Freeze-dried fecal samples are biologically active after long-lasting storage and suited to fecal microbiota transplantation in a preclinical murine model of Clostridioides difficile infection

Julie Reygner, Christine Charrueau, Johanne Delannoy, Camille Mayeur, Véronique Robert, Céline Cuinat, Thierry Meylheuc, Aurélie Mauras, Jérémy Augustin, Ioannis Nicolis, Morgane Modoux, Francisca Joly, Anne-Judith Waligora-Dupriet, Muriel Thomas, Nathalie Kapel, Julie Reygner, Christine Charrueau, Johanne Delannoy, Camille Mayeur, Véronique Robert, Céline Cuinat, Thierry Meylheuc, Aurélie Mauras, Jérémy Augustin, Ioannis Nicolis, Morgane Modoux, Francisca Joly, Anne-Judith Waligora-Dupriet, Muriel Thomas, Nathalie Kapel

Abstract

Fecal microbiota transplantation is now recommended for treating recurrent forms of Clostridioides difficile infection. Recent studies have reported protocols using capsules of either frozen or freeze-dried stool allowing oral administration in in- and out-patient settings. However, a central question remains the viability, engraftment, and efficacy of the microbiome over time during storage life. This study shows that both the freeze-drying and freezing procedures for fecal samples allowed preserving viability, short-chain fatty acids concentration, and anti-Clostridioides difficile properties of microbiota without significant alteration after storage for 12 months. Fecal transplantation with freeze-dried microbiota allowed engraftment of microbiota leading to clearance of Clostridioides difficile infection in a preclinical murine model with a survival rate of 70% versus 53-60% in mice treated with frozen inocula, and 20% in the untreated group. Moreover, the freeze-dried powder can be used to fill oral hard capsules using a very low amount (0.5%) of glidant excipient, allowing oral formulation. Altogether, this study showed that freeze-dried inocula can be used for the treatment of Clostridioides difficile infection with long-lasting stability of the fecal microbiota. This formulation facilitates biobanking and allows the use of hard capsules, an essential step to simplify patient access to treatment.

Keywords: Clostridioides difficile; Fecal microbiota transplant; freeze-dried microbiota; frozen microbiota; pre-clinical model.

Figures

Figure 1.
Figure 1.
Microbiota viability of freeze-dried and frozen human fecal samples over 12 months of storage. (a) Dominant microbiota: EOS bacteria (n = 6), Bacteroides sp. (n = 6), and Bifidobacterium sp. (n = 6) (b) Subdominant microbiota: Enterobacteriaceae (n = 6), Enterococcus sp. (n = 5), and Lactobacillus sp. (n = 3). Time study: Week 1, W1; Month 3,6 and 12: M3, M6, M12. Results are expressed as the mean ± SEM. Statistical significance: *<0.05, **<0.01, **<0.001.
Figure 2.
Figure 2.
Fecal metabolic activity of frozen and freeze-dried human fecal microbiota after 12 months of storage. (a) Amount of Short-Chain Fatty Acids at M12. Results are expressed as the mean ± SEM. (b) Anti-CD activity of stool samples at M12. Left: results are given as the ratio between inhibition diameters of pure bacteria or stool samples and chemical control, and expressed as the mean ± SEM. Right: representative image of an anti-CD agar spot test: A: Bifidobacterium infantis longum CUETM 89–215, B: Lactobacillus spp., C: stool frozen in G10, D: stool frozen in G80, E: chemical control (lactic acid, 500 mM), F: stool frozen in G10, G: stool lyophilized FD. White lines represent inhibition diameter. Statistical significance: *<0.05, **<0.01, ***<0.001.
Figure 3.
Figure 3.
Ability of freeze-dried human fecal microbiota to colonize the digestive tract of germ-free mice. (a) Scheme of the experiment. (b) Follow-up of main bacterial groups per gram of feces after colonization with rehydrated FD microbiota [: #S4-FD (n = 4),: #S5-FD (n = 4), feces sampled per cage]. Results are expressed as the mean for each of the 2 FD samples. (c) Representative image of a colon section from germ-free mice colonized with rehydrated FD microbiota (D30). Scale bar, 50 µm; crypt depth in the colon of germ free and mice colonized with rehydrated FD microbiota (30 crypts per mouse were measured) and Ki67-positive cells expressed as the percentage of total cell number in colon crypts from germ-free mice colonized with rehydrated FD microbiota (60 crypts per mouse were analyzed). Statistical significance: *

Figure 4.

Evolution of clinical parameters after…

Figure 4.

