Optimizing Autonomic Function Analysis via Heart Rate Variability Associated With Motor Activity of the Human Colon

M Khawar Ali, Lijun Liu, Ji-Hong Chen, Jan D Huizinga, M Khawar Ali, Lijun Liu, Ji-Hong Chen, Jan D Huizinga

Abstract

The parameters of heart rate variability (HRV) can non-invasively assess some autonomic activities, and HRV is influenced by many bodily actions. Although parasympathetic activity is the primary driver of colonic propulsive activity, and sympathetic activity a major inhibitor of colonic motility, they are rarely measured and almost play no role in diagnosis of colon motor dysfunction or in standard treatments. Here we set out to optimize HRV analysis of autonomic nervous system changes related to human colon motility. The electrocardiogram and impedance were recorded in synchrony with colonic motor patterns by high-resolution manometry. Respiratory sinus arrhythmia (RSA), root mean square of successive differences of beat-to-beat intervals (RMSSD), the Baevsky Index or Sympathetic Index (SI), and the ratios of SI/RSA and SI/RMSSD were shown to indicate a marked increase in parasympathetic and withdrawal of sympathetic activity during the high-amplitude propagating pressure waves (HAPWs). Strong associations were seen with HAPWs evoked by a meal and rectal bisacodyl indicating a marked increase in parasympathetic and withdrawal of sympathetic activity during the gastrocolic reflex and the defecation reflex. When HAPWs occurred in quick succession, parasympathetic activation (RSA and RMSSD) occurred in a rhythmic fashion. Hence, during propulsive motor patterns, an overall shift in autonomic activity toward increased parasympathetic control was shown to be reflected in HRV. HRV assessment may therefore be valuable in the assessment of autonomic dysfunction related to colonic dysmotility.

Keywords: Baevsky’s Stress Index; RMSSD; RSA; autonomic nervous system; colonic motility; high-amplitude propagating pressure waves.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Ali, Liu, Chen and Huizinga.

Figures

FIGURE 1
FIGURE 1
HRV parameters associated with a single HAPW. (A) 2-min before, during, and 2-min after HAPW recorded by HRCM. (B) HF power/RSA band of HRV signal time matched with HRCM recording. (C) RMSSD time matched with HRCM. (D) SI time matched with HRCM. Distance at 0 cm is positioned at the proximal colon, distance at 80 cm is just proximal to the anal sphincter.
FIGURE 2
FIGURE 2
HRV parameters associated with two consecutive HAPWs. (A) Before-During and After a Motor Complex. (B) Time matched HF Power/RSA band of the HRV signal before-during and after MC. (C) RMSSD time matched with HRCM. (D) SI time matched with HRCM.
FIGURE 3
FIGURE 3
HRV parameters associated with a complex of multiple HAPWs (a motor complex). (A) HRCM recording with a motor complex containing long overlapping HAPWs. (B) HF power/RSA band of HRV signal. (C) RMSSD. (D) SI. (E) HF/RSA power band in 3D.
FIGURE 4
FIGURE 4
The RSA band in baseline and with HAPWs. (A) Baseline HRCM recording without any colonic motor pattern. (B) HF power/RSA band during the baseline. (C) HRCM recording with Motor Complex. (D) HF power/RSA band during the Motor Complex.

