Functional respiratory imaging, regional strain, and expiratory time constants at three levels of positive end expiratory pressure in an ex vivo pig model

William R Henderson, Yannick Molgat-Seon, Wim Vos, Rachel Lipson, Francisca Ferreira, Miranda Kirby, Cedric Van Holsbeke, Paolo B Dominelli, Donald E G Griesdale, Mypinder Sekhon, Harvey O Coxson, John Mayo, A William Sheel, William R Henderson, Yannick Molgat-Seon, Wim Vos, Rachel Lipson, Francisca Ferreira, Miranda Kirby, Cedric Van Holsbeke, Paolo B Dominelli, Donald E G Griesdale, Mypinder Sekhon, Harvey O Coxson, John Mayo, A William Sheel

Abstract

Heterogeneity in regional end expiratory lung volume (EELV) may lead to variations in regional strain (ε). High ε levels have been associated with ventilator-associated lung injury (VALI). While both whole lung and regional EELV may be affected by changes in positive end-expiratory pressure (PEEP), regional variations are not revealed by conventional respiratory system measurements. Differential rates of deflation of adjacent lung units due to regional variation in expiratory time constants (τE) may create localized regions of ε that are significantly greater than implied by whole lung measures. We used functional respiratory imaging (FRI) in an ex vivo porcine lung model to: (i) demonstrate that computed tomography (CT)-based imaging studies can be used to assess global and regional values of ε and τE and, (ii) demonstrate that the manipulation of PEEP will cause measurable changes in total and regional ε and τE values. Our study provides three insights into lung mechanics. First, image-based measurements reveal egional variation that cannot be detected by traditional methods such as spirometry. Second, the manipulation of PEEP causes global and regional changes in R, E, ε and τE values. Finally, regional ε and τE were correlated in several lobes, suggesting the possibility that regional τE could be used as a surrogate marker for regional ε.

Keywords: Positive end‐expiratory pressure; strain; time constant.

© 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

Figures

Figure 1
Figure 1
Pictoral representation of lung lobes and airways using composite 3D airway images at three positive end expiratory pressures. PEEP 0/5/10, positive end expiratory pressure of 0/5/10 cm H2O. Red, right anterior lobe; Yellow, right caudal lobe; Orange, right diaphragmatic lobe; Green, right internal lobe; Purple, left diaphragmatic lobe; Light blue, left caudal lobe; Dark blue, left anterior lobe.
Figure 2
Figure 2
The effect of positive end expiratory pressure (PEEP) in expiratory resistance as calculated by functional respiratory imaging (FRI). The extremes of the box represent the quartiles and the black line represents the median. The whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box. Open circles represent data points outside of this range.
Figure 3
Figure 3
The effect of lobe on expiratory resistance as calculated by functional respiratory imaging (FRI). RAL, right anterior lobe; RCL, right caudal lobe; RDL, right diaphragmatic lobe; RIL, right internal lobe; LDL, left diaphragmatic lobe; LCL, left caudal lobe; LAL, left anterior lobe. The extremes of the box represent the quartiles and the black line represents the median. The whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box. Open circles represent data points outside of this range.
Figure 4
Figure 4
The effect of positive end expiratory pressure (PEEP) in lung elastance as calculated by functional respiratory imaging (FRI). The extremes of the box represent the quartiles and the black line represents the median. The whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box. Open circles represent data points outside of this range.
Figure 5
Figure 5
The effect of lobe in lung elastance as calculated by functional respiratory imaging (FRI). RAL, right anterior lobe; RCL, right caudal lobe; RDL, right diaphragmatic lobe; RIL, right internal lobe; LDL, left diaphragmatic lobe; LCL, left caudal lobe; LAL, left anterior lobe. The extremes of the box represent the quartiles and the black line represents the median. The whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box. Open circles represent data points outside of this range.
Figure 6
Figure 6
The effect of positive end expiratory pressure (PEEP) on strain as calculated by functional respiratory imaging (FRI). The extremes of the box represent the quartiles and the black line represents the median. The whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box. Open circles represent data points outside of this range.
Figure 7
Figure 7
The effect of lobe on strain as calculated by functional respiratory imaging (FRI). RAL, right anterior lobe; RCL, right caudal lobe; RDL, right diaphragmatic lobe; RIL, right internal lobe; LDL, left diaphragmatic lobe; LCL, left caudal lobe; LAL, left anterior lobe. The extremes of the box represent the quartiles and the black line represents the median. The whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box. Open circles represent data points outside of this range.
Figure 8
Figure 8
The effect of positive end expiratory pressure (PEEP) on the expiratory time constant as calculated by functional respiratory imaging (FRI). The extremes of the box represent the quartiles and the black line represents the median. The whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box. Open circles represent data points outside of this range.
Figure 9
Figure 9
The effect of lobe on the expiratory time constant as calculated by functional respiratory imaging (FRI). RAL, right anterior lobe; RCL, right caudal lobe; RDL, right diaphragmatic lobe; RIL, right internal lobe; LDL, left diaphragmatic lobe; LCL, left caudal lobe; LAL, left anterior lobe. The extremes of the box represent the quartiles and the black line represents the median. The whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box. Open circles represent data points outside of this range.

