Pathophysiological Molecular Mechanisms of Obesity: A Link between MAFLD and NASH with Cardiovascular Diseases

Jorge Gutiérrez-Cuevas, Arturo Santos, Juan Armendariz-Borunda, Jorge Gutiérrez-Cuevas, Arturo Santos, Juan Armendariz-Borunda

Abstract

Obesity is now a worldwide epidemic ensuing an increase in comorbidities' prevalence, such as insulin resistance, type 2 diabetes (T2D), metabolic dysfunction-associated fatty liver disease (MAFLD), nonalcoholic steatohepatitis (NASH), hypertension, cardiovascular disease (CVD), autoimmune diseases, and some cancers, CVD being one of the main causes of death in the world. Several studies provide evidence for an association between MAFLD and atherosclerosis and cardio-metabolic disorders, including CVDs such as coronary heart disease and stroke. Therefore, the combination of MAFLD/NASH is associated with vascular risk and CVD progression, but the underlying mechanisms linking MAFLD/NASH and CVD are still under investigation. Several underlying mechanisms may probably be involved, including hepatic/systemic insulin resistance, atherogenic dyslipidemia, hypertension, as well as pro-atherogenic, pro-coagulant, and pro-inflammatory mediators released from the steatotic/inflamed liver. MAFLD is strongly associated with insulin resistance, which is involved in its pathogenesis and progression to NASH. Insulin resistance is a major cardiovascular risk factor in subjects without diabetes. However, T2D has been considered the most common link between MAFLD/NASH and CVD. This review summarizes the evidence linking obesity with MAFLD, NASH, and CVD, considering the pathophysiological molecular mechanisms involved in these diseases. We also discuss the association of MAFLD and NASH with the development and progression of CVD, including structural and functional cardiac alterations, and pharmacological strategies to treat MAFLD/NASH and cardiovascular prevention.

Keywords: cardiovascular diseases; comorbidities of obesity; insulin resistance; metabolic dysfunction-associated fatty liver disease; nonalcoholic steatohepatitis; obesity; pharmacological strategies.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Pathophysiology mechanisms of obesity. Excess of energy-dense foods along with obesogenic factors induce obesity, which may cause several different disorders and diseases. Abbreviations: CNS, central nervous system; SNS, sympathetic nervous system; FFA, free fatty acid.
Figure 2
Figure 2
Multiples hits induce MAFLD and NASH. Lipids’ accumulation in the liver alters many different aspects of hepatocytes. Inflammation, oxidative stress, insulin resistance, hormones dysregulation, gut dysbiosis, organelle integrity and function, as well as genetic and epigenetic factors, are implicated in the development and progression of MAFLD and NASH. Abbreviations: MAFLD, metabolic dysfunction-associated fatty liver disease; NASH, nonalcoholic steatohepatitis; ER, endoplasmic reticulum.
Figure 3
Figure 3
Cardiovascular adverse events associated with MAFLD and NASH. Systemic low-grade inflammation induced in MAFLD or NASH is linked with dyslipidemia, hypertension, T2D, and hepatic fibrosis, which may cause atherosclerosis and finally cardiovascular complications with higher risk of CDV mortality. Abbreviations: MAFLD, metabolic dysfunction-associated fatty liver disease; NASH, nonalcoholic steatohepatitis; IL-6, Interleukin-6; CRP, C-reactive protein; MCP-1, monocyte chemotactic protein 1; TNF-α, tumor necrosis factor-α; T2D, type 2 diabetes; LVH, left ventricular hypertrophy; LV, left ventricular; HFpEF, HF with preserved ejection fraction; QTc, corrected QT interval; CVD, cardiovascular disease.

References

    1. Eslam M., George J. Refining the role of epicardial adipose tissue in non-alcoholic fatty liver disease. Hepatol. Int. 2019;13:662–664. doi: 10.1007/s12072-019-09990-z.
    1. Patel J.J., Rosenthal M.D., Miller K.R., Codner P., Kiraly L. Martindale RG: The Critical Care Obesity Paradox and Implications for Nutrition Support. Curr. Gastroenterol. Rep. 2016;18:45. doi: 10.1007/s11894-016-0519-8.
    1. Pigeyre M., Yazdi F.T., Kaur Y., Meyre D. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin. Sci. 2016;130:943–986. doi: 10.1042/CS20160136.
    1. Vecchie A., Dallegri F., Carbone F., Bonaventura A., Liberale L., Portincasa P., Fruhbeck G., Montecucco F. Obesity phenotypes and their paradoxical association with cardiovascular diseases. Eur. J. Intern. Med. 2018;48:6–17. doi: 10.1016/j.ejim.2017.10.020.
    1. Eslam M., Newsome P.N., Sarin S.K., Anstee Q.M., Targher G., Romero-Gomez M., Zelber-Sagi S., Wai-Sun Wong V., Dufour J.F., Schattenberg J.M., et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020;73:202–209. doi: 10.1016/j.jhep.2020.03.039.
    1. Redinger R.N. The pathophysiology of obesity and its clinical manifestations. Gastroenterol. Hepatol. 2007;3:856–863.
    1. Souza-Mello V. Peroxisome proliferator-activated receptors as targets to treat non-alcoholic fatty liver disease. World J. Hepatol. 2015;7:1012–1019. doi: 10.4254/wjh.v7.i8.1012.
    1. Mathews S.E., Kumar R.B., Shukla A.P. Nonalcoholic steatohepatitis, obesity, and cardiac dysfunction. Curr. Opin. Endocrinol. Diabetes Obes. 2018;25:315–320. doi: 10.1097/MED.0000000000000432.
    1. Younossi Z.M., Koenig A.B., Abdelatif D., Fazel Y., Henry L., Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84. doi: 10.1002/hep.28431.
    1. Younossi Z.M. Non-alcoholic fatty liver disease—A global public health perspective. J. Hepatol. 2019;70:531–544. doi: 10.1016/j.jhep.2018.10.033.
    1. Han L., Shen W.J., Bittner S., Kraemer F.B., Azhar S. PPARs: Regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-beta/delta and PPAR-gamma. Future Cardiol. 2017;13:279–296. doi: 10.2217/fca-2017-0019.
