Preoperative and intraoperative predictors of postoperative acute respiratory distress syndrome in a general surgical population

James M Blum, Michael J Stentz, Ronald Dechert, Elizabeth Jewell, Milo Engoren, Andrew L Rosenberg, Pauline K Park, James M Blum, Michael J Stentz, Ronald Dechert, Elizabeth Jewell, Milo Engoren, Andrew L Rosenberg, Pauline K Park

Abstract

Background: Acute respiratory distress syndrome (ARDS) is a devastating condition with an estimated mortality exceeding 30%. There are data suggesting risk factors for ARDS development in high-risk populations, but few data are available in lower incidence populations. Using risk-matched analysis and a combination of clinical and research data sets, we determined the incidence and risk factors for the development of ARDS in this general surgical population.

Methods: We conducted a review of common adult surgical procedures completed between June 1, 2004 and May 31, 2009 using an anesthesia information system. This data set was merged with an ARDS registry and an institutional death registry. Preoperative variables were subjected to multivariate analysis. Matching and multivariate regression was used to determine intraoperative factors associated with ARDS development.

Results: In total, 50,367 separate patient admissions were identified, and 93 (0.2%) of these patients developed ARDS. Preoperative risk factors for ARDS development included American Society of Anesthesiologist status 3-5 (odds ratio [OR] 18.96), emergent surgery (OR 9.34), renal failure (OR 2.19), chronic obstructive pulmonary disease (OR 2.16), number of anesthetics during the admission (OR 1.37), and male sex (OR 1.65). After matching, intraoperative risk factors included drive pressure (OR 1.17), fraction inspired oxygen (OR 1.02), crystalloid administration in liters (1.43), and erythrocyte transfusion (OR 5.36).

Conclusions: ARDS is a rare condition postoperatively in the general surgical population and is exceptionally uncommon in low American Society of Anesthesiologists status patients undergoing scheduled surgery. Analysis after matching suggests that ARDS development is associated with median drive pressure, fraction inspired oxygen, crystalloid volume, and transfusion.

Figures

Figure 1. Method of case exclusion
Figure 1. Method of case exclusion
* Ventilator setting exclusion criteria include Vt PEEP>25, 5>RR>40,21>FiO2>100 ** Other exclusion criteria for which no additional patients were excluded were: 45mmHg>PaO2>600mmHg, PIP epochs200, FFP>200, Colloid

Figure 2. Postoperative Day of ARDS Onset

Figure 2. Postoperative Day of ARDS Onset

ARDS = Acute Respiratory Distress Syndrome

Figure 2. Postoperative Day of ARDS Onset
ARDS = Acute Respiratory Distress Syndrome
Figure 2. Postoperative Day of ARDS Onset
Figure 2. Postoperative Day of ARDS Onset
ARDS = Acute Respiratory Distress Syndrome