Evolution of clinical parameters after frozen and freeze-dried FMT in Clostridioides difficile -infected…

Figure 4.
Evolution of clinical parameters after frozen and freeze-dried FMT in Clostridioides difficile-infected mice. (a) Experimental design of the CD-infected-FMT mouse model. Two stools samples were evaluated #S1 and #S6. (b) Monitoring of body weight and a clinical score of all survival mice (up to the day of death). Daily measurements were made starting from Day 0 (day of infection). Grey squares show the total number of mice before randomization into the various FMT groups. Results are expressed as the mean (c). Survival curves of CD-infected mice receiving FMT with FD or frozen microbiota. CD-: control group receiving PBS (n = 4), CD+: CD-infected mice (n = 10); FMT-G10: CD-infected mice receiving FMT with frozen microbiota diluted in G10; FMT-G80: CD-infected mice receiving FMT with frozen microbiota diluted in G80 and FMT-FD: CD-infected mice receiving FMT with freeze-dried microbiota. For each CD group receiving FMT, n = 20, i.e. 10 mice per stool sample.

Figure 5.

Evolution of the biological parameters…

Figure 5.

Evolution of the biological parameters of Clostridioides difficile -infected mice following frozen or…

Figure 5.
Evolution of the biological parameters of Clostridioides difficile-infected mice following frozen or freeze-dried FMT (a) Level of CD in the cecal content and level of MPO in colonic tissue at the time of necropsy. (b) Representative images of colonic and cecal sections from control (CD- and CD+) mice and mice receiving FMT with frozen or FD microbiota (day 4 post-infection). Scale bar, 100 μm. (c) Histopathological score measured from CD-infected mice receiving FMT with frozen or FD microbiota. Six mice randomly selected for each point. Statistical significance: *<0.05, **<0.01.

Figure 6.

Comparison of the microbiota at…

Figure 6.

Comparison of the microbiota at day 4 between control mice and Clostridioides difficile…

Figure 6.
Comparison of the microbiota at day 4 between control mice and Clostridioides difficile-infected mice that received, or not, frozen or freeze-dried FMT. (a) α-diversity. (b) β-diversity using Bray–Curtis distance. (c) Composition of the microbiota at the family level. The two stool samples, #S1 and #S6, used for FMT are represented. Statistical significance: *<0.05.

Figure 7.

Development of hard capsules for…

Figure 7.

Development of hard capsules for oral administration of freeze-dried fecal microbiota. Upper panel:…

Figure 7.
Development of hard capsules for oral administration of freeze-dried fecal microbiota. Upper panel: (a) examples of macroscopic aspects (n = 4). (b) microscopic aspects Optical Microscopy (x10) and (c) SEM. Lowe panel: flowability and bulk density of FD samples without excipient (n = 5), with 25% to 75% filler (n = 2) or with glidant (G1 n = 1, G2 n = 1, G3 n = 6), ND: not determined.
All figures (7)
Figure 4.
Figure 4.
Evolution of clinical parameters after frozen and freeze-dried FMT in Clostridioides difficile-infected mice. (a) Experimental design of the CD-infected-FMT mouse model. Two stools samples were evaluated #S1 and #S6. (b) Monitoring of body weight and a clinical score of all survival mice (up to the day of death). Daily measurements were made starting from Day 0 (day of infection). Grey squares show the total number of mice before randomization into the various FMT groups. Results are expressed as the mean (c). Survival curves of CD-infected mice receiving FMT with FD or frozen microbiota. CD-: control group receiving PBS (n = 4), CD+: CD-infected mice (n = 10); FMT-G10: CD-infected mice receiving FMT with frozen microbiota diluted in G10; FMT-G80: CD-infected mice receiving FMT with frozen microbiota diluted in G80 and FMT-FD: CD-infected mice receiving FMT with freeze-dried microbiota. For each CD group receiving FMT, n = 20, i.e. 10 mice per stool sample.
Figure 5.
Figure 5.
Evolution of the biological parameters of Clostridioides difficile-infected mice following frozen or freeze-dried FMT (a) Level of CD in the cecal content and level of MPO in colonic tissue at the time of necropsy. (b) Representative images of colonic and cecal sections from control (CD- and CD+) mice and mice receiving FMT with frozen or FD microbiota (day 4 post-infection). Scale bar, 100 μm. (c) Histopathological score measured from CD-infected mice receiving FMT with frozen or FD microbiota. Six mice randomly selected for each point. Statistical significance: *<0.05, **<0.01.
Figure 6.
Figure 6.
Comparison of the microbiota at day 4 between control mice and Clostridioides difficile-infected mice that received, or not, frozen or freeze-dried FMT. (a) α-diversity. (b) β-diversity using Bray–Curtis distance. (c) Composition of the microbiota at the family level. The two stool samples, #S1 and #S6, used for FMT are represented. Statistical significance: *<0.05.
Figure 7.
Figure 7.
Development of hard capsules for oral administration of freeze-dried fecal microbiota. Upper panel: (a) examples of macroscopic aspects (n = 4). (b) microscopic aspects Optical Microscopy (x10) and (c) SEM. Lowe panel: flowability and bulk density of FD samples without excipient (n = 5), with 25% to 75% filler (n = 2) or with glidant (G1 n = 1, G2 n = 1, G3 n = 6), ND: not determined.

