Sailuotong Prevents Hydrogen Peroxide (H₂O₂)-Induced Injury in EA.hy926 Cells

Sai Wang Seto, Dennis Chang, Wai Man Ko, Xian Zhou, Hosen Kiat, Alan Bensoussan, Simon M Y Lee, Maggie P M Hoi, Genevieve Z Steiner, Jianxun Liu, Sai Wang Seto, Dennis Chang, Wai Man Ko, Xian Zhou, Hosen Kiat, Alan Bensoussan, Simon M Y Lee, Maggie P M Hoi, Genevieve Z Steiner, Jianxun Liu

Abstract

Sailuotong (SLT) is a standardised three-herb formulation consisting of Panax ginseng, Ginkgo biloba, and Crocus sativus designed for the management of vascular dementia. While the latest clinical trials have demonstrated beneficial effects of SLT in vascular dementia, the underlying cellular mechanisms have not been fully explored. The aim of this study was to assess the ability and mechanisms of SLT to act against hydrogen peroxide (H₂O₂)-induced oxidative damage in cultured human vascular endothelial cells (EAhy926). SLT (1-50 µg/mL) significantly suppressed the H₂O₂-induced cell death and abolished the H₂O₂-induced reactive oxygen species (ROS) generation in a concentration-dependent manner. Similarly, H₂O₂ (0.5 mM; 24 h) caused a ~2-fold increase in lactate dehydrogenase (LDH) release from the EA.hy926 cells which were significantly suppressed by SLT (1-50 µg/mL) in a concentration-dependent manner. Incubation of SLT (50 µg/mL) increased superoxide dismutase (SOD) activity and suppressed the H₂O₂-enhanced Bax/Bcl-2 ratio and cleaved caspase-3 expression. In conclusion, our results suggest that SLT protects EA.hy916 cells against H₂O₂-mediated injury via direct reduction of intracellular ROS generation and an increase in SOD activity. These protective effects are closely associated with the inhibition of the apoptotic death cascade via the suppression of caspase-3 activation and reduction of Bax/Bcl-2 ratio, thereby indicating a potential mechanism of action for the clinical effects observed.

Keywords: Sailuotong (SLT); apoptosis; endothelial dysfunction; herbal medicine; reactive oxygen species; vascular dementia.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
(A) Representative images of the effect of Sailuotong (SLT) (50 µg/mL) on EA.hy926 cell morphology injured by H2O2 observed under an inverted/phase contract microscope; (B) Effect of Sailuotong (SLT) (0.1–50 µg/mL) on EA.hy926 cells viability injured by H2O2 (n = 3) measured by MTT assay. Data are presented as means ± S.D. *** p < 0.001 vs. control group; # p < 0.05 vs. H2O2 group; ## p < 0.01 vs. H2O2 group.
Figure 2
Figure 2
(A) Effects of SLT (1–50 µg/mL) on H2O2-induced lactate dehydrogenase (LDH) leakage in EA.hy926 cells (n = 3). Data are presented as means ± S.D. *** p < 0.001 vs. control (CLT) group; # p < 0.05 vs. H2O2 group; (B) Effects of SLT (50 µg/mL) on H2O2-inhibited superoxide dismutase (SOD) activity in EA.hy926 cells (n = 3). Data are presented as means ± S.D. ** p < 0.01 vs. control (CLT) group; # p < 0.05 vs. H2O2 group.
Figure 3
Figure 3
Effects of SLT (1–50 µg/mL) on H2O2-induced intracellular reactive oxygen species (ROS) generation in EA.hy926 cells. Gallic acid (10 µg/mL), a known potent anti-oxidant, was used as a positive control (n = 3). Data are presented as means ± S.D. *** p < 0.05 vs. control group; ### p < 0.001 vs. H2O2 group.
Figure 4
Figure 4
(A) Effects of SLT (50 µg/mL) on H2O2-upregulated Bax/Bcl-2 ratio in EA.hy926 cells (n = 3). Data are presented as means ± S.D. * p < 0.05 vs. control group; # p < 0.05 vs. H2O2 group. Images are representative of three independent experiments. The present or absent of H2O2 and SLT in the culture is indicated by + or − respectively; (B) Effects of SLT (50 µg/mL) on H2O2-upregulated cleaved caspase-3 expression in EA.hy926 cells (n = 3). Result was expressed as expression of cleaved caspase-3 protein relative to β-actin. Data are presented as means ± S.D. * p < 0.05 vs. control group; # p < 0.05 vs. H2O2 group. Images are representative of three independent experiments. The present or absent of H2O2 and SLT in the culture is indicated by + or − respectively.