References

    1. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149:818–24.
    1. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med. 2000;342:1301–8.
    1. Dulu A, Pastores S, Park B, Riedel E, Rusch V, Halpern N. Prevalence and mortality of acute lung injury and ARDS after lung resection. Chest. 2006;130:73–8.
    1. Fernandez-Perez ER, Keegan MT, Brown DR, Hubmayr RD, Gajic O. Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology. 2006;105:14–8.
    1. Fernandez-Perez ER, Sprung J, Afessa B, Warner DO, Vachon CM, Schroeder DR, Brown DR, Hubmayr RD, Gajic O. Intraoperative ventilator settings and acute lung injury after elective surgery: A nested case control study. Thorax. 2009;64:121–7.
    1. Gajic O, Dabbagh O, Park PK, Adesanya A, Chang SY, Hou P, Anderson H, 3rd, Hoth JJ, Mikkelsen ME, Gentile NT, Gong MN, Talmor D, Bajwa E, Watkins TR, Festic E, Yilmaz M, Iscimen R, Kaufman DA, Esper AM, Sadikot R, Douglas I, Sevransky J, Malinchoc M. Early identification of patients at risk of acute lung injury: Evaluation of lung injury prediction score in a multicenter cohort study. Am J Respir Crit Care Med. 2011;183:462–70.
    1. Licker M, de Perrot M, Spiliopoulos A, Robert J, Diaper J, Chevalley C, Tschopp JM. Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesth Analg. 2003;97:1558–65.
    1. Licker M, Diaper J, Villiger Y, Spiliopoulos A, Licker V, Robert J, Tschopp JM. Impact of intraoperative lung-protective interventions in patients undergoing lung cancer surgery. Crit Care. 2009;13:R41.
    1. Hughes CG, Weavind L, Banerjee A, Mercaldo ND, Schildcrout JS, Pandharipande PP. Intraoperative risk factors for acute respiratory distress syndrome in critically ill patients. Anesth Analg. 2010;111:464–7.
    1. Blum JM, Fetterman DM, Park PK, Morris M, Rosenberg AL. A description of intraoperative ventilator management and ventilation strategies in hypoxic patients. Anesth Analg. 2010;110:1616–22.
    1. Blum JM, Maile M, Park PK, Morris M, Jewell E, Dechert R, Rosenberg AL. A description of intraoperative ventilator management in patients with acute lung injury and the use of lung protective ventilation strategies. Anesthesiology. 2011;115:75–82.
    1. Kheterpal S, O'Reilly M, Englesbe MJ, Rosenberg AL, Shanks AM, Zhang L, Rothman ED, Campbell DA, Tremper KK. Preoperative and intraoperative predictors of cardiac adverse events after general, vascular, and urological surgery. Anesthesiology. 2009;110:58–66.
    1. Kheterpal S, Tremper KK, Englesbe MJ, O'Reilly M, Shanks AM, Fetterman DM, Rosenberg AL, Swartz RD. Predictors of postoperative acute renal failure after noncardiac surgery in patients with previously normal renal function. Anesthesiology. 2007;107:892–902.
    1. Levitt JE, Matthay MA. The utility of clinical predictors of acute lung injury: Towards prevention and earlier recognition. Expert Rev Respir Med. 2010;4:785–97.
    1. Park JS, Kim HK, Kim K, Kim J, Shim YM, Choi YS. Prediction of acute pulmonary complications after resection of lung cancer in patients with preexisting interstitial lung disease. Thorac Cardiovasc Surg. 2011;59:148–52.
    1. Mashour GA, Shanks AM, Kheterpal S. Perioperative stroke and associated mortality after noncardiac, nonneurologic surgery. Anesthesiology. 2011;114:1289–96.
    1. Mhyre JM, Ramachandran SK, Kheterpal S, Morris M, Chan PS. Delayed time to defibrillation after intraoperative and periprocedural cardiac arrest. Anesthesiology. 2010;113:782–93.
    1. Austin P, Tu J. Bootstrap methods for developing predictive models. Am Stat. 2004;58:131–7.
    1. Austin P. Absolute risk reductions, relative risks, relative risk reductions, and numbers needed to treat can be obtained from a logistic regression model. J Clin Epidemiol. 2010;63:2–6.
    1. Bender R, Kruss O. Methods to calculate relative risks, risk differences, and numbers needed to treat from logistic regression. J Clin Epidemiol. 2010;63:7–8.
    1. Fushiki T. Estimation of prediction error by using k-fold cross-validation. Stat Comput. 2009;21:137–46.
    1. Hansen B, Klopfer S. Optimal full matching and related designs via network flows. J Comput Graph Stat. 2006;1107:1–27.
    1. Ho D, Imai K, King G, Stuart E. Matchit: Nonparametric preprocessing for parametric causal inference. J Stat Softw. 2011;42
    1. Breslow NE, Day NE. Statistical methods in cancer research Volume I - The analysis of case-control studies. IARC Sci Publ. 1980:5–338.
    1. Phua J, Badia J, Adhikari NKJ, Friedrich J, Fowler R, Singh J, Scales D, Stather D, Li A, Jones A, Gattas D, Hallett D, Tomlinson G, Stewart T, Ferguson N. Has mortality from acute respiratory distress syndrome decreased over time?: A systematic review. Am J Respir Crit Care Med. 2009;179:220–7.
