downstream events induced by VOC. Among the many downstream events are the following five pathways, all of which result in a positive-feedback into the VOC process to induce secondary VOC: (1). Increased hemolysis produces more free heme and overwhelms heme scavenging mechanisms, precipitating the development of neutrophil extracellular traps that promotes a local prothrombotic condition. (2). Local hypoxemia caused by vaso-occlusion induces sickling of erythrocytes in the vicinity. (3). Cytokine release due to VOC activates leukocytes and platelets and increases their recruitment to the site of local tissue damage. (4). Increased enterocyte damage due to VOC further increases the gut permeability and worsens the translocation of luminal bacteria/bacterial products into the systemic circulation. (5). Stress induced by painful VOC leads to increased production of epinephrine and glucocorticoid response. The former enhances the expression of adhesion molecules on the erythrocytes and the latter worsens the translocation of luminal bacteria/bacterial products into the systemic circulation
Fig. 3
Fig. 3
A proposed multipronged approach to treating VOC. Instead of just using intravenous fluid, oxygen, and pain management and wait for the VOC process to resolve spontaneously, a more proactive approach is proposed using a combination of the listed agents to target as many of the downstream processes as possible. Acute use of antisickling agents such as voxelotor may protect the un-involved erythrocytes from sickling induced by the many downstream events of VOC. On the other hand, approaches that target the downstream events will more likely be successful if used in combination to overcome as many of the downstream pathways as possible

References

    1. Centers for Disease Control and Prevention. 2020. Data and statistics on sickle cell disease. .
    1. Steiner CA, Miller JL. Sickle Cell Disease Patients in U.S. Hospitals, 2004: Statistical Brief #21. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Rockville (MD); 2006.
    1. Brousseau DC, Owens PL, Mosso AL, Panepinto JA, Steiner CA. Acute care utilization and rehospitalizations for sickle cell disease. JAMA. 2010;303:1288–1294. doi: 10.1001/jama.2010.378.
    1. Brousseau DC, Steiner CA, Owens P, Mosso A, Panepinto JA. Emergency department treat-and-release visits for sickle cell disease: a sign of acute events to come. Blood. 2011;118:169. doi: 10.1182/blood.V118.21.169.169.
    1. Ballas SK, Smith ED. Red blood cell changes during the evolution of the sickle cell painful crisis. Blood. 1992;79:2154–2163. doi: 10.1182/blood.V79.8.2154.2154.
    1. Ballas SK. The sickle cell painful crisis in adults: phases and objective signs. Hemoglobin. 1995;19:323–333. doi: 10.3109/03630269509005824.
    1. Dutta D, Aujla A, Knoll BM, Lim SH. Intestinal pathophysiological and microbial changes in sickle cell disease: potential targets for therapeutic intervention. Br J Haematol. 2020;188:488–493. doi: 10.1111/bjh.16273.
    1. Fingar KR, Owens PL, Reid LD, Mistry KB, and Barrett ML. Characteristics of inpatient hospital stays involving sickle cell disease, 2000–2016. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2006 Feb. 2019 Sep 3.
    1. Jang T, Mo G, Stewart C, Egini O, Dutta D, Muthu J, Lim SH. Antibiotic use in adults during sickle cell vaso-occlusive crisis: is it time for a controlled trial? Br J Haematol. 2021;193:1281–1283. doi: 10.1111/bjh.17439.
    1. Anyaegbu CC, Okpala IE, Akren’Ova YA, Salimonu LS. Peripheral blood neutrophil count and candidacidal activity correlate with the clinical severity of sickle cell anaemia (SCA) Eur J Haematol. 1998;60:267–268. doi: 10.1111/j.1600-0609.1998.tb01036.x.
    1. Dutta D, Methe B, Amar S, Morris A, Lim SH. Intestinal injury and gut permeability in sickle cell disease. J Transl Med. 2019;17:183. doi: 10.1186/s12967-019-1938-8.
    1. Lard LR, Mul FP, de Haas M, Roos D, Duits AJ. Neutrophil activation in sickle cell disease. J Leukoc Biol. 1999;66:411–415. doi: 10.1002/jlb.66.3.411.
    1. Lum AF, Wun T, Staunton D, Simon SI. Inflammatory potential of neutrophils detected in sickle cell disease. Am J Hematol. 2004;76:126–133. doi: 10.1002/ajh.20059.