References

    1. Capone C., Faraco G., Anrather J., Zhou P., Iadecola C. Cyclooxygenase 1-derived prostaglandin E2 and EP1 receptors are required for the cerebrovascular dysfunction induced by angiotensin II. Hypertension. 2010;55:911–917. doi: 10.1161/HYPERTENSIONAHA.109.145813.
    1. Seto S.W., Kwan Y.W., Ngai S.M. Modulatory effect of interleukin-1β on rat isolated basilar artery contraction. Eur. J. Pharmacol. 2006;531:238–245. doi: 10.1016/j.ejphar.2005.12.038.
    1. Alfieri A., Srivastava S., Siow R.C., Cash D., Modo M., Duchen M.R., Fraser P.A., Williams S.C., Mann G.E. Sulforaphane preconditioning of the Nrf2/HO-1 defense pathway protects the cerebral vasculature against blood-brain barrier disruption and neurological deficits in stroke. Free Radic. Biol. Med. 2013;65:1012–1022. doi: 10.1016/j.freeradbiomed.2013.08.190.
    1. Chrissobolis S., Drummond G.R., Faraci F.M., Sobey C.G. Chronic aldosterone administration causes Nox2-mediated increases in reactive oxygen species production and endothelial dysfunction in the cerebral circulation. J. Hypertens. 2014;32:1815–1821. doi: 10.1097/HJH.0000000000000259.
    1. Hashimoto Y., Kaneko Y., Tsukamoto E., Frankowski H., Kouyama K., Kita Y., Niikura T., Aiso S., Bredesen D.E., Matsuoka M., et al. Molecular characterization of neurohybrid cell death induced by Alzheimer’s amyloid-β peptides via p75NTR/PLAIDD. J. Neurochem. 2004;90:549–558. doi: 10.1111/j.1471-4159.2004.02513.x.
    1. Poon C.C., Seto S.W., Au A.L., Zhang Q., Li R.W., Lee W.Y., Leung G.P., Kong S.K., Yeung J.H., Ngai S.M., et al. Mitochondrial monoamine oxidase-A-mediated hydrogen peroxide generation enhances 5-hydroxytryptamine-induced contraction of rat basilar artery. Br. J. Pharmacol. 2010;161:1086–1098. doi: 10.1111/j.1476-5381.2010.00941.x.
    1. Chao C.L., Hou Y.C., Chao P.D., Weng C.S., Ho F.M. The antioxidant effects of quercetin metabolites on the prevention of high glucose-induced apoptosis of human umbilical vein endothelial cells. Br. J. Nutr. 2009;101:1165–1170. doi: 10.1017/S0007114508073637.
    1. Guo S. Using zebrafish to assess the impact of drugs on neural development and function. Expert Opin. Drug Discov. 2009;4:715–726. doi: 10.1517/17460440902988464.
    1. Seto S.W., Chang D., Jenkins A., Bensoussan A., Kiat H. Angiogenesis in Ischemic Stroke and Angiogenic Effects of Chinese Herbal Medicine. J. Clin. Med. 2016;5 doi: 10.3390/jcm5060056.
    1. Blanco M., Rodriguez-Yanez M., Sobrino T., Leira R., Castillo J. Platelets, inflammation, and atherothrombotic neurovascular disease: The role of endothelial dysfunction. Cerebrovasc. Dis. 2005;20:32–39. doi: 10.1159/000089355.
    1. Sorriento D., Santulli G., del Giudice C., Anastasio A., Trimarco B., Iaccarino G. Endothelial cells are able to synthesize and release catecholamines both in vitro and in vivo. Hypertension. 2012;60:129–136. doi: 10.1161/HYPERTENSIONAHA.111.189605.
    1. Santulli G. MicroRNAs and Endothelial (Dys) Function. J. Cell. Physiol. 2016;231:1638–1644. doi: 10.1002/jcp.25276.
    1. Quesada I.M., Lucero A., Amaya C., Meijles D.N., Cifuentes M.E., Pagano P.J., Castro C. Selective inactivation of NADPH oxidase 2 causes regression of vascularization and the size and stability of atherosclerotic plaques. Atherosclerosis. 2015;242:469–475. doi: 10.1016/j.atherosclerosis.2015.08.011.