    1. Alkagiet S., Papagiannis A., Tziomalos K. Associations between nonalcoholic fatty liver disease and ischemic stroke. World J. Hepatol. 2018;10:474–478. doi: 10.4254/wjh.v10.i7.474.
    1. Bugianesi E., Gastaldelli A., Vanni E., Gambino R., Cassader M., Baldi S., Ponti V., Pagano G., Ferrannini E., Rizzetto M. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: Sites and mechanisms. Diabetologia. 2005;48:634–642. doi: 10.1007/s00125-005-1682-x.
    1. Lonardo A., Sookoian S., Pirola C.J., Targher G. Non-alcoholic fatty liver disease and risk of cardiovascular disease. Metabolism. 2016;65:1136–1150. doi: 10.1016/j.metabol.2015.09.017.
    1. Kasper P., Martin A., Lang S., Kutting F., Goeser T., Demir M., Steffen H.M. NAFLD and cardiovascular diseases: A clinical review. Clin. Res. Cardiol. 2021;110:921–937. doi: 10.1007/s00392-020-01709-7.
    1. Anstee Q.M., Mantovani A., Tilg H., Targher G. Risk of cardiomyopathy and cardiac arrhythmias in patients with nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 2018;15:425–439. doi: 10.1038/s41575-018-0010-0.
    1. Stahl E.P., Dhindsa D.S., Lee S.K., Sandesara P.B., Chalasani N.P., Sperling L.S. Nonalcoholic Fatty Liver Disease and the Heart: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019;73:948–963. doi: 10.1016/j.jacc.2018.11.050.
    1. Caussy C., Aubin A., Loomba R. The Relationship Between Type 2 Diabetes, NAFLD, and Cardiovascular Risk. Curr. Diab. Rep. 2021;21:15. doi: 10.1007/s11892-021-01383-7.
    1. Armandi A., Rosso C., Caviglia G.P., Bugianesi E. Insulin Resistance across the Spectrum of Nonalcoholic Fatty Liver Disease. Metabolites. 2021;11:155. doi: 10.3390/metabo11030155.
    1. Fujii H., Kawada N., Japan Study Group of Nafld J-N The Role of Insulin Resistance and Diabetes in Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2020;21:3863. doi: 10.3390/ijms21113863.
    1. Lu Q., Guo P., Guo J., Ares I., Lopez-Torres B., Martinez-Larranaga M.R., Wang X., Anadon A., Martinez M.A. Targeting peroxisome proliferator-activated receptors: A new strategy for the treatment of cardiac fibrosis. Pharmacol. Ther. 2021;219:107702. doi: 10.1016/j.pharmthera.2020.107702.
    1. Ormazabal V., Nair S., Elfeky O., Aguayo C., Salomon C., Zuniga F.A. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc. Diabetol. 2018;17:122. doi: 10.1186/s12933-018-0762-4.
    1. Zhang Y.F., Xu H.M., Yu F., Wang M., Li M.Y., Xu T., Gao Y.Y., Wang J.X., Li P.F. Crosstalk between MicroRNAs and Peroxisome Proliferator-Activated Receptors and Their Emerging Regulatory Roles in Cardiovascular Pathophysiology. PPAR Res. 2018;2018:8530371. doi: 10.1155/2018/8530371.
    1. Maclennan W. On the Treatment of Obesity and Myxoedema by a New Preparation of Thyroid (“Thyroglandin”) Br. Med. J. 1898;2:79–80. doi: 10.1136/bmj.2.1958.79.
    1. Oliver T. Post-Mortem in a Case of Extreme Obesity. Pt 3J. Anat. Physiol. 1880;14:345–347.
    1. Perry A.W. Nature and Treatment of Obesity. Cal. State J. Med. 1903;1:356–359.
    1. Eknoyan G. A history of obesity, or how what was good became ugly and then bad. Adv. Chronic Kidney Dis. 2006;13:421–427. doi: 10.1053/j.ackd.2006.07.002.
    1. Hruby A., Hu F.B. The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics. 2015;33:673–689. doi: 10.1007/s40273-014-0243-x.
    1. Batsis J.A., Mackenzie T.A., Bartels S.J., Sahakyan K.R., Somers V.K., Lopez-Jimenez F. Diagnostic accuracy of body mass index to identify obesity in older adults: NHANES 1999–2004. Int. J. Obes. 2016;40:761–767. doi: 10.1038/ijo.2015.243.
    1. Prado C.M., Gonzalez M.C., Heymsfield S.B. Body composition phenotypes and obesity paradox. Curr. Opin. Clin. Nutr. Metab. Care. 2015;18:535–551. doi: 10.1097/MCO.0000000000000216.
    1. Hu F.B. Obesity and mortality: Watch your waist, not just your weight. Arch. Intern. Med. 2007;167:875–876. doi: 10.1001/archinte.167.9.875.
    1. Pischon T., Boeing H., Hoffmann K., Bergmann M., Schulze M.B., Overvad K., van der Schouw Y.T., Spencer E., Moons K.G., Tjonneland A., et al. General and abdominal adiposity and risk of death in Europe. N. Engl. J. Med. 2008;359:2105–2120. doi: 10.1056/NEJMoa0801891.
    1. Welborn T.A., Dhaliwal S.S. Preferred clinical measures of central obesity for predicting mortality. Eur. J. Clin. Nutr. 2007;61:1373–1379. doi: 10.1038/sj.ejcn.1602656.
    1. Apovian C.M. Obesity: Definition, comorbidities, causes, and burden. Am. J. Manag. Care. 2016;22((Suppl. 7)):s176–s185.
    1. Swinburn B., Sacks G., Ravussin E. Increased food energy supply is more than sufficient to explain the US epidemic of obesity. Am. J. Clin. Nutr. 2009;90:1453–1456. doi: 10.3945/ajcn.2009.28595.
    1. Akil L., Ahmad H.A. Effects of socioeconomic factors on obesity rates in four southern states and Colorado. Ethn. Dis. 2011;21:58–62.