    1. Belcher JD, Marker PH, Weber JP, Hebbel RP, Vercellotti GM. Activated monocytes in sickle cell disease: potential role in the activation of vascular endothelium and vaso-occlusion. Blood. 2000;96:2451–2459. doi: 10.1182/blood.V96.7.2451.
    1. Sparkenbaugh E, Pawlinski R. Interplay between coagulation and vascular inflammation in sickle cell disease. Br J Haematol. 2013;162:3–14. doi: 10.1111/bjh.12336.
    1. Browne P, Shalev O, Hebbel RP. The molecular pathobiology of cell membrane iron: the sickle red cell as a model. Free Radic Biol Med. 1998;24:1040–1048. doi: 10.1016/S0891-5849(97)00391-2.
    1. Turhan A, Weiss LA, Mohandas N, Coller BS, Frenette PS. Primary role for adherent leukocytes in sickle cell vascular occlusion: a new paradigm. Proc Natl Acad Sci USA. 2002;99:3047–3051. doi: 10.1073/pnas.052522799.
    1. Merle NS, Grunenwald A, Rajaratnam H, Gnemmi V, Frimat M, Figueres ML, Knockaert S, Bouzekri S, Charue D, Noe R, Robe-Rybkine T, Le-Hoang M, Brinkman N, Gentinetta T, Edler M, Petrillo S, Tolosano E, Miescher S, Le Jeune S, Houillier P, Chauvet S, Rabant M, Dimitrov JD, Fremeaux-Bacchi V, Blanc-Brude OP, Roumenina LT. Intravascular hemolysis activates complement via cell-free heme and heme-loaded microvesicles. JCI Insight. 2018;3:e96910. doi: 10.1172/jci.insight.96910.
    1. Pradhan P, Vijayan V, Gueler F, Immenschuh S. Interplay of heme with macrophages in homeostasis and inflammation. Int J Mol Sci. 2020;21:740. doi: 10.3390/ijms21030740.
    1. Chen G, Zhang D, Fuchs TA, Manwani D, Wagner DD, Frenette PS. Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood. 2014;123:3818–3827. doi: 10.1182/blood-2013-10-529982.
    1. Schaer DJ, Buehler PW. Cell-free hemoglobin and its scavenger proteins: new disease models leading the way to targeted therapies. Cold Spring Harb Perspect Med. 2013;3:013433. doi: 10.1101/cshperspect.a013433.
    1. Nagano S, Otsuka T, Niiro H, Yamaoka K, Arinobu Y, Ogami E, Akahoshi M, Inoue Y, Miyake K, Nakashima H, Niho Y, Harada M. Molecular mechanisms of lipopolysaccharide-induced cyclooxygenase-2 expression in human neutrophils: involvement of the mitogen-activated protein kinase pathway and regulation by anti-inflammatory cytokines. Intern Immunol. 2002;14:733–740. doi: 10.1093/intimm/dxf038.
    1. Bryant CE, Spring DR, Gangloff M, Gay NJ. The molecular basis of the host response to lipopolysaccharide. Nat Rev Microbiol. 2010;8:8–14. doi: 10.1038/nrmicro2266.
    1. Zhang D, Chen G, Manwani D, Mortha A, Xu C, Faith JJ, Burk RD, Kunisaki Y, Jang JE, Scheiermann C, Merad M, Frenette PS. Neutrophil ageing is regulated by the microbiome. Nature. 2015;525:528–532. doi: 10.1038/nature15367.
    1. Niihara Y, Miller ST, Kanter J, Lanzkron S, Smith WR, Hsu LL, Gordeuk VR, Viswanathan K, Sarnaik S, Osunkwo I, Guillaume E, Sadanandan S, Sieger L, Lasky JL, Panosyan EH, Blake OA, New TN, Bellevue R, Tran LT, Razon RL, Stark CW, Neumayr LD, Vichinsky EP. Investigators of the phase 3 trial of l-glutamine in sickle cell disease. A phase 3 trial of l-glutamine in sickle cell disease. N Engl J Med. 2018;379:226–235. doi: 10.1056/NEJMoa1715971.
    1. Lim SH, Morris A, Li K, Fitch AC, Fast L, Goldberg L, Quesenberry M, Sprinz P, Methé B. Intestinal microbiome analysis revealed dysbiosis in sickle cell disease. Am J Hematol. 2018;93:E91–E93. doi: 10.1002/ajh.25019.
    1. Lim SH, Dutta D, Moore J. Rifaximin in sickle cell disease. Am J Hematol. 2019;94:E325–E328. doi: 10.1002/ajh.25637.
    1. Dutta D, Li K, Methe B, Lim SH. Rifaximin on intestinally-related pathologic changes in sickle cell disease. Am J Hematol. 2020;95:E83–E86. doi: 10.1002/ajh.25722.