    1. Wang H., Fotheringham L., Wittchen E.S., Hartnett M.E. Rap1 GTPase Inhibits Tumor Necrosis Factor-alpha-Induced Choroidal Endothelial Migration via NADPH Oxidase- and NF-κB-Dependent Activation of Rac1. Am. J. Pathol. 2015;185:3316–3325. doi: 10.1016/j.ajpath.2015.08.017.
    1. Xu M.C., Gao X.F., Ruan C., Ge Z.R., Lu J.D., Zhang J.J., Zhang Y., Wang L., Shi H.M. miR-103 Regulates Oxidative Stress by Targeting the BCL2/Adenovirus E1B 19 kDa Interacting Protein 3 in HUVECs. Oxidative Med. Cell. Longev. 2015;2015:489647. doi: 10.1155/2015/489647.
    1. Chan E., Wong C.Y., Wan C.W., Kwok C.Y., Wu J.H., Ng K.M., So C.H., Au A.L., Poon C.C., Seto S.W., et al. Evaluation of anti-oxidant capacity of root of Scutellaria baicalensis Georgi, in comparison with roots of Polygonum multiflorum Thunb and Panax ginseng CA Meyer. Am. J. Chin. Med. 2010;38:815–827. doi: 10.1142/S0192415X10008263.
    1. Liang J., Li F., Wei C., Song H., Wu L., Tang Y., Jia J. Rationale and design of a multicenter, phase 2 clinical trial to investigate the efficacy of traditional Chinese medicine SaiLuoTong in vascular dementia. J. Stroke Cerebrovasc. Dis. 2014;23:2626–2634. doi: 10.1016/j.jstrokecerebrovasdis.2014.06.005.
    1. Steiner G.Z., Yeung A., Liu J.X., Camfield D.A., Blasio F.M., Pipingas A., Scholey A.B., Stough C., Chang D.H. The effect of Sailuotong (SLT) on neurocognitive and cardiovascular function in healthy adults: A randomised, double-blind, placebo controlled crossover pilot trial. BMC Complement. Altern. Med. 2016;16:15. doi: 10.1186/s12906-016-0989-0.
    1. Liu J.X.L., Cong W., Wang J., Zhang Y. SLT for Vascular Dementia. China Academy of Chinese Medical Sciences; Beijing, China: 2008.
    1. Xu L., Liu J.X., Cong W.H., Wei C.E. Effects of Weinaokang capsule on intracephalic cholinergic system and capability of scavenging free radicas in chronic cerebral hypoperfusion rats. Zhongguo Zhong Yao Za Zhi. 2008;33:531–534.
    1. Liu J. Ph.D. Thesis. The University of Western Sydney; Sydney, Australia: 2008. Development of an Evidence-Based Chinese Herbal Medicine for the Management of Vascular Dementia.
    1. Zheng Y.Q., Liu J.X., Wang J.N., Xu L. Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia. Brain Res. 2007;1138:86–94. doi: 10.1016/j.brainres.2006.12.064.
    1. Dong X., Zheng L., Lu S., Yang Y. Neuroprotective effects of pretreatment of ginsenoside Rb1 on severe cerebral ischemia-induced injuries in aged mice: Involvement of anti-oxidant signaling. Geriatr. Gerontol. Int. 2015 doi: 10.1111/ggi.12699.
    1. Jiang X., Nie B., Fu S., Hu J., Yin L., Lin L., Wang X., Lu P., Xu X.M. EGb761 protects hydrogen peroxide-induced death of spinal cord neurons through inhibition of intracellular ROS production and modulation of apoptotic regulating genes. J. Mol. Neurosci. 2009;38:103–113. doi: 10.1007/s12031-008-9140-0.
    1. Ren D.C., Du G.H., Zhang J.T. Protective effect of ginkgo biloba extract on endothelial cell against damage induced by oxidative stress. J. Cardiovasc. Pharmacol. 2002;40:809–814. doi: 10.1097/00005344-200212000-00001.
    1. Cho J.H., Sung J.H., Cho E.H., Won C.K., Lee H.J., Kim M.O., Koh P.O. Gingko biloba Extract (EGb 761) prevents ischemic brain injury by activation of the Akt signaling pathway. Am. J. Chin. Med. 2009;37:547–555. doi: 10.1142/S0192415X09007041.
    1. Zheng Y.Q., Liu J.X., Li X.Z., Xu L. Effects and mechanism of Weinaokang on reperfusion-induced vascular injury to cerebral microvessels after global cerebral ischemia. Chin. J. Integr. Med. 2010;16:145–150. doi: 10.1007/s11655-010-0145-5.