References

    1. Al‐Rawas, N. , Banner M. J., Euliano N. R., Tams C. G., Brown J., Martin A. D., et al. 2013. Expiratory time constant for determinations of plateau pressure, respiratory system compliance, and total resistance. Crit. Care 17:R23.
    1. ARDSNetwork . 2000. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 342:1301–1308.
    1. Blankman, P. , Hasan D., Bikker I. G., and Gommers D.. 2016. Lung stress and strain calculations in mechanically ventilated patients in the intensive care unit. Acta Anaesthesiol. Scand. 60:69–78.
    1. Brower, R. G. , Lanken P. N., MacIntyre N., Matthay M. A., Morris A., Ancukiewicz M., et al. 2004. Higher versus lower positive end‐expiratory pressures in patients with the acute respiratory distress syndrome. N. Engl. J. Med. 351:327–336.
    1. Brunner, J. X. , and Wysocki M.. 2009. Is there an optimal breath pattern to minimize stress and strain during mechanical ventilation? Intensive Care Med. 35:1479–1483.
    1. Chiumello, D. , Carlesso E., and Cadringher P.. 2008. Lung stress and strain during mechanical ventilation of the acute respiratory distress syndrome. J. Respir. 178:346–355.
    1. Cressoni, M. , Cadringher P., Chiurazzi C., Amini M., Gallazzi E., Marino A., et al. 2014. Lung inhomogeneity in patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 189:149–158.
    1. De Backer, J. W. , Vos W. G., Gorlé C. D., Germonpré P., Partoens B., Wuyts F. L., et al. 2008. Flow analyses in the lower airways: patient‐specific model and boundary conditions. Med. Eng. Phys. 30:872–879.
    1. De Backer, L. A. , Vos W., De Backer J., Van Holsbeke C., Vinchurkar S., and De Backer W.. 2012. The acute effect of budesonide/formoterol in COPD: a multi‐slice computed tomography and lung function study. Eur. Respir. J. 40:298–305.
    1. De Backer, W. , Vos W., Van Holsbeke C., Vinchurkar S., Claes R., Hufkens A., et al. 2014. The effect of roflumilast in addition to LABA/LAMA/ICS treatment in COPD patients. Eur. Respir. J. 44:527–529.
    1. Eissa, N. T. , Ranieri V. M., Corbeil C., Chassé M., Robatto F. M., Braidy J., et al. 1991. Analysis of behavior of the respiratory system in ARDS patients: effects of flow, volume, and time. J. Appl. Physiol. 70:2719–2729.
    1. Fuld, M. K. , Easley R. B., Saba O. I., Chon D., Reinhardt J. M., Hoffman E. A., et al. 2008. CT‐measured regional specific volume change reflects regional ventilation in supine sheep. J. Appl. Physiol. 104:1177–1184.
    1. Gattinoni, L. , Carlesso E., Cadringher P., Valenza F., Vagginelli F., and Chiumello D.. 2003. Physical and biological triggers of ventilator‐induced lung injury and its prevention. Eur. Respir. J. 22:15s–25s.
    1. Gattinoni, L. , Carlesso E., and Caironi P.. 2012. Stress and strain within the lung. Curr. Opin. Crit. Care 18:42–47.
    1. Goligher, E. C. , Kavanagh B. P., Rubenfeld G. D., Adhikari N. K. J., Pinto R., Fan E., et al. 2014. Oxygenation response to positive end‐expiratory pressure predicts mortality in acute respiratory distress syndrome. A secondary analysis of the LOVS and ExPress trials. Am. J. Respir. Crit. Care Med. 190:70–76.
    1. González‐López, A. , García‐Prieto E., Batalla‐Solís E., Amado‐Rodríguez L., Avello N., Blanch L., et al. 2012. Lung strain and biological response in mechanically ventilated patients. Intensive Care Med. 38:240–247.
    1. Grundy, D. 2015. Principles and standards for reporting animal experiments in The Journal of Physiology and Experimental Physiology. Exp. Physiol. 100:755–758.
    1. Guérin, C. , et al. 2013. Prone positioning in severe acute respiratory distress syndrome. N. Engl. J. Med. 368:2159–2168.
    1. Hickling, K. G. 2002. Reinterpreting the pressure‐volume curve in patients with acute respiratory distress syndrome. Curr. Opin. Crit. Care 8:32–38.
    1. Kaczka, D. W. , Hager D. N., Hawley M. L., and Simon B. A.. 2005. Quantifying mechanical heterogeneity in canine acute lung injury. Anesthesiology 103:306–312.
    1. Kaczka, D. W. , Cao K., Christensen G. E., Bates J. H. T., and Simon B. A.. 2011a. Analysis of regional mechanics in canine lung injury using forced oscillations and 3D image registration. Ann. Biomed. Eng. 39:1112–1124.
    1. Kaczka, D. W. , Lutchen K. R., and Hantos Z.. 2011b. Emergent behavior of regional heterogeneity in the lung and its effects on respiratory impedance. J. Appl. Physiol. 110:1473–1481.