    1. Schwartz M.W., Seeley R.J., Zeltser L.M., Drewnowski A., Ravussin E., Redman L.M., Leibel R.L. Obesity Pathogenesis: An Endocrine Society Scientific Statement. Endocr. Rev. 2017;38:267–296. doi: 10.1210/er.2017-00111.
    1. Oussaada S.M., van Galen K.A., Cooiman M.I., Kleinendorst L., Hazebroek E.J., van Haelst M.M., Ter Horst K.W., Serlie M.J. The pathogenesis of obesity. Metabolism. 2019;92:26–36. doi: 10.1016/j.metabol.2018.12.012.
    1. Heymsfield S.B., Wadden T.A. Mechanisms, Pathophysiology, and Management of Obesity. N. Engl. J. Med. 2017;376:254–266. doi: 10.1056/NEJMra1514009.
    1. Strable M.S., Ntambi J.M. Genetic control of de novo lipogenesis: Role in diet-induced obesity. Crit. Rev. Biochem. Mol. Biol. 2010;45:199–214. doi: 10.3109/10409231003667500.
    1. Kinlen D., Cody D., O’Shea D. Complications of obesity. QJM. 2018;111:437–443. doi: 10.1093/qjmed/hcx152.
    1. Brochu M., Tchernof A., Dionne I.J., Sites C.K., Eltabbakh G.H., Sims E.A., Poehlman E.T. What are the physical characteristics associated with a normal metabolic profile despite a high level of obesity in postmenopausal women? J. Clin. Endocrinol. Metab. 2001;86:1020–1025.
    1. Ortega F.B., Lavie C.J., Blair S.N. Obesity and Cardiovascular Disease. Circ. Res. 2016;118:1752–1770. doi: 10.1161/CIRCRESAHA.115.306883.
    1. Elagizi A., Kachur S., Lavie C.J., Carbone S., Pandey A., Ortega F.B., Milani R.V. An Overview and Update on Obesity and the Obesity Paradox in Cardiovascular Diseases. Prog. Cardiovasc. Dis. 2018;61:142–150. doi: 10.1016/j.pcad.2018.07.003.
    1. Kanwar P., Kowdley K.V. The Metabolic Syndrome and Its Influence on Nonalcoholic Steatohepatitis. Clin. Liver Dis. 2016;20:225–243. doi: 10.1016/j.cld.2015.10.002.
    1. D’Agati V.D., Chagnac A., de Vries A.P., Levi M., Porrini E., Herman-Edelstein M., Praga M. Obesity-related glomerulopathy: Clinical and pathologic characteristics and pathogenesis. Nat. Rev. Nephrol. 2016;12:453–471. doi: 10.1038/nrneph.2016.75.
    1. Anstey K.J., Cherbuin N., Budge M., Young J. Body mass index in midlife and late-life as a risk factor for dementia: A meta-analysis of prospective studies. Obes. Rev. 2011;12:e426–e437. doi: 10.1111/j.1467-789X.2010.00825.x.
    1. Lavie C.J., De Schutter A., Parto P., Jahangir E., Kokkinos P., Ortega F.B., Arena R., Milani R.V. Obesity and Prevalence of Cardiovascular Diseases and Prognosis-The Obesity Paradox Updated. Prog. Cardiovasc. Dis. 2016;58:537–547. doi: 10.1016/j.pcad.2016.01.008.
    1. Gutierrez-Cuevas J., Sandoval-Rodriguez A., Meza-Rios A., Monroy-Ramirez H.C., Galicia-Moreno M., Garcia-Banuelos J., Santos A., Armendariz-Borunda J. Molecular Mechanisms of Obesity-Linked Cardiac Dysfunction: An Up-Date on Current Knowledge. Cells. 2021;10:629. doi: 10.3390/cells10030629.
    1. Louie J.K., Acosta M., Samuel M.C., Schechter R., Vugia D.J., Harriman K., Matyas B.T., California Pandemic Working Group A novel risk factor for a novel virus: Obesity and 2009 pandemic influenza A (H1N1) Clin. Infect. Dis. 2011;52:301–312. doi: 10.1093/cid/ciq152.
    1. Sanchis-Gomar F., Lavie C.J., Mehra M.R., Henry B.M., Lippi G. Obesity and Outcomes in COVID-19: When an Epidemic and Pandemic Collide. Mayo Clin. Proc. 2020;95:1445–1453. doi: 10.1016/j.mayocp.2020.05.006.
    1. Simonnet A., Chetboun M., Poissy J., Raverdy V., Noulette J., Duhamel A., Labreuche J., Mathieu D., Pattou F., Jourdain M., et al. High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation. Obesity. 2020;28:1195–1199. doi: 10.1002/oby.22831.
    1. Petrakis D., Margina D., Tsarouhas K., Tekos F., Stan M., Nikitovic D., Kouretas D., Spandidos D.A., Tsatsakis A. Obesity a risk factor for increased COVID19 prevalence, severity and lethality (Review) Mol. Med. Rep. 2020;22:9–19. doi: 10.3892/mmr.2020.11127.
    1. Bello-Chavolla O.Y., Bahena-Lopez J.P., Antonio-Villa N.E., Vargas-Vazquez A., Gonzalez-Diaz A., Marquez-Salinas A., Fermin-Martinez C.A., Naveja J.J., Aguilar-Salinas C.A. Predicting Mortality Due to SARS-CoV-2: A Mechanistic Score Relating Obesity and Diabetes to COVID-19 Outcomes in Mexico. J. Clin. Endocrinol. Metab. 2020;105:2752–2761. doi: 10.1210/clinem/dgaa346.
    1. Hernandez-Garduno E. Obesity is the comorbidity more strongly associated for Covid-19 in Mexico. A case-control study. Obes. Res. Clin. Pract. 2020;14:375–379. doi: 10.1016/j.orcp.2020.06.001.
    1. Anstee Q.M., Targher G., Day C.P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 2013;10:330–344. doi: 10.1038/nrgastro.2013.41.
    1. Ismaiel A., Dumitrascu D.L. Cardiovascular Risk in Fatty Liver Disease: The Liver-Heart Axis-Literature Review. Front. Med. 2019;6:202. doi: 10.3389/fmed.2019.00202.