References

    1. Baek H. J., Cho C. H., Cho J., Woo J. M. (2015). Reliability of ultra-short-term analysis as a surrogate of standard 5-min analysis of heart rate variability. Telemed. J. E Health 21 404–414. 10.1089/tmj.2014.0104
    1. Baevsky R. M., Chernikova A. G. (2017). Heart rate variability analysis: physiological foundations and main methods. Cardiometry 66–67. 10.12710/cardiometry.2017.10.6676
    1. Bharucha A. E., Brookes S. J. H. (2018). “Neurophysiologic mechanisms of human large intestinal motility,” in Physiology of the Gastrointestinal Tract, ed Said H. (New York, NY: Elsevier; ), 517–564. 10.1016/b978-0-12-809954-4.00023-2
    1. Bharucha A. E., Camilleri M., Low P. A., Zinsmeister A. R. (1993). Autonomic dysfunction in gastrointestinal motility disorders. Gut 34 397–401. 10.1136/gut.34.3.397
    1. Brookes S., Chen N., Humenick A., Spencer N. J., Costa M. (2016). Extrinsic sensory innervation of the gut: structure and function. Adv. Exp. Med. Biol. 891 63–69. 10.1007/978-3-319-27592-5_7
    1. Browning K. N., Travagli R. A. (2014). Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr. Physiol. 4 1339–1368. 10.1002/cphy.c130055
    1. Browning K. N., Travagli R. A. (2019). Central control of gastrointestinal motility. Curr. Opin. Endocrinol. Diabetes Obes. 26 11–16.
    1. Cacioppo J. T., Berntson G. G., Binkley P. F., Quigley K. S., Uchino B. N., Fieldstone A. (1994). Autonomic cardiac control. II. Noninvasive indices and basal response as revealed by autonomic blockades. Psychophysiology 31 586–598. 10.1111/j.1469-8986.1994.tb02351.x
    1. Callaghan B., Furness J. B., Pustovit R. V. (2018). Neural pathways for colorectal control, relevance to spinal cord injury and treatment: a narrative review. Spinal Cord 56 199–205. 10.1038/s41393-017-0026-2
    1. Camilleri M., Balm R. K., Low P. A. (1993). Autonomic dysfunction in patients with chronic intestinal pseudo-obstruction. Clin. Auton. Res. 3 95–100. 10.1007/bf01818993
    1. Chen J.-H., Yu Y., Yang Z., Yu W.-Z., Chen W. L., Kim M. J. M., et al. (2017). Intraluminal pressure patterns in the human colon assessed by high-resolution manometry. Sci. Rep. 7:41436. 10.1038/srep41436
    1. Colombo J., Arora R., DePace N. L., Vinik A. I. (2015). Clinical Autonomic Dysfunction. Measurement, Indications, Therapies, and Outcomes. Heidelberg: Springer.
    1. De Groat W. C., Krier J. (1976). An electrophysiological study of the sacral parasympathetic pathway to the colon of the cat. J. Physiol. 260 425–445. 10.1113/jphysiol.1976.sp011523
    1. De Groat W. C., Krier J. (1978). The sacral parasympathetic reflex pathway regulating colonic motility and defaecation in the cat. J. Physiol. 276 481–500. 10.1113/jphysiol.1978.sp012248
    1. Devroede G., Giese C., Wexner S. D., Mellgren A., Coller J. A., Madoff R. D., et al. (2012). Quality of life is markedly improved in patients with fecal incontinence after sacral nerve stimulation. Female Pelvic Med. Reconstr. Surg. 18 103–112. 10.1097/spv.0b013e3182486e60
    1. Devroede G., Lamarche J. (1974). Functional importance of extrinsic parasympathetic innervation to the distal colon and rectum in man. Gastroenterology 66 273–280. 10.1016/s0016-5085(74)80114-9
    1. Dinning P. G., Sia T. C., Kumar R., Mohd Rosli R., Kyloh M., Wattchow D. A., et al. (2016). High-resolution colonic motility recordings in vivo compared with ex vivo recordings after colectomy, in patients with slow transit constipation. Neurogastroenterol. Motil. 28 1824–1835. 10.1111/nmo.12884
    1. Furness J. B., Callaghan B. P., Rivera L. R. (2014). The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv. Exp. Med. Biol. 817 39–71. 10.1007/978-1-4939-0897-4_3
    1. Gasparini S., Howland J. M., Thatcher A. J., Geerling J. C. (2020). Central afferents to the nucleus of the solitary tract in rats and mice. J. Comp. Neurol. 528 2708–2728.
    1. Goldstein D. S., Bentho O., Park M., Sharabi Y. (2011). Low−frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp. Physiol. 96 1255–1261. 10.1113/expphysiol.2010.056259
    1. Grossman P., Taylor E. W. (2007). Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions. Biol. Psychol. 74 263–285. 10.1016/j.biopsycho.2005.11.014
    1. Hayano J., Yuda E. (2019). Pitfalls of assessment of autonomic function by heart rate variability. J. Physiol. Anthropol. 38:3.
    1. Houtveen J. H., Groot P. F., Geus E. J. (2005). Effects of variation in posture and respiration on RSA and pre-ejection period. Psychophysiology 42 713–719. 10.1111/j.1469-8986.2005.00363.x