    1. Lin, C.‐L. , Tawhai M. H., McLennan G., and Hoffman E. A.. 2009. Computational fluid dynamics. IEEE Eng. Med. Biol. Mag. 28: 25–33.
    1. Loring, S. H. , O'Donnell C. R., Behazin N., Malhotra A., Sarge T., Ritz R., et al. 2010. Esophageal pressures in acute lung injury: do they represent artifact or useful information about transpulmonary pressure, chest wall mechanics, and lung stress? J. Appl. Physiol. 108:515–522.
    1. Lourens, M. S. , van den Berg B., Aerts J. G., Verbraak A. F., Hoogsteden H. C., and Bogaard J. M.. 2000. Expiratory time constants in mechanically ventilated patients with and without COPD. Intensive Care Med. 26:1612–1618.
    1. Mead, J. , Takishima T., and Leith D.. 1970. Stress distribution pulmonary in lungs: a model of elasticity. J. Appl. Physiol. 28:596–608.
    1. Mentzelopoulos, S. D. , Roussos C., and Zakynthinos S. G.. 2005. Prone position reduces lung stress and strain in severe acute respiratory distress syndrome. Eur. Respir. J. 25:534–544.
    1. Mertens, M. , Tabuchi A., Meissner S., Krueger A., Schirrmann K., Kertzscher U., et al. 2009. Alveolar dynamics in acute lung injury: heterogeneous distension rather than cyclic opening and collapse. Crit. Care Med. 37:2604–2611.
    1. Nakagawa, S. , and Schielzeth H.. 2013. A general and simple method for obtaining R2 from generalized linear mixed‐effects models. Methods Ecol. Evol. 4: 133–142.
    1. Otto, C. M. , Markstaller K., Kajikawa O., Karmrodt J., Syring R. S., Pfeiffer B., et al. 2008. Spatial and temporal heterogeneity of ventilator‐associated lung injury after surfactant depletion. J. Appl. Physiol. 104:1485–1494.
    1. da Paula, L. F. S. C. , Wellman T., Spieth P. M., Güldner A., Venegas J. G., Gama de Abreu M., et al. 2016. Regional tidal lung strain in mechanically ventilated normal lungs. J. Appl. Physioljap. 00861:2015.
    1. Perchiazzi, G. , Rylander C., Vena A., Derosa S., Polieri D., Fiore T., et al. 2011. Lung regional stress and strain as a function of posture and ventilatory mode. J. Appl. Physiol. 110:1374–1383.
    1. Protti, A. , Chiumello D., Cressoni M., Carlesso E., Mietto C., Berto V., et al. 2009. Relationship between gas exchange response to prone position and lung recruitability during acute respiratory failure. Intensive Care Med. 35:1011–1017.
    1. Protti, A. , Cressoni M., Santini A., Langer T., Mietto C., Febres D., et al. 2011. Lung stress and strain during mechanical ventilation: any safe threshold? Am. J. Respir. Crit. Care Med. 183:1354–1362.
    1. Protti, A. , Andreis D. T., Monti M., Santini A., Sparacino C. C., Langer T., et al. 2013. Lung stress and strain during mechanical ventilation: any difference between statics and dynamics? Crit. Care Med. 41:1046–1055.
    1. Pulletz, S. , Kott M., Elke G., Schädler D., Vogt B., Weiler N., et al. 2012. Dynamics of regional lung aeration determined by electrical impedance tomography in patients with acute respiratory distress syndrome. Multidiscip. Respir. Med. 7: 1–9.
    1. Santana, M. C. E. , Garcia C. S. N. B., Xisto D. G., Nagato L. K. S., Lassance R. M., Prota L. F. M., et al. 2009. Prone position prevents regional alveolar hyperinflation and mechanical stress and strain in mild experimental acute lung injury. Respir. Physiol. Neurobiol. 167:181–188.
    1. Schiller, H. J. , McCann U. G., Carney D. E., Gatto L. A., Steinberg J. M., and Nieman G. F.. 2001. Altered alveolar mechanics in the acutely injured lung. Crit. Care Med. 29:1049–1055.
    1. Vos, W. , De Backer J., Poli G., De Volder A., Ghys L., Van Holsbeke C., et al. 2013. Novel functional imaging of changes in small airways of patients treated with extrafine beclomethasone/formoterol. Respiration 86:393–401.
    1. Vos, W. , Hajian B., De Backer J., Van Holsbeke C., Vinchurkar S., Claes R., et al. 2016. Functional respiratory imaging to assess the interaction between systemic roflumilast and inhaled ICS/LABA/LAMA. Int. J. Chron. Obstruct. Pulmon. Dis. 11:263–271.
    1. Wolf, G. K. , Gómez‐Laberge C., Rettig J. S., Vargas S. O., Smallwood C. D., Prabhu S. P., et al. 2013. Mechanical ventilation guided by electrical impedance tomography in experimental acute lung injury. Crit. Care Med. 41:1296–1304.

Source: PubMed

3
Prenumerera