    1. Adler M., Schaffner F. Fatty liver hepatitis and cirrhosis in obese patients. Am. J. Med. 1979;67:811–816. doi: 10.1016/0002-9343(79)90740-X.
    1. Tanaka N., Aoyama T., Kimura S., Gonzalez F.J. Targeting nuclear receptors for the treatment of fatty liver disease. Pharmacol. Ther. 2017;179:142–157. doi: 10.1016/j.pharmthera.2017.05.011.
    1. Ludwig J., Viggiano T.R., McGill D.B., Oh B.J. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin. Proc. 1980;55:434–438.
    1. Sheka A.C., Adeyi O., Thompson J., Hameed B., Crawford P.A., Ikramuddin S. Nonalcoholic Steatohepatitis: A Review. JAMA. 2020;323:1175–1183. doi: 10.1001/jama.2020.2298.
    1. Lau J.K., Zhang X., Yu J. Animal models of non-alcoholic fatty liver disease: Current perspectives and recent advances. J. Pathol. 2017;241:36–44. doi: 10.1002/path.4829.
    1. Wong R.J., Cheung R., Ahmed A. Nonalcoholic steatohepatitis is the most rapidly growing indication for liver transplantation in patients with hepatocellular carcinoma in the U.S. Hepatology. 2014;59:2188–2195. doi: 10.1002/hep.26986.
    1. Day C.P., James O.F. Steatohepatitis: A tale of two “hits”? Gastroenterology. 1998;114:842–845. doi: 10.1016/S0016-5085(98)70599-2.
    1. Tilg H., Moschen A.R. Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis. Hepatology. 2010;52:1836–1846. doi: 10.1002/hep.24001.
    1. Buzzetti E., Pinzani M., Tsochatzis E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD) Metabolism. 2016;65:1038–1048. doi: 10.1016/j.metabol.2015.12.012.
    1. El Hadi H., Di Vincenzo A., Vettor R., Rossato M. Cardio-Metabolic Disorders in Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2019;20:2215. doi: 10.3390/ijms20092215.
    1. Santos R.D., Valenti L., Romeo S. Does nonalcoholic fatty liver disease cause cardiovascular disease? Current knowledge and gaps. Atherosclerosis. 2019;282:110–120. doi: 10.1016/j.atherosclerosis.2019.01.029.
    1. Boeckmans J., Natale A., Buyl K., Rogiers V., De Kock J., Vanhaecke T., Rodrigues R.M. Human-based systems: Mechanistic NASH modelling just around the corner? Pharmacol. Res. 2018;134:257–267. doi: 10.1016/j.phrs.2018.06.029.
    1. Caligiuri A., Gentilini A., Marra F. Molecular Pathogenesis of NASH. Int. J. Mol. Sci. 2016;17:1575. doi: 10.3390/ijms17091575.
    1. Ballestri S., Lonardo A., Bonapace S., Byrne C.D., Loria P., Targher G. Risk of cardiovascular, cardiac and arrhythmic complications in patients with non-alcoholic fatty liver disease. World J. Gastroenterol. 2014;20:1724–1745. doi: 10.3748/wjg.v20.i7.1724.
    1. Leite N.C., Salles G.F., Cardoso C.R., Villela-Nogueira C.A. Serum biomarkers in type 2 diabetic patients with non-alcoholic steatohepatitis and advanced fibrosis. Hepatol. Res. 2013;43:508–515. doi: 10.1111/j.1872-034X.2012.01106.x.
    1. Peverill W., Powell L.W., Skoien R. Evolving concepts in the pathogenesis of NASH: Beyond steatosis and inflammation. Int. J. Mol. Sci. 2014;15:8591–8638. doi: 10.3390/ijms15058591.
    1. Shang L., Hosseini M., Liu X., Kisseleva T., Brenner D.A. Human hepatic stellate cell isolation and characterization. J. Gastroenterol. 2018;53:6–17. doi: 10.1007/s00535-017-1404-4.
    1. Lee U.E., Friedman S.L. Mechanisms of hepatic fibrogenesis. Best Pract. Res. Clin. Gastroenterol. 2011;25:195–206. doi: 10.1016/j.bpg.2011.02.005.
    1. Lanthier N. Targeting Kupffer cells in non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: Why and how? World J. Hepatol. 2015;7:2184–2188. doi: 10.4254/wjh.v7.i19.2184.
    1. Kim D., Kim W.R., Kim H.J., Therneau T.M. Association between noninvasive fibrosis markers and mortality among adults with nonalcoholic fatty liver disease in the United States. Hepatology. 2013;57:1357–1365. doi: 10.1002/hep.26156.
    1. Choi M.E., Price D.R., Ryter S.W., Choi A.M.K. Necroptosis: A crucial pathogenic mediator of human disease. JCI Insight. 2019;4:1–16. doi: 10.1172/jci.insight.128834.
    1. Polotsky V.Y., Patil S.P., Savransky V., Laffan A., Fonti S., Frame L.A., Steele K.E., Schweizter M.A., Clark J.M., Torbenson M.S., et al. Obstructive sleep apnea, insulin resistance, and steatohepatitis in severe obesity. Am. J. Respir. Crit. Care Med. 2009;179:228–234. doi: 10.1164/rccm.200804-608OC.
    1. Sundaram S.S., Halbower A., Pan Z., Robbins K., Capocelli K.E., Klawitter J., Shearn C.T., Sokol R.J. Nocturnal hypoxia-induced oxidative stress promotes progression of pediatric non-alcoholic fatty liver disease. J. Hepatol. 2016;65:560–569. doi: 10.1016/j.jhep.2016.04.010.
    1. Papatheodoridi A.M., Chrysavgis L., Koutsilieris M., Chatzigeorgiou A. The Role of Senescence in the Development of Nonalcoholic Fatty Liver Disease and Progression to Nonalcoholic Steatohepatitis. Hepatology. 2020;71:363–374. doi: 10.1002/hep.30834.
    1. Brandl K., Schnabl B. Intestinal microbiota and nonalcoholic steatohepatitis. Curr. Opin. Gastroenterol. 2017;33:128–133. doi: 10.1097/MOG.0000000000000349.
