Effect of Perineural Injection with Different Dextrose Volumes on Median Nerve Size, Elasticity and Mobility in Hands with Carpal Tunnel Syndrome

Meng-Ting Lin, I-Chun Liu, Wei-Ting Syu, Po-Ling Kuo, Chueh-Hung Wu, Meng-Ting Lin, I-Chun Liu, Wei-Ting Syu, Po-Ling Kuo, Chueh-Hung Wu

Abstract

This study aimed to investigate the effect of different injectate volumes on ultrasonographic parameters and the correlation to clinical outcomes under perineural dextrose injection (PDI). In this post hoc analysis of the randomized, double-blinded, three-arm trial, ultrasound-guided PDI with either 1 mL, 2 mL, and 4 mL 5% dextrose water was administered, respectively, in 14, 14, and 17 patients. Ultrasound outcomes included mobility, shear-wave elastography (SWE), and cross-sectional area (CSA) of the median nerve; clinical outcomes were Visual Analog Scale (VAS) and Boston Carpal Tunnel Questionnaire (BCTQ) score. Outcomes were measured before injection, and after injection at the 1st, 4th, 12th, and 24th week. For ultrasound outcomes, CSA decreased significantly from baseline data at all follow-up time-points in the 2 mL group (p = 0.005) and the 4 mL group (p = 0.015). The mean change of mobility from baseline showed a greater improvement on the 4 mL group than the other groups at the 1st week post-injection. For clinical outcomes, negative correlation between the VAS and mobility at the 1st (p = 0.046) and 4th week (p = 0.031) post-injection in the 4 mL group were observed. In conclusion, PDI with higher volume yielded better nerve mobility and decreased CSA of median nerve, but no changes of nerve elasticity.

Keywords: elasticity imaging techniques; median nerve; nerve compression syndromes.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Measurement of ultrasound outcomes with (A) cross-section area (CSA), (B) shear-wave elastography (SWE), and (C) centroid position of the median nerve. (A) CSA of median nerve is measured at the carpal tunnel inlet level between scaphoid bone (S) and pisiform bone (P). (B) SWE of median nerve is measured at the carpal tunnel inlet level. Red color implies stiffer tissue and blue color implies soft tissue. Circular region is for quantitation of tissue stiffness in kilopascals (kPa) units. (C) Distance of the centroid position of the median nerve between the finger extension and full flexion position is recorded on ultrasound video. P = Pisiform bone. S = Scaphoid bone. N = Median nerve.