    1. Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 2015;6:524–551. doi: 10.1016/j.redox.2015.08.020.
    1. Hidalgo A, Chang J, Jang JE, Peired AJ, Chiang EY, Frenette PS. Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury. Nat Med. 2009;15:384–391. doi: 10.1038/nm.1939.
    1. Wallace KL, Marshall MA, Ramos SI, Lannigan JA, Field JJ, Strieter RM, Linden J. NKT cells mediate pulmonary inflammation and dysfunction in murine sickle cell disease through production of IFN-gamma and CXCR3 chemokines. Blood. 2009;114:667–676. doi: 10.1182/blood-2009-02-205492.
    1. Sparkenbaugh E, Pawlinski R. Prothrombotic aspects of sickle cell disease. J Thromb Haemost. 2017;15:1307–1316. doi: 10.1111/jth.13717.
    1. Mitchell MJ, Kawchak DA, Stark LJ, Zemel BS, Ohene-Frempong K, Stallings VA. Brief report: parent perspectives of nutritional status and mealtime behaviors in children with sickle cell disease. J Pediatr Psychol. 2004;29:315–320. doi: 10.1093/jpepsy/jsh033.
    1. Jang T, Mo G, Stewart C, Khoury L, Ferguson N, Egini O, Muthu J, Dutta D, Salifu M, Lim SH. Obesity and diabetes mellitus in patients with sickle cell disease. Ann Hematol. 2021 doi: 10.1007/s00277-021-04578-w.
    1. Liu SC, Zhai S, Palek J. Detection of hemin release during hemoglobin S denaturation. Blood. 1988;71:1755–1758. doi: 10.1182/blood.V71.6.1755.1755.
    1. Carvalho MOS, Rocha LC, Reis JHO, de Araújo Santos T, do Nascimento VML, Carvalho MB, Luz NF, de Matos Borges V, Goncalves MS. Heme concentration as a biomarker of sickle cell disease severity: its role in steady-state and in crisis patients. Blood. 2015;126:975. doi: 10.1182/blood.V126.23.975.975.
    1. Silva M, Videira PA, Sackstein R. E-Selectin ligands in the human mononuclear phagocyte system: implications for infection, inflammation, and immunotherapy. Front Immunol. 2017;8:1878. doi: 10.3389/fimmu.2017.01878.
    1. Schimmel M, Nur E, Biemond BJ, van Mierlo GJ, Solati S, Brandjes DP, Otten HM, Schnog JJ, Zeerleder S. Nucleosomes and neutrophil activation in sickle cell disease painful crisis. Haematologica. 2013;98:1797–1803. doi: 10.3324/haematol.2013.088021.
    1. Kruger P, Saffarzadeh M, Weber ANR, Rieber N, Radsak M, von Bernuth H, Benarafa C, Roos D, Skokowa J, Hartl D. Neutrophils: between host defence, immune modulation, and tissue injury. PLoS Pathog. 2015;11:e1004651. doi: 10.1371/journal.ppat.1004651.
    1. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD, Jr, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 2010;107:15880–15885. doi: 10.1073/pnas.1005743107.
    1. Huang YM, Wang H, Wang C, Chen M, Zhao MH. Promotion of hypercoagulability in antineutrophil cytoplasmic antibody-associated vasculitis by C5a-induced tissue factor-expressing microparticles and neutrophil extracellular traps. Arthritis Rheumatol. 2015;67:2780–2790. doi: 10.1002/art.39239.
    1. Cameron SJ, Mix DS, Ture SK, Schmidt RA, Mohan A, Pariser D, Stoner MC, Shah P, Chen L, Zhang H, Field DJ, Modjeski KL, Toth S, Morrell CN. Hypoxia and ischemia promote a maladaptive platelet phenotype. Arterioscler Thromb Vasc Biol. 2018;38:1594–1606. doi: 10.1161/ATVBAHA.118.311186.
    1. Riboldi E, Porta C, Morlacchi S, Viola A, Mantovani A, Sica A. Hypoxia-mediated regulation of macrophage functions in pathophysiology. Int Immunol. 2013;25:67–75. doi: 10.1093/intimm/dxs110.