    1. Seto S.W., Chang D., Ko W.M., Kiat H., Bensoussan A., Lee S.M.Y., Hoi M.P.M., Liu J. Angiogenic effects of Sailuotong (SLT) on EA.hy926 cell in vitro and zebrafish in vivo. Int. J. Mol. Sci. 2017 manuscript under preparation.
    1. Chen C.H., Liu T.Z., Chen C.H., Wong C.H., Chen C.H., Lu F.J., Chen S.C. The efficacy of protective effects of tannic acid, gallic acid, ellagic acid, and propyl gallate against hydrogen peroxide-induced oxidative stress and DNA damages in IMR-90 cells. Mol. Nutr. Food Res. 2007;51:962–968. doi: 10.1002/mnfr.200600230.
    1. Seto S.W., Yang G.Y., Kiat H., Bensoussan A., Kwan Y.W., Chang D. Diabetes Mellitus, Cognitive Impairment, and Traditional Chinese Medicine. Int. J. Endocrinol. 2015;2015:810439. doi: 10.1155/2015/810439.
    1. Abdel-Rahman E.A., Mahmoud A.M., Khalifa A.M., Ali S.S. Physiological and pathophysiological reactive oxygen species as probed by EPR spectroscopy: The underutilized research window on muscle ageing. J. Physiol. 2016;594:4591–4613. doi: 10.1113/JP271471.
    1. Forstermann U. Nitric oxide and oxidative stress in vascular disease. Pflugers Arch. 2010;459:923–939. doi: 10.1007/s00424-010-0808-2.
    1. Spanier G., Xu H., Xia N., Tobias S., Deng S., Wojnowski L., Forstermann U., Li H. Resveratrol reduces endothelial oxidative stress by modulating the gene expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPx1) and NADPH oxidase subunit (Nox4) J. Physiol. Pharmacol. 2009;60:111–116.
    1. Hermann C., Zeiher A.M., Dimmeler S. Shear stress inhibits H2O2-induced apoptosis of human endothelial cells by modulation of the glutathione redox cycle and nitric oxide synthase. Arterioscler. Thromb. Vasc. Biol. 1997;17:3588–3592. doi: 10.1161/01.ATV.17.12.3588.
    1. Aliev G., Palacios H.H., Walrafen B., Lipsitt A.E., Obrenovich M.E., Morales L. Brain mitochondria as a primary target in the development of treatment strategies for Alzheimer disease. Int. J. Biochem. Cell Biol. 2009;41:1989–2004. doi: 10.1016/j.biocel.2009.03.015.
    1. Breton-Romero R., Lamas S. Hydrogen peroxide signaling in vascular endothelial cells. Redox Biol. 2014;2:529–534. doi: 10.1016/j.redox.2014.02.005.
    1. Asahina T., Kashiwagi A., Nishio Y., Ikebuchi M., Harada N., Tanaka Y., Takagi Y., Saeki Y., Kikkawa R., Shigeta Y. Impaired activation of glucose oxidation and NADPH supply in human endothelial cells exposed to H2O2 in high-glucose medium. Diabetes. 1995;44:520–526. doi: 10.2337/diab.44.5.520.
    1. Belkhiri A., Richards C., Whaley M., McQueen S.A., Orr F.W. Increased expression of activated matrix metalloproteinase-2 by human endothelial cells after sublethal H2O2 exposure. Lab. Investig. 1997;77:533–539.
    1. Jia L.Q., Yang G.L., Ren L., Chen W.N., Feng J.Y., Cao Y., Zhang L., Li X.T., Lei P. Tanshinone IIA reduces apoptosis induced by hydrogen peroxide in the human endothelium-derived EA.hy926 cells. J. Ethnopharmacol. 2012;143:100–108. doi: 10.1016/j.jep.2012.06.007.
    1. Qian J., Jiang F., Wang B., Yu Y., Zhang X., Yin Z., Liu C. Ophiopogonin D prevents H2O2-induced injury in primary human umbilical vein endothelial cells. J. Ethnopharmacol. 2010;128:438–445. doi: 10.1016/j.jep.2010.01.031.
    1. Giray B., Kan E., Bali M., Hincal F., Basaran N. The effect of vitamin E supplementation on antioxidant enzyme activities and lipid peroxidation levels in hemodialysis patients. Clin. Chim. Acta. 2003;338:91–98. doi: 10.1016/j.cccn.2003.07.020.