    1. Yusuf S., Hawken S., Ounpuu S., Bautista L., Franzosi M.G., Commerford P., Lang C.C., Rumboldt Z., Onen C.L., Lisheng L., et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: A case-control study. Lancet. 2005;366:1640–1649. doi: 10.1016/S0140-6736(05)67663-5.
    1. Gungor N., Thompson T., Sutton-Tyrrell K., Janosky J., Arslanian S. Early signs of cardiovascular disease in youth with obesity and type 2 diabetes. Diabetes Care. 2005;28:1219–1221. doi: 10.2337/diacare.28.5.1219.
    1. Akil L., Ahmad H.A. Relationships between obesity and cardiovascular diseases in four southern states and Colorado. J. Health Care Poor Underserved. 2011;22((Suppl. S4)):61–72. doi: 10.1353/hpu.2011.0166.
    1. Csige I., Ujvarosy D., Szabo Z., Lorincz I., Paragh G., Harangi M., Somodi S. The Impact of Obesity on the Cardiovascular System. J. Diabetes Res. 2018;2018:3407306. doi: 10.1155/2018/3407306.
    1. Alpert M.A., Omran J., Bostick B.P. Effects of Obesity on Cardiovascular Hemodynamics, Cardiac Morphology, and Ventricular Function. Curr. Obes. Rep. 2016;5:424–434. doi: 10.1007/s13679-016-0235-6.
    1. Jia G., Hill M.A., Sowers J.R. Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity. Circ. Res. 2018;122:624–638. doi: 10.1161/CIRCRESAHA.117.311586.
    1. Wong C., Marwick T.H. Obesity cardiomyopathy: Pathogenesis and pathophysiology. Nat. Clin. Pract. Cardiovasc. Med. 2007;4:436–443. doi: 10.1038/ncpcardio0943.
    1. Mahajan R., Lau D.H., Sanders P. Impact of obesity on cardiac metabolism, fibrosis, and function. Trends Cardiovasc. Med. 2015;25:119–126. doi: 10.1016/j.tcm.2014.09.005.
    1. Turer A.T., Hill J.A., Elmquist J.K., Scherer P.E. Adipose tissue biology and cardiomyopathy: Translational implications. Circ. Res. 2012;111:1565–1577. doi: 10.1161/CIRCRESAHA.111.262493.
    1. Nakamura M., Sadoshima J. Cardiomyopathy in obesity, insulin resistance and diabetes. J. Physiol. 2020;598:2977–2993. doi: 10.1113/JP276747.
    1. Zlobine I., Gopal K., Ussher J.R. Lipotoxicity in obesity and diabetes-related cardiac dysfunction. Biochim. Biophys. Acta. 2016;1861:1555–1568. doi: 10.1016/j.bbalip.2016.02.011.
    1. Ali A., Boutjdir M., Aromolaran A.S. Cardiolipotoxicity, Inflammation, and Arrhythmias: Role for Interleukin-6 Molecular Mechanisms. Front. Physiol. 2018;9:1866. doi: 10.3389/fphys.2018.01866.
    1. Zamora M., Villena J.A. Contribution of Impaired Insulin Signaling to the Pathogenesis of Diabetic Cardiomyopathy. Int. J. Mol. Sci. 2019;20:2833. doi: 10.3390/ijms20112833.
    1. Sletten A.C., Peterson L.R., Schaffer J.E. Manifestations and mechanisms of myocardial lipotoxicity in obesity. J. Intern. Med. 2018;284:478–491. doi: 10.1111/joim.12728.
    1. Pinar A.A., Scott T.E., Huuskes B.M., Tapia Caceres F.E., Kemp-Harper B.K., Samuel C.S. Targeting the NLRP3 inflammasome to treat cardiovascular fibrosis. Pharmacol. Ther. 2020;209:107511. doi: 10.1016/j.pharmthera.2020.107511.
    1. Tong M., Saito T., Zhai P., Oka S.I., Mizushima W., Nakamura M., Ikeda S., Shirakabe A., Sadoshima J. Mitophagy Is Essential for Maintaining Cardiac Function During High Fat Diet-Induced Diabetic Cardiomyopathy. Circ. Res. 2019;124:1360–1371. doi: 10.1161/CIRCRESAHA.118.314607.
    1. Gutiérrez-Cuevas J., Sandoval-Rodriguez A., Monroy-Ramirez H.C., Vazquez-Del Mercado M., Santos-Garcia A., Armendariz-Borunda J. Prolonged-release pirfenidone prevents obesity-induced cardiac steatosis and fibrosis in a mouse NASH model. Cardiovasc. Drugs Ther. 2020;9:980. doi: 10.1007/s10557-020-07014-9.
    1. Niederseer D., Wernly B., Aigner E., Stickel F., Datz C. NAFLD and Cardiovascular Diseases: Epidemiological, Mechanistic and Therapeutic Considerations. J. Clin. Med. 2021;10:467. doi: 10.3390/jcm10030467.
    1. Sonmez A., Nikolic D., Dogru T., Ercin C.N., Genc H., Cesur M., Tapan S., Karslioglu Y., Montalto G., Banach M., et al. Low- and high-density lipoprotein subclasses in subjects with nonalcoholic fatty liver disease. J. Clin. Lipidol. 2015;9:576–582. doi: 10.1016/j.jacl.2015.03.010.
    1. Corey K.E., Misdraji J., Gelrud L., Zheng H., Chung R.T., Krauss R.M. Nonalcoholic steatohepatitis is associated with an atherogenic lipoprotein subfraction profile. Lipids Health Dis. 2014;13:100. doi: 10.1186/1476-511X-13-100.
    1. Tutunchi H., Naeini F., Ebrahimi-Mameghani M., Mobasseri M., Naghshi S., Ostadrahimi A. The association of the steatosis severity, NAFLD fibrosis score and FIB-4 index with atherogenic dyslipidaemia in adult patients with NAFLD: A cross-sectional study. Int. J. Clin. Pract. 2021;75:e14131. doi: 10.1111/ijcp.14131.