    1. Hoenderdos K, Lodge KM, Hirst RA, Chen C, Palazzo SGC, Emerenciana A, Summers C, Angyal A, Porter L, Juss JK, O’Callaghan C, Chilvers ER, Condliffe AM. Hypoxia upregulates neutrophil degranulation and potential for tissue injury. Thorax. 2016;71:1030–1038. doi: 10.1136/thoraxjnl-2015-207604.
    1. Zennadi R, Moeller BJ, Whalen EJ, Batchvarova M, Xu K, Shan S, Delahunty M, Dewhirst MW, Telen MJ. Epinephrine-induced activation of LW-mediated sickle cell adhesion and vaso-occlusion in vivo. Blood. 2007;110:2708–2717. doi: 10.1182/blood-2006-11-056101.
    1. Porter LS, Gil KM, Carson JW, Anthony KK, Ready J. The role of stress and mood in sickle cell disease pain: an analysis of daily diary data. J Health Psychol. 2000;5:53–63. doi: 10.1177/135910530000500109.
    1. Xu C, Lee SK, Zhang D, Frenette PS. The gut microbiome regulates psychological-stress-induced inflammation. Immunity. 2020;53:417–428. doi: 10.1016/j.immuni.2020.06.025.
    1. Charache S, Barton FB, Moore RD, Terrin ML, Steinberg MH, Dover GJ, Ballas SK, McMahon RP, Castro O, Orringer EP. Hydroxyurea and sickle cell anemia Clinical utility of a myelosuppressive “switching” agent. The Multicenter Study of Hydroxyurea in Sickle Cell Anemia. Medicine (Baltimore) 1996;75:300–326. doi: 10.1097/00005792-199611000-00002.
    1. Saunthararajah Y, Hillery CA, Lavelle D, Molokie R, Dorn L, Bressler L, Gavazova S, Chen Y-H, Hoffman R, DeSimone J. Effects of 5-aza-2-deoxycytidine on fetal hemoglobin levels, red cell adhesion, and hematopoietic differentiation in patients with sickle cell disease. Blood. 2003;102:3865–3870. doi: 10.1182/blood-2003-05-1738.
    1. McArthur JG, Svenstrup N, Chen C, Fricot A, Carvalho C, Nguyen J, Nguyen P, Parachikova A, Abdulla F, Vercellotti GM, Hermine O, Edwards D, Ribeil JA, Belcher JD, Maciel TT. A novel, highly potent and selective phosphodiesterase-9 inhibitor for the treatment of sickle cell disease. Haematologica. 2020;105:623–631. doi: 10.3324/haematol.2018.213462.
    1. Vichinsky E, Hoppe CC, Ataga KI, Ware RE, Nduba V, El-Beshlawy A, Hassab H, Achebe MM, Alkindi S, Brown RC. A phase 3 randomized trial of voxelotor in sickle cell disease. N Engl J Med. 2019;381:509–519. doi: 10.1056/NEJMoa1903212.
    1. Hutchaleelaha A, Patel M, Washington C, Siu V, Allen E, Oksenberg D, Gretler DD, Mant T, Lehrer-Graiwer J. Pharmacokinetics and pharmacodynamics of voxelotor (GBT440) in healthy adults and patients with sickle cell disease. Br J Clin Pharmacol. 2019;85:1290–1302. doi: 10.1111/bcp.13896.
    1. Nur E, Brandjes DP, Teerlink T, Otten HM, Oude Elferink RP, Muskiet F, Evers LM, ten Cate H, Biemond BJ, Duits AJ, Schnog JJ. N-acetylcysteine reduces oxidative stress in sickle cell patients. Ann Hematol. 2012;91:1097–1105. doi: 10.1007/s00277-011-1404-z.
    1. Sins JWR, Fijnvandraat K, Rijneveld AW, Boom MB, Kerkhoffs JH, van Meurs AH, de Groot MR, Heijboer H, Dresse MF, Lê PQ, Hermans P, Vanderfaeillie A, Van Den Neste EW, Benghiat FS, Kesse-Adu R, Delannoy A, Efira A, Azerad MA, de Borgie CA, Biemond BJ. Effect of N-acetylcysteine on pain in daily life in patients with sickle cell disease: a randomised clinical trial. Br J Haematol. 2018;182:444–448. doi: 10.1111/bjh.14809.
    1. Holdiness MR. Clinical pharmacokinetics of N-acetylcysteine. Clin Pharmacokinet. 1991;20:123–134. doi: 10.2165/00003088-199120020-00004.
    1. Kharalkar SS, Joshi GS, Musayev FN, Fornabaio M, Abraham DJ, Safo MK. Identification of novel allosteric regulators of human-erythrocyte pyruvate kinase. Chem Biodivers. 2007;4:2603–2617. doi: 10.1002/cbdv.200790213.