References

    1. Bauer MP, Notermans DW, van Benthem BH, Brazier JS, Wilcox MH, Rupnik M, Monnet DL, van Dissel JT, Kuijper EJ.. Clostridium difficile infection in Europe: a hospital-based survey. Lancet. 2011;377:63–73. doi:10.1016/S0140-6736(10)61266-4.
    1. Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, Farley MM, Holzbauer SM, Meek JI, Phipps EC, et al. Burden of Clostridium difficile infection in the United States. N Engl J Med. 2015;372:825–834. doi:10.1056/NEJMoa1408913.
    1. Kelly CR, Khoruts A, Staley C, Sadowsky MJ, Abd M, Alani M, Bakow B, Curran P, McKenney J, Tisch A, et al. Effect of fecal microbiota transplantation on recurrence in multiply recurrent Clostridium difficile infection: a randomized trial. Ann Intern Med. 2016;165:609–616. doi:10.7326/M16-0271.
    1. Lee CH, Steiner T, Petrof EO, Smieja M, Roscoe D, Nematallah A, Weese JS, Collins S, Moayyedi P, Crowther M, et al. Frozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent Clostridium difficile infection: a randomized clinical trial. JAMA. 2016;315:142–149. doi:10.1001/jama.2015.18098.
    1. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JFWM, Tijssen JGP, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368:407–415. doi:10.1056/NEJMoa1205037.
    1. Youngster I, Sauk J, Pindar C, Wilson RG, Kaplan JL, Smith MB, Alm EJ, Gevers D, Russell GH, Hohmann EL.. Fecal microbiota transplant for relapsing Clostridium difficile infection using a frozen inoculum from unrelated donors: a randomized, open-label, controlled pilot study. Clin Infect Dis. 2014;58:1515–1522. doi:10.1093/cid/ciu135.
    1. Hocquart M, Lagier J-C, Cassir N, Saidani N, Eldin C, Kerbaj J, Delord M, Valles C, Brouqui P, Raoult D, et al. Early fecal microbiota transplantation improves survival in severe clostridium difficile infections. Clin Infect Dis. 2018;66:645–650. doi:10.1093/cid/cix762.
    1. Debast SB, Bauer MP, Kuijper EJ. European Society of Clinical Microbiology and Infectious Diseases. European Society of Clinical Microbiology and Infectious Diseases: update of the treatment guidance document for Clostridium difficile infection. Clin Microbiol Infect. 2014;20(Suppl 2):1–26. doi:10.1111/1469-0691.12418.
    1. McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, Dubberke ER, Garey KW, Gould CV, Kelly C, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018;66:e1–48.
    1. Reygner J, Kapel N. Actuality on fecal microbiota transplantation. In: Joel F., Salomao F. editor.Current status of fecal microbiota transplantation. Microbiome and metabolome in diagnosis, therapy and other strategic applications. Elsevier inc; 2019. p. 155–165. ISBN 9780128152492. 10.1016/B978-0-12-815249-2.00016-6.
    1. Aron-Wisnewsky J, Clément K, Nieuwdorp M. Fecal microbiota transplantation: a future therapeutic option for obesity/diabetes? Curr Diab Rep. 2019;19:51. doi:10.1007/s11892-019-1180-z.
    1. Evrensel A, Önen Ünsalver B, Ceylan ME. Therapeutic potential of the microbiome in the treatment of neuropsychiatric disorders. Med Sci (Basel). 2019;7(2) : 21.
    1. Huttner BD, de Lastours V, Wassenberg M, Maharshak N, Mauris A, Galperine T, Zanichelli V, Kapel N, Bellanger A, Olearo F, et al. A 5-day course of oral antibiotics followed by faecal transplantation to eradicate carriage of multidrug-resistant Enterobacteriaceae: a randomized clinical trial. Clin Microbiol Infect. 2019;25:830–838. doi:10.1016/j.cmi.2018.12.009.
    1. Cheminet G, Kapel N, Bleibtreu A, Sadou-Yaye H, Bellanger A, Duval X, Joly F, Fantin B, de Lastours V. Faecal microbiota transplantation with frozen capsules for relapsing Clostridium difficile infections: the first experience from 15 consecutive patients in France. J Hosp Infect. 2018. doi:10.1016/j.jhin.2018.07.005.