    1. Gottlieb A., Leven A.S., Sowa J.P., Borucki K., Link A., Yilmaz E., Aygen S., Canbay A., Porsch-Ozcurumez M. Lipoprotein and Metabolic Profiles Indicate Similar Cardiovascular Risk of Liver Steatosis and NASH. Digestion. 2021;102:671–681. doi: 10.1159/000510600.
    1. Deprince A., Haas J.T., Staels B. Dysregulated lipid metabolism links NAFLD to cardiovascular disease. Mol. Metab. 2020;42:101092. doi: 10.1016/j.molmet.2020.101092.
    1. Nass K.J., van den Berg E.H., Faber K.N., Schreuder T., Blokzijl H., Dullaart R.P.F. High prevalence of apolipoprotein B dyslipoproteinemias in non-alcoholic fatty liver disease: The lifelines cohort study. Metabolism. 2017;72:37–46. doi: 10.1016/j.metabol.2017.04.004.
    1. Castillo-Leon E., Connelly M.A., Konomi J.V., Caltharp S., Cleeton R., Vos M.B. Increased atherogenic lipoprotein profile in children with non-alcoholic steatohepatitis. Pediatr. Obes. 2020;15:e12648. doi: 10.1111/ijpo.12648.
    1. Duong M., Uno K., Nankivell V., Bursill C., Nicholls S.J. Induction of obesity impairs reverse cholesterol transport in ob/ob mice. PLoS ONE. 2018;13:e0202102. doi: 10.1371/journal.pone.0202102.
    1. Dabravolski S.A., Bezsonov E.E., Baig M.S., Popkova T.V., Orekhov A.N. Mitochondrial Lipid Homeostasis at the Crossroads of Liver and Heart Diseases. Int. J. Mol. Sci. 2021;22:6949. doi: 10.3390/ijms22136949.
    1. Brunner K.T., Pedley A., Massaro J.M., Hoffmann U., Benjamin E.J., Long M.T. Increasing liver fat is associated with progression of cardiovascular risk factors. Liver Int. 2020;40:1339–1343. doi: 10.1111/liv.14472.
    1. Liu B., Li Y., Li Y., Liu Y., Yan Y., Luo A., Ren H., She Q. Association of epicardial adipose tissue with non-alcoholic fatty liver disease: A meta-analysis. Hepatol. Int. 2019;13:757–765. doi: 10.1007/s12072-019-09972-1.
    1. Gaggini M., Morelli M., Buzzigoli E., DeFronzo R.A., Bugianesi E., Gastaldelli A. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients. 2013;5:1544–1560. doi: 10.3390/nu5051544.
    1. Seo B.S., Roh J.H., Lee J.H., Lee H., Min Kim Y., Yoon Y.H., Kim M., Kim Y.G., Park G.M., Park J.H., et al. Association between nonalcoholic fatty liver disease and cardiovascular disease revealed after comprehensive control of metabolic risk factors: A nationwide population-based study in Korea. Eur. J. Gastroenterol. Hepatol. 2021 doi: 10.1097/MEG.0000000000002102.
    1. Pennisi G., Di Marco V., Buscemi C., Mazzola G., Randazzo C., Spatola F., Craxi A., Buscemi S., Petta S. Interplay between non-alcoholic fatty liver disease and cardiovascular risk in an asymptomatic general population. J. Gastroenterol. Hepatol. 2021;36:2389–2396. doi: 10.1111/jgh.15523.
    1. Guerreiro G.T.S., Longo L., Fonseca M.A., de Souza V.E.G., Alvares-da-Silva M.R. Does the risk of cardiovascular events differ between biopsy-proven NAFLD and MAFLD? Hepatol. Int. 2021;15:380–391. doi: 10.1007/s12072-021-10157-y.
    1. Byrne C.D., Targher G. Non-alcoholic fatty liver disease-related risk of cardiovascular disease and other cardiac complications. Diabetes Obes. Metab. 2021 doi: 10.1111/dom.14484.
    1. Meyersohn N.M., Mayrhofer T., Corey K.E., Bittner D.O., Staziaki P.V., Szilveszter B., Hallett T., Lu M.T., Puchner S.B., Simon T.G., et al. Association of Hepatic Steatosis With Major Adverse Cardiovascular Events, Independent of Coronary Artery Disease. Clin. Gastroenterol. Hepatol. 2021;19:1480–1488.e14. doi: 10.1016/j.cgh.2020.07.030.
    1. Henson J.B., Simon T.G., Kaplan A., Osganian S., Masia R., Corey K.E. Advanced fibrosis is associated with incident cardiovascular disease in patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2020;51:728–736. doi: 10.1111/apt.15660.
    1. Hsu P.F., Wang Y.W., Lin C.C., Wang Y.J., Ding Y.Z., Liou T.L., Huang S.S., Lu T.M., Chan W.L., Lin S.J., et al. The association of the steatosis severity in fatty liver disease with coronary plaque pattern in general population. Liver Int. 2021;41:81–90. doi: 10.1111/liv.14637.
    1. Liu Z., Wei R., Li Y. Coronary heart disease is associated with nonalcoholic fatty liver disease in patients without hypertension and diabetes. Medicine. 2020;99:e20898. doi: 10.1097/MD.0000000000020898.
    1. Labenz C., Huber Y., Michel M., Nagel M., Galle P.R., Kostev K., Schattenberg J.M. Impact of NAFLD on the Incidence of Cardiovascular Diseases in a Primary Care Population in Germany. Dig. Dis. Sci. 2020;65:2112–2119. doi: 10.1007/s10620-019-05986-9.
    1. Lee H., Lee Y.H., Kim S.U., Kim H.C. Metabolic Dysfunction-Associated Fatty Liver Disease and Incident Cardiovascular Disease Risk: A Nationwide Cohort Study. Clin. Gastroenterol. Hepatol. 2020:S1542–S3565. doi: 10.1016/j.cgh.2020.12.022.
    1. Xia W., Yang N., Li Y. Analysis of Risk Factors for Adverse Cardiovascular Events in Elderly Patients with Acute Myocardial Infarction and Non-Alcoholic Fatty Liver Disease (NAFLD) Med. Sci. Monit. 2020;26:e922913. doi: 10.12659/MSM.922913.