    1. Rab MAE, Bos J, van Oirschot BA, van Straaten S, Kosinski PA, Chubukov V, Kim H, Mangus H, Schutgens REG, Pasterkamp G, Dang L, Kung C, van Beers EJ, van Wijk R. Decreased activity and stability of pyruvate kinase in sickle cell disease: a novel target for mitapivat therapy. Blood. 2021;137:2997–3001. doi: 10.1182/blood.2020008635.
    1. Centers for Disease Control and Prevention (CDC). Sickle cell data collection data brief: Hydroxyurea use among Medicaid beneficiaries with sickle cell disease in California and Georgia, 2006–2016. November 13, 2019; .
    1. Penkert RR, Hurwitz JL, Thomas P, Rosch J, Dowdy J, Sun Y, Tang L, Hankins JS. Inflammatory molecule reduction with hydroxyurea therapy in children with sickle cell anemia. Haematologica. 2018;103:e50–e54. doi: 10.3324/haematol.2017.177360.
    1. Lanaro C, Franco-Penteado CF, Albuqueque DM, Saad ST, Conran N, Costa FF. Altered levels of cytokines and inflammatory mediators in plasma and leukocytes of sickle cell anemia patients and effects of hydroxyurea therapy. J Leukoc Biol. 2009;85:235–242. doi: 10.1189/jlb.0708445.
    1. Beiter JL, Jr, Simon HK, Chambliss CR, Adamkiewicz T, Sullivan K. Intravenous ketorolac in the emergency department management of sickle cell pain and predictors of its effectiveness. Arch Pediatr Adolesc Med. 2001;155:496–500. doi: 10.1001/archpedi.155.4.496.
    1. Griffin TC, McIntire D, Buchanan GR. High-dose intravenous methylprednisolone therapy for pain in children and adolescents with sickle cell disease. N Engl J Med. 1994;330:733–737. doi: 10.1056/NEJM199403173301101.
    1. Ataga KI, Kutlar A, Kanter J, Liles D, Cancado R, Friedrisch J, Guthrie TH, Knight-Madden J, Alvarez OA, Gordeuk VR. Crizanlizumab for the prevention of pain crises in sickle cell disease. N Engl J Med. 2017;376:429–439. doi: 10.1056/NEJMoa1611770.
    1. Telen MJ, Wun T, McCavit TL, De Castro LM, Krishnamurti L, Lanzkron S, Hsu LL, Smith WR, Rhee S, Magnani JL, Thackray H. Randomized phase 2 study of GMI-1070 in SCD: reduction in time to resolution of vaso-occlusive events and decreased opioid use. Blood. 2015;125:2656–2664. doi: 10.1182/blood-2014-06-583351.
    1. Field JJ, Majerus E, Gordeuk VR, Gowhari M, Hoppe C, Heeney MM, Achebe M, George A, Chu H, Sheehan B, Puligandla M, Neuberg D, Lin G, Linden J, Nathan DG. Randomized phase 2 trial of regadenoson for treatment of acute vaso-occlusive crises in sickle cell disease. Blood Adv. 2017;1:1645–1649. doi: 10.1182/bloodadvances.2017009613.
    1. Turhan A, Jenab P, Bruhns P, Ravetch JV, Coller BS, Frenette PS. Intravenous immune globulin prevents venular vaso-occlusion in sickle cell mice by inhibiting leukocyte adhesion and the interactions between sickle erythrocytes and adherent leukocytes. Blood. 2004;103:2397–2400. doi: 10.1182/blood-2003-07-2209.
    1. Chang J, Shi PA, Chiang EY, Frenette PS. Intravenous immunoglobulins reverse acute vaso-occlusive crises in sickle cell mice through rapid inhibition of neutrophil adhesion. Blood. 2008;111:915–923. doi: 10.1182/blood-2007-04-084061.
    1. Manwani D, Xu C, Lee SK, Amatuni G, Cohen HW, Carullo V, Morrone K, Davila J, Shi PA, Ireland K, Keenan J, Frenette PS. Randomized phase 2 trial of Intravenous Gamma Globulin (IVIG) for the treatment of acute vaso-occlusive crisis in patients with sickle cell disease: lessons learned from the midpoint analysis. Complement Ther Med. 2020;52:102481. doi: 10.1016/j.ctim.2020.102481.