    1. Youngster I, Russell GH, Pindar C, Ziv-Baran T, Sauk J, Hohmann EL. Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA. 2014;312:1772–1778. doi:10.1001/jama.2014.13875.
    1. Kao D, Roach B, Silva M, Beck P, Rioux K, Kaplan GG, Chang H-J, Coward S, Goodman KJ, Xu H, et al. Effect of oral capsule- vs colonoscopy-delivered fecal microbiota transplantation on recurrent Clostridium difficile infection: a randomized clinical trial. JAMA. 2017;318:1985–1993. doi:10.1001/jama.2017.17077.
    1. Cammarota G, Ianiro G, Tilg H, Rajilić-Stojanović M, Kump P, Satokari R, Sokol H, Arkkila P, Pintus C, Hart A, et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut. 2017;66:569–580. doi:10.1136/gutjnl-2016-313017.
    1. Costello SP, Conlon MA, Vuaran MS, Roberts-Thomson IC, Andrews JM. Faecal microbiota transplant for recurrent Clostridium difficile infection using long-term frozen stool is effective: clinical efficacy and bacterial viability data. Aliment Pharmacol Ther. 2015;42:1011–1018. doi:10.1111/apt.13366.
    1. Jiang Z-D, Jenq RR, Ajami NJ, Petrosino JF, Alexander AA, Ke S, Iqbal T, DuPont AW, Muldrew K, Shi Y, et al. Safety and preliminary efficacy of orally administered lyophilized fecal microbiota product compared with frozen product given by enema for recurrent Clostridium difficile infection: a randomized clinical trial. PLoS One. 2018;13:e0205064. doi:10.1371/journal.pone.0205064.
    1. Staley C, Hamilton MJ, Vaughn BP, Graiziger CT, Newman KM, Kabage AJ, Sadowsky MJ, Khoruts A. Successful resolution of recurrent Clostridium difficile infection using freeze-dried, encapsulated fecal microbiota; pragmatic cohort study. Am J Gastroenterol. 2017;112:940–947. doi:10.1038/ajg.2017.6.
    1. Hecker MT, Obrenovich ME, Cadnum JL, Jencson AL, Jain AK, Ho E, Donskey CJ. Fecal microbiota transplantation by freeze-dried oral capsules for recurrent Clostridium difficile infection. Open Forum Infect Dis. 2016;3:ofw091. doi:10.1093/ofid/ofw091.
    1. Cammarota G, Ianiro G, Kelly CR, Mullish BH, Allegretti JR, Kassam Z, Putignani L, Fischer M, Keller JJ, Costello SP, et al. International consensus conference on stool banking for faecal microbiota transplantation in clinical practice. Gut. 2019. doi:10.1136/gutjnl-2019-319548.
    1. Jiang Z-D, Alexander A, Ke S, Valilis EM, Hu S, Li B, DuPont HL. Stability and efficacy of frozen and lyophilized fecal microbiota transplant (FMT) product in a mouse model of Clostridium difficile infection (CDI). Anaerobe. 2017;48:110–114. doi:10.1016/j.anaerobe.2017.08.003.
    1. Hamilton MJ, Weingarden AR, Sadowsky MJ, Khoruts A. Standardized frozen preparation for transplantation of fecal microbiota for recurrent Clostridium difficile infection. Am J Gastroenterol. 2012;107:761–767. doi:10.1038/ajg.2011.482.
    1. Wrzosek L, Miquel S, Noordine M-L, Bouet S, Joncquel Chevalier-Curt M, Robert V, Philippe C, Bridonneau C, Cherbuy C, Robbe-Masselot C, et al. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol. 2013;11:61. doi:10.1186/1741-7007-11-61.
    1. Miquel S, Leclerc M, Martin R, Chain F, Lenoir M, Raguideau S, Hudault S, Bridonneau C, Northen T, Bowen B, et al. Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii. mBio. 2015;6. doi:10.1128/mBio.00300-15.
    1. Costello SP, Hughes PA, Waters O, Bryant RV, Vincent AD, Blatchford P, Katsikeros R, Makanyanga J, Campaniello MA, Mavrangelos C, et al. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial. JAMA. 2019;321:156–164. doi:10.1001/jama.2018.20046.