    1. Tana C., Ballestri S., Ricci F., Di Vincenzo A., Ticinesi A., Gallina S., Giamberardino M.A., Cipollone F., Sutton R., Vettor R., et al. Cardiovascular Risk in Non-Alcoholic Fatty Liver Disease: Mechanisms and Therapeutic Implications. Int. J. Environ. Res. Public Health. 2019;16:3104. doi: 10.3390/ijerph16173104.
    1. Kovalic A.J., Satapathy S.K. The Role of Nonalcoholic Fatty Liver Disease on Cardiovascular Manifestations and Outcomes. Clin. Liver Dis. 2018;22:141–174. doi: 10.1016/j.cld.2017.08.011.
    1. Golabi P., Fukui N., Paik J., Sayiner M., Mishra A., Younossi Z.M. Mortality Risk Detected by Atherosclerotic Cardiovascular Disease Score in Patients with Nonalcoholic Fatty Liver Disease. Hepatol. Commun. 2019;3:1050–1060. doi: 10.1002/hep4.1387.
    1. Kim D., Konyn P., Sandhu K.K., Dennis B.B., Cheung A.C., Ahmed A. Metabolic dysfunction-associated fatty liver disease is associated with increased all-cause mortality in the United States. J. Hepatol. 2021 doi: 10.1016/j.jhep.2021.07.035.
    1. Haring R., Wallaschofski H., Nauck M., Dorr M., Baumeister S.E., Volzke H. Ultrasonographic hepatic steatosis increases prediction of mortality risk from elevated serum gamma-glutamyl transpeptidase levels. Hepatology. 2009;50:1403–1411. doi: 10.1002/hep.23135.
    1. Konishi K., Miyake T., Furukawa S., Senba H., Kanzaki S., Nakaguchi H., Yukimoto A., Nakamura Y., Watanabe T., Koizumi Y., et al. Advanced fibrosis of non-alcoholic steatohepatitis affects the significance of lipoprotein(a) as a cardiovascular risk factor. Atherosclerosis. 2020;299:32–37. doi: 10.1016/j.atherosclerosis.2020.02.026.
    1. Baratta F., Pastori D., Angelico F., Balla A., Paganini A.M., Cocomello N., Ferro D., Violi F., Sanyal A.J., Del Ben M. Nonalcoholic Fatty Liver Disease and Fibrosis Associated with Increased Risk of Cardiovascular Events in a Prospective Study. Clin. Gastroenterol. Hepatol. 2020;18:2324–2331.e4. doi: 10.1016/j.cgh.2019.12.026.
    1. Dasarathy S., Dasarathy J., Khiyami A., Joseph R., Lopez R., McCullough A.J. Validity of real time ultrasound in the diagnosis of hepatic steatosis: A prospective study. J. Hepatol. 2009;51:1061–1067. doi: 10.1016/j.jhep.2009.09.001.
    1. Di Sessa A., Umano G.R., Miraglia Del Giudice E., Santoro N. From the liver to the heart: Cardiac dysfunction in obese children with non-alcoholic fatty liver disease. World J. Hepatol. 2017;9:69–73. doi: 10.4254/wjh.v9.i2.69.
    1. Azzam H., Malnick S. Non-alcoholic fatty liver disease—The heart of the matter. World J. Hepatol. 2015;7:1369–1376. doi: 10.4254/wjh.v7.i10.1369.
    1. Sung K.C., Wild S.H., Kwag H.J., Byrne C.D. Fatty liver, insulin resistance, and features of metabolic syndrome: Relationships with coronary artery calcium in 10,153 people. Diabetes Care. 2012;35:2359–2364. doi: 10.2337/dc12-0515.
    1. Park J.G., Jung J., Verma K.K., Kang M.K., Madamba E., Lopez S., Qas Yonan A., Liu A., Bettencourt R., Sirlin C., et al. Liver stiffness by magnetic resonance elastography is associated with increased risk of cardiovascular disease in patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2021;53:1030–1037.
    1. Long M.T., Zhang X., Xu H., Liu C.T., Corey K.E., Chung R.T., Loomba R., Benjamin E.J. Hepatic Fibrosis Associates with Multiple Cardiometabolic Disease Risk Factors: The Framingham Heart Study. Hepatology. 2021;73:548–559. doi: 10.1002/hep.31608.
    1. Pemmasani G., Yandrapalli S., Aronow W. Sex differences in cardiovascular diseases and associated risk factors in non-alcoholic steatohepatitis. Am. J. Cardiovasc. Dis. 2020;10:362–366.
    1. Yang Y.J., Jung M.H., Jeong S.H., Hong Y.P., Kim Y.I., An S.J. The Association between Nonalcoholic Fatty Liver Disease and Stroke: Results from the Korean Genome and Epidemiology Study (KoGES) Int. J. Environ. Res. Public Health. 2020;17:9568. doi: 10.3390/ijerph17249568.
    1. Wijarnpreecha K., Panjawatanan P., Kroner P.T., Cheungpasitporn W., Ungprasert P. Association between cardiac conduction defect and nonalcoholic fatty liver disease: A systematic review and meta-analysis. Ann. Gastroenterol. 2020;33:661–666. doi: 10.20524/aog.2020.0535.
    1. Xu J., Dai L., Zhang Y., Wang A., Li H., Wang Y., Meng X., Wu S., Wang Y. Severity of Nonalcoholic Fatty Liver Disease and Risk of Future Ischemic Stroke Events. Stroke. 2021;52:103–110. doi: 10.1161/STROKEAHA.120.030433.
    1. Parikh N.S., VanWagner L.B., Elkind M.S.V., Gutierrez J. Association between nonalcoholic fatty liver disease with advanced fibrosis and stroke. J. Neurol. Sci. 2019;407:116524. doi: 10.1016/j.jns.2019.116524.
    1. Parikh N.S., Koh I., VanWagner L.B., Elkind M.S.V., Zakai N.A., Cushman M. Liver Fibrosis is Associated with Ischemic Stroke Risk in Women but not Men: The REGARDS Study. J. Stroke Cerebrovasc. Dis. 2021;30:105788. doi: 10.1016/j.jstrokecerebrovasdis.2021.105788.