    1. Wang B, Wu G, Zhou Z, Dai Z, Sun Y, Ji Y, Li W, Wang W, Liu C, Han F, Wu Z. Glutamine and intestinal barrier function. Amino Acids. 2015;47:2143–2154. doi: 10.1007/s00726-014-1773-4.
    1. De Castro LM, Zennadi R, Jonassaint JC, Batchvarova M, Telen MJ. Effect of propranolol as antiadhesive therapy in sickle cell disease. Clin Transl Sci. 2012;5:437–444. doi: 10.1111/cts.12005.
    1. Payne J, Aban I, Hilliard LM, Madison J, Bemrich-Stolz C, Howard TH, Brandow A, Waite E, Lebensburger JD. Impact of early analgesia on hospitalization outcomes for sickle cell pain crisis. Pediatr Blood Cancer. 2018;65:e27420. doi: 10.1002/pbc.27420.
    1. Waugh WH, Daeschner CW, 3rd, Files BA, McConnell ME, Strandjord SE. Oral citrulline as arginine precursor may be beneficial in sickle cell disease: early phase two results. J Natl Med Assoc. 2001;93:363–371.
    1. Jaja SI, Ogungbemi SO, Kehinde MO, Anigbogu CN. Supplementation with l-arginine stabilizes plasma arginine and nitric oxide metabolites, suppresses elevated liver enzymes and peroxidation in sickle cell anaemia. Pathophysiology. 2016;23:81–85. doi: 10.1016/j.pathophys.2016.04.004.
    1. Gladwin MT, Kato GJ, Weiner D, Onyekwere OC, Dampier C, Hsu L, Hagar RW, Howard T, Nuss R, Okam MM, Tremonti CK, Berman B, Villella A, Krishnamurti L, Lanzkron S, Castro O, Gordeuk VR, Coles WA, Peters-Lawrence M, Nichols J, Hall MK, Hildesheim M, Blackwelder WC, Baldassarre J, Casella JF. Nitric oxide for inhalation in the acute treatment of sickle cell pain crisis: a randomized controlled trial. JAMA. 2011;305:893–902. doi: 10.1001/jama.2011.235.
    1. Aboursheid T, Albaroudi O, Alahdab F. Inhaled nitric oxide for treating pain crises in people with sickle cell disease. Cochrane Database Syst Rev. 2019;11(10):CD011808.
    1. Gaartman AE, Sayedi AK, Gerritsma JJ, de Back TR, van Tuijn CF, Tang MW, Heijboer H, de Heer K, Biemond BJ, Nur E. Fluid overload due to intravenous fluid therapy for vaso-occlusive crisis in sickle cell disease: incidence and risk factors. Br J Haematol. 2021 doi: 10.1111/bjh.17696.
    1. Okpala I. The management of crisis in sickle cell disease. Eur J Haematol. 1998;60:1–6. doi: 10.1111/j.1600-0609.1998.tb00989.x.
    1. Wun T, Soulieres D, Frelinger AL, Krishnamurti L, Novelli EM, Kutlar A, Ataga KI, Knupp CL, McMahon LE, Strouse JJ, Zhou C, Heath LE, Nwachuku CE, Jakubowski JA, Riesmeyer JS, Winters KJ. A double-blind, randomized, multicenter phase 2 study of prasugrel versus placebo in adult patients with sickle cell disease. J Hematol Oncol. 2013;6:17. doi: 10.1186/1756-8722-6-17.
    1. Lee SP, Ataga KI, Zayed M, Manganello JM, Orringer EP, Phillips DR, Parise LV. Phase I study of eptifibatide in patients with sickle cell anaemia. Br J Haematol. 2007;139:612–620. doi: 10.1111/j.1365-2141.2007.06787.x.
    1. Qari MH, Aljaouni SK, Alardawi MS, Fatani H, Alsayes FM, Zografos P, Alsaigh M, Alalfi A, Alamin M, Gadi A, Mousa SA. Reduction of painful vaso-occlusive crisis of sickle cell anaemia by tinzaparin in a double-blind randomized trial. Thromb Haemost. 2007;98:392–396. doi: 10.1160/Th06-12-0718.
    1. Biemond BJ, Tombak A, Kilinc Y, Al-Khabori M, Abboud M, Nafea M, Inati A, Wali Y, Kristensen J, Kowalski J, Donnelly E, Ohd J. Sevuparin for the treatment of acute pain crisis in patients with sickle cell disease: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Haematol. 2021;8:e334–e343. doi: 10.1016/S2352-3026(21)00053-3.

Source: PubMed

3
Prenumerera