References

    1. Padua L., Coraci D., Erra C., Pazzaglia C., Paolasso I., Loreti C., Caliandro P., Hobson-Webb L.D. Carpal tunnel syndrome: Clinical features, diagnosis, and management. Lancet Neurol. 2016;15:1273–1284. doi: 10.1016/S1474-4422(16)30231-9.
    1. Gelberman R.H., Hergenroeder P.T., Hargens A.R., Lundborg G.N., Akeson W.H. The carpal tunnel syndrome. A study of carpal canal pressures. J. Bone Jt. Surg. Am. 1981;63:380–383. doi: 10.2106/00004623-198163030-00009.
    1. Yoshii Y., Zhao C., Amadio P.C. Recent advances in ultrasound diagnosis of carpal tunnel syndrome. Diagnostics. 2020;10:596. doi: 10.3390/diagnostics10080596.
    1. Kuo T.T., Lee M.R., Liao Y.Y., Chen J.P., Hsu Y.W., Yeh C.K. Assessment of median nerve mobility by ultrasound dynamic imaging for diagnosing carpal tunnel syndrome. PLoS ONE. 2016;11:e0147051. doi: 10.1371/journal.pone.0147051.
    1. Schrier V., Evers S., Geske J.R., Kremers W.K., Villarraga H.R., Kakar S., Selles R.W., Hovius S.E.R., Gelfman R., Amadio P.C. Median nerve transverse mobility and outcome after carpal tunnel release. Ultrasound Med. Biol. 2019;45:2887–2897. doi: 10.1016/j.ultrasmedbio.2019.06.422.
    1. Nanno M., Sawaizumi T., Kodera N., Tomori Y., Takai S. Transverse movement of the median nerve in the carpal tunnel during wrist and finger motion in patients with carpal tunnel syndrome. Tohoku J. Exp. Med. 2015;236:233–240. doi: 10.1620/tjem.236.233.
    1. Lin C.P., Chen I.J., Chang K.V., Wu W.T., Ozcakar L. Utility of ultrasound elastography in evaluation of carpal tunnel syndrome: A systematic review and meta-analysis. Ultrasound Med. Biol. 2019;45:2855–2865. doi: 10.1016/j.ultrasmedbio.2019.07.409.
    1. Dabrowska-Thing A., Zakrzewski J., Nowak O., Nitek Z. Ultrasound elastography as a potential method to evaluate entrapment neuropathies in elite athletes: A mini-review. Pol. J. Radiol. 2019;84:e625–e629. doi: 10.5114/pjr.2019.92422.
    1. Schrier V., Lin J., Gregory A., Thoreson A.R., Alizad A., Amadio P.C., Fatemi M. Shear wave elastography of the median nerve: A mechanical study. Muscle Nerve. 2020;61:826–833. doi: 10.1002/mus.26863.
    1. Wu Y.T., Ke M.J., Ho T.Y., Li T.Y., Shen Y.P., Chen L.C. Randomized double-blinded clinical trial of 5% dextrose versus triamcinolone injection for carpal tunnel syndrome patients. Ann. Neurol. 2018;84:601–610. doi: 10.1002/ana.25332.
    1. Lin M.T., Liao C.L., Hsiao M.Y., Hsueh H.W., Chao C.C., Wu C.H. Volume matters in ultrasound-guided perineural dextrose injection for carpal tunnel syndrome: A randomized, double-blinded, three-arm trial. Front. Pharm. 2020;11:625830. doi: 10.3389/fphar.2020.625830.
    1. Evers S., Thoreson A.R., Smith J., Zhao C., Geske J.R., Amadio P.C. Ultrasound-guided hydrodissection decreases gliding resistance of the median nerve within the carpal tunnel. Muscle Nerve. 2018;57:25–32. doi: 10.1002/mus.25723.
    1. Park D. Ultrasonography of the transverse movement and deformation of the median nerve and its relationships with electrophysiological severity in the early stages of carpal tunnel syndrome. PM&R. 2017;9:1085–1094. doi: 10.1016/j.pmrj.2017.03.015.
    1. Martinez-Paya J.J., Rios-Diaz J., Del Bano-Aledo M.E., Garcia-Martinez D., de Groot-Ferrando A., Merono-Gallut J. Biomechanics of the median nerve during stretching as assessed by ultrasonography. J. Appl. Biomech. 2015;31:439–444. doi: 10.1123/jab.2015-0026.
    1. Wang Y., Filius A., Zhao C., Passe S.M., Thoreson A.R., An K.N., Amadio P.C. Altered median nerve deformation and transverse displacement during wrist movement in patients with carpal tunnel syndrome. Acad. Radiol. 2014;21:472–480. doi: 10.1016/j.acra.2013.12.012.
    1. Enderlein G., Fleiss J.L. The Design and Analysis of Clinical Experiments. Wiley: New York—Chichester—Brislane—Singapore 1986, 432 S., £38.35. Biom. J. 2007;30:304. doi: 10.1002/bimj.4710300308.
    1. Ries J.D., Echternach J.L., Nof L., Gagnon Blodgett M. Test-retest reliability and minimal detectable change scores for the timed “up & go” test, the six-minute walk test, and gait speed in people with Alzheimer disease. Phys. Ther. 2009;89:569–579. doi: 10.2522/ptj.20080258.
    1. Ellis R., Blyth R., Arnold N., Miner-Williams W. Is there a relationship between impaired median nerve excursion and carpal tunnel syndrome? A systematic review. J. Hand Ther. 2017;30:3–12. doi: 10.1016/j.jht.2016.09.002.
    1. Hosseini-Farid M., Schrier V., Starlinger J., Amadio P.C. Carpal tunnel syndrome treatment and the subsequent alterations in median nerve transverse mobility. J. Ultrasound Med. 2020 doi: 10.1002/jum.15535.
    1. Cass S.P. Ultrasound-guided nerve hydrodissection: What is it? A review of the literature. Curr. Sports Med. Rep. 2016;15:20–22. doi: 10.1249/JSR.0000000000000226.
    1. Evers S., Bryan A.J., Sanders T.L., Gunderson T., Gelfman R., Amadio P.C. Influence of injection volume on rate of subsequent intervention in carpal tunnel syndrome over 1-year follow-up. J. Hand Surg. Am. 2018;43:537–544. doi: 10.1016/j.jhsa.2018.02.024.
    1. Li T.Y., Chen S.R., Shen Y.P., Chang C.Y., Su Y.C., Chen L.C., Wu Y.T. Long-term outcome after perineural injection with 5% dextrose for carpal tunnel syndrome: A retrospective follow-up study. Rheumatology. 2020 doi: 10.1093/rheumatology/keaa361.
    1. Wu Y.T., Chen S.R., Li T.Y., Ho T.Y., Shen Y.P., Tsai C.K., Chen L.C. Nerve hydrodissection for carpal tunnel syndrome: A prospective, randomized, double-blind, controlled trial. Muscle Nerve. 2019;59:174–180. doi: 10.1002/mus.26358.
    1. Asadov R., Erdal A., Bugdayci O., Gunduz O.H., Ekinci G. The effectiveness of ultrasonography and ultrasonographic elastography in the diagnosis of carpal tunnel syndrome and evaluation of treatment response after steroid injection. Eur. J. Radiol. 2018;108:172–176. doi: 10.1016/j.ejrad.2018.09.027.
    1. Miyamoto H., Siedentopf C., Kastlunger M., Martinoli C., Gabl M., Jaschke W.R., Klauser A.S. Intracarpal tunnel contents: Evaluation of the effects of corticosteroid injection with sonoelastography. Radiology. 2014;270:809–815. doi: 10.1148/radiol.13131083.
    1. Rempel D.M., Diao E. Entrapment neuropathies: Pathophysiology and pathogenesis. J. Electromyogr. Kinesiol. 2004;14:71–75. doi: 10.1016/j.jelekin.2003.09.009.
    1. Ettema A.M., Amadio P.C., Zhao C., Wold L.E., An K.N. A histological and immunohistochemical study of the subsynovial connective tissue in idiopathic carpal tunnel syndrome. J. Bone Jt. Surg. Am. 2004;86:1458–1466. doi: 10.2106/00004623-200407000-00014.
    1. Lee Y.S., Choi E. Ultrasonographic changes after steroid injection in carpal tunnel syndrome. Skelet. Radiol. 2017;46:1521–1530. doi: 10.1007/s00256-017-2738-y.
    1. Kasundra G.M., Sood I., Bhargava A.N., Bhushan B., Rana K., Jangid H., Shubhkaran K., Pujar G.S. Carpal tunnel syndrome: Analyzing efficacy and utility of clinical tests and various diagnostic modalities. J. Neurosci. Rural. Pract. 2015;6:504–510. doi: 10.4103/0976-3147.169867.

Source: PubMed

3
Prenumerera