    1. Burz SD, Abraham A-L, Fonseca F, David O, Chapron A, Béguet-Crespel F, Cénard S, Le Roux K, Patrascu O, Levenez F, et al. A guide for Ex Vivo handling and storage of stool samples intended for fecal microbiota transplantation. Sci Rep. 2019;9:8897. doi:10.1038/s41598-019-45173-4.
    1. Martín R, Miquel S, Benevides L, Bridonneau C, Robert V, Hudault S, Chain F, Berteau O, Azevedo V, Chatel JM, et al. Functional characterization of novel faecalibacterium prausnitzii strains isolated from healthy volunteers: a step forward in the use of f. prausnitzii as a next-generation probiotic. Front Microbiol. 2017;8:1226. doi:10.3389/fmicb.2017.01226.
    1. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux -J-J, Blugeon S, Bridonneau C, Furet J-P, Corthier G, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA. 2008;105:16731–16736. doi:10.1073/pnas.0804812105.
    1. Miquel S, Martín R, Bridonneau C, Robert V, Sokol H, Bermúdez-Humarán LG, Thomas M, Langella P. Ecology and metabolism of the beneficial intestinal commensal bacterium Faecalibacterium prausnitzii. Gut Microbes. 2014;5:146–151. doi:10.4161/gmic.27651.
    1. Roychowdhury S, Cadnum J, Glueck B, Obrenovich M, Donskey C, Cresci GAM. Faecalibacterium prausnitzii and a prebiotic protect intestinal health in a mouse model of antibiotic and Clostridium difficile Exposure. JPEN J Parenter Enteral Nutr. 2018;42:1156–1167. doi:10.1002/jpen.1053.
    1. Fuentes S, Rossen NG, van der Spek MJ, Hartman JH, Huuskonen L, Korpela K, Salojärvi J, Aalvink S, de Vos WM, D’Haens GR, et al. Microbial shifts and signatures of long-term remission in ulcerative colitis after faecal microbiota transplantation. Isme J. 2017;11:1877–1889. doi:10.1038/ismej.2017.44.
    1. Cherbuy C, Honvo-Houeto E, Bruneau A, Bridonneau C, Mayeur C, Duée P-H, Langella P, Thomas M. Microbiota matures colonic epithelium through a coordinated induction of cell cycle-related proteins in gnotobiotic rat. Am J Physiol Gastrointest Liver Physiol. 2010;299:G348–357. doi:10.1152/ajpgi.00384.2009.
    1. Cherbuy C, Tomas J, Thomas M, Langella P. Interactions of the intestinal microbiota with mucosal epithelial cells [Internet]. In: Brassart D, editor. Intestinal Microbiota in Health and Disease. CRC Press; 2014. [cited 2019 October16]. Available from:
    1. Tomas J, Reygner J, Mayeur C, Ducroc R, Bouet S, Bridonneau C, Cavin J-B, Thomas M, Langella P, Cherbuy C. Early colonizing Escherichia coli elicits remodeling of rat colonic epithelium shifting toward a new homeostatic state. Isme J. 2015;9:46–58.
    1. Chen X, Katchar K, Goldsmith JD, Nanthakumar N, Cheknis A, Gerding DN, Kelly CP. A mouse model of Clostridium difficile-associated disease. Gastroenterology. 2008;135:1984–1992. doi:10.1053/j.gastro.2008.09.002.
    1. Reeves AE, Theriot CM, Bergin IL, Huffnagle GB, Schloss PD, Young VB. The interplay between microbiome dynamics and pathogen dynamics in a murine model of Clostridium difficile infection. Gut Microbes. 2011;2:145–158. doi:10.4161/gmic.2.3.16333.
    1. Theriot CM, Koumpouras CC, Carlson PE, Bergin II, Aronoff DM, Young VB. Cefoperazone-treated mice as an experimental platform to assess differential virulence of Clostridium difficile strains. Gut Microbes. 2011;2:326–334. doi:10.4161/gmic.19142.
    1. Seekatz AM, Theriot CM, Molloy CT, Wozniak KL, Bergin IL, Young VB. Fecal microbiota transplantation eliminates clostridium difficile in a murine model of relapsing disease. Infect Immun. 2015;83:3838–3846. doi:10.1128/IAI.00459-15.
    1. Baktash A, Terveer EM, Zwittink RD, Hornung BVH, Corver J, Kuijper EJ, Smits WK. Mechanistic insights in the success of fecal microbiota transplants for the treatment of clostridium difficile infections. Front Microbiol. 2018;9:1242. doi:10.3389/fmicb.2018.01242.