    1. Jean A. (1991). [The nucleus tractus solitarius: neuroanatomic, neurochemical and functional aspects]. Arch. Int. Physiol. Biochim. Biophys. 99 A3–A52.
    1. Kubios (2020). Available online at: (accessed August 28, 2020).
    1. La Rovere M. T., Pinna G. D., Maestri R., Mortara A., Capomolla S., Febo O., et al. (2003). Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation 107 565–570. 10.1161/01.cir.0000047275.25795.17
    1. Leblanc D., McFadden N., Lebel M., Devroede G. (2015). Fecal continence can be restored by sacral neurostimulation after traumatic unilateral pudendal neuropathy: a case report. Int. J. Colorectal Dis. 30 569–570. 10.1007/s00384-014-2019-3
    1. Lorena S. L., Figueiredo M. J., Almeida J. R., Mesquita M. A. (2002). Autonomic function in patients with functional dyspepsia assessed by 24-hour heart rate variability. Dig. Dis. Sci. 47 27–31.
    1. Lu C. L., Zou X., Orr W. C., Chen J. D. (1999). Postprandial changes of sympathovagal balance measured by heart rate variability. Dig. Dis. Sci. 44 857–861.
    1. Milkova N., Parsons S. P., Ratcliffe E., Huizinga J. D., Chen J.-H. (2020). On the nature of high-amplitude propagating pressure waves in the human colon. Am. J. Physiol. Gastrointest. Liver Physiol. 318 G646–G660. 10.1152/ajpgi.00386.2019
    1. Nguyen L., Wilson L. A., Miriel L., Pasricha P. J., Kuo B., Hasler W. L., et al. (2020). Autonomic function in gastroparesis and chronic unexplained nausea and vomiting: relationship with etiology, gastric emptying, and symptom severity. Neurogastroenterol. Motil. 32:e13810.
    1. Ouyang X., Li S., Zhou J., Chen J. D. (2020). Electroacupuncture ameliorates gastric hypersensitivity via adrenergic pathway in a rat model of functional dyspepsia. Neuromodulation 23 1137–1143. 10.1111/ner.13154
    1. Parsons S. (2019) Available online at: (accessed August 28, 2020).
    1. Rahman F., Pechnik S., Gross D., Sewell L., Goldstein D. S. (2011). Low frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Clin. Auton. Res. 21 133–141. 10.1007/s10286-010-0098-y
    1. Rahman S., Habel M., Contrada R. J. (2018). Poincaré plot indices as measures of sympathetic cardiac regulation: responses to psychological stress and associations with pre-ejection period. Int. J. Psychophysiol. 133 79–90. 10.1016/j.ijpsycho.2018.08.005
    1. Schächinger H., Weinbacher M., Kiss A., Ritz R., Langewitz W. (2001). Cardiovascular indices of peripheral and central sympathetic activation. Psychosom. Med. 63 788–796. 10.1097/00006842-200109000-00012
    1. Semba T., Fujii Y. (1970). Relationship between venous flow and colonic peristalsis. Jpn. J. Physiol. 20 408–416. 10.2170/jjphysiol.20.408
    1. Shaffer F., Ginsberg J. P. (2017). An overview of heart rate variability metrics and norms. Front. Public Health 5:258. 10.3389/fpubh.2017.00258
    1. Shimizu Y., Chang E. C., Shafton A. D., Ferens D. M., Sanger G. J., Witherington J., et al. (2006). Evidence that stimulation of ghrelin receptors in the spinal cord initiates propulsive activity in the colon of the rat. J. Physiol. 576 329–338. 10.1113/jphysiol.2006.116160
    1. Singh A., Jaryal A. K. (2020). “Neurophysiology of Respiratory System,” in Brain and Lung Crosstalk, eds Prabhakar H., Mahajan C. (Singapore: Springer; ), 1–38. 10.1007/978-981-15-2345-8_1
    1. Smith-Edwards K. M., Najjar S. A., Edwards B. S., Howard M. J., Albers K. M., Davis B. M. (2019). Extrinsic primary afferent neurons link visceral pain to colon motility through a spinal reflex in mice. Gastroenterology 157 522–536.e2.
    1. Szurszewski J., Miller S. M. (2006). “Physiology of prevertebral sympathetic ganglia,” in Physiology of the Gastrointestinal Tract, ed. Johnson L. R. (San Diego, CA: Academic Press; ), 603–627. 10.1016/b978-012088394-3/50025-8
    1. Taché Y., Million M. (2015). Role of corticotropin-releasing factor signaling in stress-related alterations of colonic motility and hyperalgesia. J. Neurogastroenterol. Motil. 21 8–24.
    1. Thayer J. F., Ahs F., Fredrikson M., Sollers J. J., Wager T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 36 747–756. 10.1016/j.neubiorev.2011.11.009
    1. Van Lien R., Neijts M., Willemsen G., de Geus E. J. (2015). Ambulatory measurement of the ECG T-wave amplitude. Psychophysiology 52 225–237. 10.1111/psyp.12300
    1. Yuan Y., Ali M. K., Mathewson K. J., Sharma K., Faiyaz M., Tan W., et al. (2020). Associations between colonic motor patterns and autonomic nervous system activity assessed by high-resolution manometry and concurrent heart rate variability. Front. Neurosci. 13:1447. 10.3389/fnins.2019.01447

Source: PubMed

3
Prenumerera