    1. Hao X.L., Kang Y., Li J.K., Li Q.S., Liu E.L., Liu X.X. Protective effects of hyperoside against H2O2-induced apoptosis in human umbilical vein endothelial cells. Mol. Med. Rep. 2016;14:399–405. doi: 10.3892/mmr.2016.5235.
    1. Buccellato L.J., Tso M., Akinci O.I., Chandel N.S., Budinger G.R. Reactive oxygen species are required for hyperoxia-induced Bax activation and cell death in alveolar epithelial cells. J. Biol. Chem. 2004;279:6753–6760. doi: 10.1074/jbc.M310145200.
    1. Gupta S., Afaq F., Mukhtar H. Involvement of nuclear factor-κB, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells. Oncogene. 2002;21:3727–3738. doi: 10.1038/sj.onc.1205474.
    1. Vogel M.W. Cell death, Bcl-2, Bax, and the cerebellum. Cerebellum. 2002;1:277–287. doi: 10.1080/147342202320883588.
    1. Choi Y.J., Kang J.S., Park J.H., Lee Y.J., Choi J.S., Kang Y.H. Polyphenolic flavonoids differ in their antiapoptotic efficacy in hydrogen peroxide-treated human vascular endothelial cells. J. Nutr. 2003;133:985–991.
    1. Fuentes-Prior P., Salvesen G.S. The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem. J. 2004;384:201–232. doi: 10.1042/BJ20041142.
    1. Acharya N.K., Goldwaser E.L., Forsberg M.M., Godsey G.A., Johnson C.A., Sarkar A., DeMarshall C., Kosciuk M.C., Dash J.M., Hale C.P., et al. Sevoflurane and Isoflurane induce structural changes in brain vascular endothelial cells and increase blood-brain barrier permeability: Possible link to postoperative delirium and cognitive decline. Brain Res. 2015;1620:29–41. doi: 10.1016/j.brainres.2015.04.054.
    1. Bennett S., Grant M.M., Aldred S. Oxidative stress in vascular dementia and Alzheimer’s disease: A common pathology. J. Alzheimers Dis. 2009;17:245–257.
    1. Baskys A., Hou A.C. Vascular dementia: Pharmacological treatment approaches and perspectives. Clin. Interv. Aging. 2007;2:327–335. doi: 10.1016/j.exger.2012.07.002.
    1. Khan A., Kalaria R.N., Corbett A., Ballard C. Update on Vascular Dementia. J. Geriatr. Psychiatry Neurol. 2016;29:281–301. doi: 10.1177/0891988716654987.
    1. Cong W.H., Liu J.X., Xu L. Effects of extracts of Ginseng and Ginkgo biloba on hippocampal acetylcholine and monoamines in PDAP-pV717I transgenic mice. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2007;27:810–813.
    1. Coelho-Santos V., Socodato R., Portugal C., Leitao R.A., Rito M., Barbosa M., Couraud P.O., Romero I.A., Weksler B., Minshall R.D., et al. Methylphenidate-triggered ROS generation promotes caveolae-mediated transcytosis via Rac1 signaling and c-Src-dependent caveolin-1 phosphorylation in human brain endothelial cells. Cell. Mol. Life Sci. 2016;73:4701–4716. doi: 10.1007/s00018-016-2301-3.
    1. Escribano-Lopez I., Diaz-Morales N., Rovira-Llopis S., de Maranon A.M., Orden S., Alvarez A., Banuls C., Rocha M., Murphy M.P., Hernandez-Mijares A., et al. The mitochondria-targeted antioxidant MitoQ modulates oxidative stress, inflammation and leukocyte-endothelium interactions in leukocytes isolated from type 2 diabetic patients. Redox Biol. 2016;10:200–205. doi: 10.1016/j.redox.2016.10.017.
    1. Xie W., Santulli G., Reiken S.R., Yuan Q., Osborne B.W., Chen B.X., Marks A.R. Mitochondrial oxidative stress promotes atrial fibrillation. Sci. Rep. 2015;5:11427. doi: 10.1038/srep11427.
    1. Flora S.J., Mittal M., Mehta A. Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J. Med. Res. 2008;128:501–523.
    1. Liu B., Ren K.D., Peng J.J., Li T., Luo X.J., Fan C., Yang J.F., Peng J. Suppression of NADPH oxidase attenuates hypoxia-induced dysfunctions of endothelial progenitor cells. Biochem. Biophys. Res. Commun. 2016 doi: 10.1016/j.bbrc.2016.11.161.

Source: PubMed

3
Prenumerera