    1. Gill PA, van Zelm MC, Muir JG, Gibson PR. Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment Pharmacol Ther. 2018;48:15–34. doi:10.1111/apt.14689.
    1. Seekatz AM, Theriot CM, Rao K, Chang Y-M, Freeman AE, Kao JY, Young VB. Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection. Anaerobe. 2018;53:64–73. doi:10.1016/j.anaerobe.2018.04.001.
    1. Antharam VC, Li EC, Ishmael A, Sharma A, Mai V, Rand KH, Wang GP. Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. J Clin Microbiol. 2013;51:2884–2892. doi:10.1128/JCM.00845-13.
    1. Zhang M, Zhou Q, Dorfman RG, Huang X, Fan T, Zhang H, Zhang J, Yu C. Butyrate inhibits interleukin-17 and generates Tregs to ameliorate colorectal colitis in rats. BMC Gastroenterol. 2016;16:84. doi:10.1186/s12876-016-0500-x.
    1. Lee HL, Shen H, Hwang IY, Ling H, Yew WS, Lee YS, Chang MW. Targeted approaches for in situ gut microbiome manipulation. Genes (Basel). 2018;9. doi:10.3390/genes9070351.
    1. Dore J, Ehrlich SD, Levenez F, Pelletier E, Alberti A, Bertrand L, Bork P, Costea PI, Sunagawa S, Guarner F, et al. IHMS-SOP 03V2: standard operating procedure for fecal sample self-collection, laboratory analysis handled within 4 to 24 hours (4 hours< x <24 hours) (2015). International Human Microbiome Standards.
    1. Rougé C, Goldenberg O, Ferraris L, Berger B, Rochat F, Legrand A, Göbel UB, Vodovar M, Voyer M, Rozé J-C, et al. Investigation of the intestinal microbiota in preterm infants using different methods. Anaerobe. 2010;16:362–370. doi:10.1016/j.anaerobe.2010.06.002.
    1. Lan A, Bruneau A, Bensaada M, Philippe C, Bellaud P, Rabot S, Jan G. Increased induction of apoptosis by propionibacterium freudenreichii TL133 in colonic mucosal crypts of human microbiota-associated rats treated with 1,2-dimethylhydrazine. Br J Nutr. 2008;100:1251–1259. doi:10.1017/S0007114508978284.
    1. Tejero-Sariñena S, Barlow J, Costabile A, Gibson GR, Rowland I. In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: evidence for the effects of organic acids. Anaerobe. 2012;18:530–538. doi:10.1016/j.anaerobe.2012.08.004.
    1. 2.9.34.Eur. Pharma. 9th edition 2019 [Internet]. 2019. [cited 2019 Nov 4].. Available from:
    1. Godon JJ, Zumstein E, Dabert P, Habouzit F, Moletta R. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl Environ Microbiol. 1997;63:2802–2813. doi:10.1128/AEM.63.7.2802-2813.1997.
    1. Mayeur C, Gratadoux -J-J, Bridonneau C, Chegdani F, Larroque B, Kapel N, Corcos O, Thomas M, Joly F. Faecal D/L lactate ratio is a metabolic signature of microbiota imbalance in patients with short bowel syndrome. PLoS One. 2013;8:e54335. doi:10.1371/journal.pone.0054335.
    1. Escudié F, Auer L, Bernard M, Mariadassou M, Cauquil L, Vidal K, Maman S, Hernandez-Raquet G, Combes S, Pascal G, et al. Rapidly, OTUs with galaxy solution. Bioinformatics. 2018;34:1287–1294. doi:10.1093/bioinformatics/btx791.
    1. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217. doi:10.1371/journal.pone.0061217.
    1. Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin P, O’Hara R, Simpson G, Solymos P, et al. Vegan: community ecology package. R Package Version. 2018;2:5–2.
    1. R Core Team . R: A language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing; 2017.
    1. Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Soft 2015; 67:1–48.
    1. Lenth R Emmeans: estimated marginal means, aka least-squares means. R package version1.2.4. [Internet]. 2018. [cited 2019 Dec 14]. Available from: .

Source: PubMed

3
Prenumerera