    1. Chiu L.S., Pedley A., Massaro J.M., Benjamin E.J., Mitchell G.F., McManus D.D., Aragam J., Vasan R.S., Cheng S., Long M.T. The association of non-alcoholic fatty liver disease and cardiac structure and function-Framingham Heart Study. Liver Int. 2020;40:2445–2454. doi: 10.1111/liv.14600.
    1. VanWagner L.B., Wilcox J.E., Ning H., Lewis C.E., Carr J.J., Rinella M.E., Shah S.J., Lima J.A.C., Lloyd-Jones D.M. Longitudinal Association of Non-Alcoholic Fatty Liver Disease with Changes in Myocardial Structure and Function: The CARDIA Study. J. Am. Heart Assoc. 2020;9:e014279. doi: 10.1161/JAHA.119.014279.
    1. Fiorentino T.V., Miceli S., Succurro E., Sciacqua A., Andreozzi F., Sesti G. Nonalcoholic fatty liver disease is associated with a decreased myocardial mechano-energetic efficiency. J. Intern. Med. 2021;289:221–231. doi: 10.1111/joim.13155.
    1. Thanassoulis G., Massaro J.M., O’Donnell C.J., Hoffmann U., Levy D., Ellinor P.T., Wang T.J., Schnabel R.B., Vasan R.S., Fox C.S., et al. Pericardial fat is associated with prevalent atrial fibrillation: The Framingham Heart Study. Circ. Arrhythm. Electrophysiol. 2010;3:345–350. doi: 10.1161/CIRCEP.109.912055.
    1. Donnellan E., Cotter T.G., Wazni O.M., Elshazly M.B., Kochar A., Wilner B., Patel D., Kanj M., Hussein A., Baranowski B., et al. Impact of Nonalcoholic Fatty Liver Disease on Arrhythmia Recurrence Following Atrial Fibrillation Ablation. JACC Clin. Electrophysiol. 2020;6:1278–1287. doi: 10.1016/j.jacep.2020.05.023.
    1. Pastori D., Sciacqua A., Marcucci R., Farcomeni A., Perticone F., Del Ben M., Angelico F., Baratta F., Pignatelli P., Violi F., et al. Prevalence and Impact of Nonalcoholic Fatty Liver Disease in Atrial Fibrillation. Mayo Clin. Proc. 2020;95:513–520. doi: 10.1016/j.mayocp.2019.08.027.
    1. Cai X., Zheng S., Liu Y., Zhang Y., Lu J., Huang Y. Nonalcoholic fatty liver disease is associated with increased risk of atrial fibrillation. Liver Int. 2020;40:1594–1600. doi: 10.1111/liv.14461.
    1. Kang M.K., Park J.G., Kim M.C. Association between Atrial Fibrillation and Advanced Liver Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease. Yonsei Med. J. 2020;61:860–867. doi: 10.3349/ymj.2020.61.10.860.
    1. Graner M., Nyman K., Siren R., Pentikainen M.O., Lundbom J., Hakkarainen A., Lauerma K., Lundbom N., Nieminen M.S., Taskinen M.R. Ectopic fat depots and left ventricular function in nondiabetic men with nonalcoholic fatty liver disease. Circ. Cardiovasc. Imaging. 2014;8:e001979. doi: 10.1161/CIRCIMAGING.114.001979.
    1. Gastaldelli A., Gaggini M., DeFronzo R.A. Role of Adipose Tissue Insulin Resistance in the Natural History of Type 2 Diabetes: Results from the San Antonio Metabolism Study. Diabetes. 2017;66:815–822. doi: 10.2337/db16-1167.
    1. Russo M.F., Lembo E., Mari A., Angelini G., Verrastro O., Nanni G., Pompili M., Raffaelli M., Vecchio F.M., Bornstein S.R., et al. Insulin Resistance Is Central to Long-Term Reversal of Histologic Nonalcoholic Steatohepatitis After Metabolic Surgery. J. Clin. Endocrinol. Metab. 2021;106:750–761. doi: 10.1210/clinem/dgaa892.
    1. Adeva-Andany M.M., Martinez-Rodriguez J., Gonzalez-Lucan M., Fernandez-Fernandez C., Castro-Quintela E. Insulin resistance is a cardiovascular risk factor in humans. Diabetes Metab. Syndr. 2019;13:1449–1455. doi: 10.1016/j.dsx.2019.02.023.
    1. Perla F.M., Prelati M., Lavorato M., Visicchio D., Anania C. The Role of Lipid and Lipoprotein Metabolism in Non-Alcoholic Fatty Liver Disease. Children. 2017;4:46. doi: 10.3390/children4060046.
    1. Pinto X., Fanlo-Maresma M., Corbella E., Corbella X., Mitjavila M.T., Moreno J.J., Casas R., Estruch R., Corella D., Bullo M., et al. A Mediterranean Diet Rich in Extra-Virgin Olive Oil Is Associated with a Reduced Prevalence of Nonalcoholic Fatty Liver Disease in Older Individuals at High Cardiovascular Risk. J. Nutr. 2019;149:1920–1929. doi: 10.1093/jn/nxz147.
    1. Seebacher F., Zeigerer A., Kory N., Krahmer N. Hepatic lipid droplet homeostasis and fatty liver disease. Semin. Cell Dev. Biol. 2020;108:72–81. doi: 10.1016/j.semcdb.2020.04.011.
    1. Katzmann J.L., Laufs U. New Insights in the Control of Low-Density Lipoprotein Cholesterol to Prevent Cardiovascular Disease. Curr. Cardiol. Rep. 2019;21:69. doi: 10.1007/s11886-019-1159-z.
    1. Khan R.S., Bril F., Cusi K., Newsome P.N. Modulation of Insulin Resistance in Nonalcoholic Fatty Liver Disease. Hepatology. 2019;70:711–724. doi: 10.1002/hep.30429.
    1. Smeuninx B., Boslem E., Febbraio M.A. Current and Future Treatments in the Fight against Non-Alcoholic Fatty Liver Disease. Cancers. 2020;12:1714. doi: 10.3390/cancers12071714.

Source: PubMed

3
Prenumerera