    1. Arozullah AM, Daley J, Henderson WG, Khuri SF. Multifactorial risk index for predicting postoperative respiratory failure in men after major noncardiac surgery. The National Veterans Administration Surgical Quality Improvement Program. Ann Surg. 2000;232:242–53.
    1. Johnson RG, Arozullah AM, Neumayer L, Henderson WG, Hosokawa P, Khuri SF. Multivariable predictors of postoperative respiratory failure after general and vascular surgery: Results from the patient safety in surgery study. J Am Coll Surg. 2007;204:1188–98.
    1. Lawrence VA, Cornell JE, Smetana GW. Strategies to reduce postoperative pulmonary complications after noncardiothoracic surgery: Systematic review for the American College of Physicians. Ann Intern Med. 2006;144:596–608.
    1. Qaseem A, Snow V, Fitterman N, Hornbake ER, Lawrence VA, Smetana GW, Weiss K, Owens DK, Aronson M, Barry P, Casey DE, Jr, Cross JT, Jr, Sherif KD, Weiss KB. Risk assessment for and strategies to reduce perioperative pulmonary complications for patients undergoing noncardiothoracic surgery: A guideline from the American College of Physicians. Ann Intern Med. 2006;144:575–80.
    1. Smetana GW, Lawrence VA, Cornell JE. Preoperative pulmonary risk stratification for noncardiothoracic surgery: Systematic review for the American College of Physicians. Ann Intern Med. 2006;144:581–95.
    1. Jeon K, Yoon JW, Suh GY, Kim J, Kim K, Yang M, Kim H, Kwon OJ, Shim YM. Risk factors for post-pneumonectomy acute lung injury/acute respiratory distress syndrome in primary lung cancer patients. Anaesth Intensive Care. 2009;37:14–9.
    1. Lee JW. Beta2 adrenergic agonists in acute lung injury? The heart of the matter. Crit Care. 2009;13:1011.
    1. Matthay MA, Brower RG, Carson S, Douglas IS, Eisner M, Hite D, Holets S, Kallet RH, Liu KD, MacIntyre N, Moss M, Schoenfeld D, Steingrub J, Thompson BT. Randomized, placebo-controlled clinical trial of an aerosolized beta-agonist for treatment of acute lung injury. Am J Respir Crit Care Med. 2011;184:561–8.
    1. Meduri GU, Golden E, Freire AX, Taylor E, Zaman M, Carson SJ, Gibson M, Umberger R. Methylprednisolone infusion in early severe ARDS: Results of a randomized controlled trial. Chest. 2007;131:954–63.
    1. Perkins GD, McAuley DF, Thickett DR, Gao F. The beta-agonist lung injury trial (BALIT): A randomized placebo-controlled clinical trial. Am J Respir Crit Care Med. 2006;173:281–7.
    1. Smith A, Brown R, Jugg B, Platt J, Mann T, Masey C, Jenner J, Rice P. The effect of steroid treatment with inhaled budesonide or intravenous methylprednisolone on phosgene-induced acute lung injury in a porcine model. Mil Med. 2009;174:1287–94.
    1. Brochard L, Roudot-Thoraval F, Roupie E, Delclaux C, Chastre J, Fernandez-Mondejar E, Clementi E, Mancebo J, Factor P, Matamis D, Ranieri M, Blanch L, Rodi G, Mentec H, Dreyfuss D, Ferrer M, Brun-Buisson C, Tobin M, Lemaire F. Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The multicenter trail group on tidal volume reduction in ARDS. Am J Respir Crit Care Med. 1998;158:1831–8.
    1. Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Thompson BT. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351:327–36.
    1. Brower RG, Shanholtz CB, Fessler HE, Shade DM, White P, Jr, Wiener CM, Teeter JG, Dodd-o JM, Almog Y, Piantadosi S. Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med. 1999;27:1492–8.
    1. Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, Davies AR, Hand LE, Zhou Q, Thabane L, Austin P, Lapinsky S, Baxter A, Russell J, Skrobik Y, Ronco JJ, Stewart TE. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: A randomized controlled trial. JAMA. 2008;299:637–45.
    1. Mercat A, Richard JC, Vielle B, Jaber S, Osman D, Diehl JL, Lefrant JY, Prat G, Richecoeur J, Nieszkowska A, Gervais C, Baudot J, Bouadma L, Brochard L. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: A randomized controlled trial. JAMA. 2008;299:646–55.
    1. Stubbs JR. Transfusion-related acute lung injury, an evolving syndrome: The road of discovery, with emphasis on the role of the Mayo Clinic. Transfus Med Rev. 2011;25:66–75.
    1. Stewart RM, Park PK, Hunt JP, McIntyre RC, Jr, McCarthy J, Zarzabal LA, Michalek JE. Less is more: Improved outcomes in surgical patients with conservative fluid administration and central venous catheter monitoring. J Am Coll Surg. 2009;208:725–35.
    1. Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, Jaber S, Arnal JM, Perez D, Seghboyan JM, Constantin JM, Courant P, Lefrant JY, Guerin C, Prat G, Morange S, Roch A. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363:1107–16.
    1. Kheterpal S, Tremper KK, Heung M, Rosenberg AL, Englesbe M, Shanks AM, Campbell DA., Jr Development and validation of an acute kidney injury risk index for patients undergoing general surgery: Results from a national data set. Anesthesiology. 2009;110:505–15.

Source: PubMed

3
Prenumerera