Classification and Automated Interpretation of Spinal Posture Data Using a Pathology-Independent Classifier and Explainable Artificial Intelligence (XAI)

Carlo Dindorf, Jürgen Konradi, Claudia Wolf, Bertram Taetz, Gabriele Bleser, Janine Huthwelker, Friederike Werthmann, Eva Bartaguiz, Johanna Kniepert, Philipp Drees, Ulrich Betz, Michael Fröhlich, Carlo Dindorf, Jürgen Konradi, Claudia Wolf, Bertram Taetz, Gabriele Bleser, Janine Huthwelker, Friederike Werthmann, Eva Bartaguiz, Johanna Kniepert, Philipp Drees, Ulrich Betz, Michael Fröhlich

Abstract

Clinical classification models are mostly pathology-dependent and, thus, are only able to detect pathologies they have been trained for. Research is needed regarding pathology-independent classifiers and their interpretation. Hence, our aim is to develop a pathology-independent classifier that provides prediction probabilities and explanations of the classification decisions. Spinal posture data of healthy subjects and various pathologies (back pain, spinal fusion, osteoarthritis), as well as synthetic data, were used for modeling. A one-class support vector machine was used as a pathology-independent classifier. The outputs were transformed into a probability distribution according to Platt's method. Interpretation was performed using the explainable artificial intelligence tool Local Interpretable Model-Agnostic Explanations. The results were compared with those obtained by commonly used binary classification approaches. The best classification results were obtained for subjects with a spinal fusion. Subjects with back pain were especially challenging to distinguish from the healthy reference group. The proposed method proved useful for the interpretation of the predictions. No clear inferiority of the proposed approach compared to commonly used binary classifiers was demonstrated. The application of dynamic spinal data seems important for future works. The proposed approach could be useful to provide an objective orientation and to individually adapt and monitor therapy measures pre- and post-operatively.

Keywords: artificial intelligence; back pain; biomechanics; data mining; explainable artificial intelligence; machine learning; osteoarthritis; spinal fusion; spine.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Exemplary posture of one correctly (3459598) and one falsely (8232865) classified subject. Bottom: Displayed LIME values show the effect for the 10 most important features. Negative values represent an effect toward the group of healthy subjects, with positive values indicating an effect that indicates an outlier (patient). Top: Vertebral body positions in the transversal (rotation), coronal (lateral flexion), and sagittal (flexion extension) planes. Positive values indicate a rotation/tilt to the left or ventral (toward flexion), while negative values indicate a rotation/tilt to the right or dorsal (toward extension). Blue = mean and standard deviation (SD) of healthy reference group; orange = mean and SD of group of subjects with the respective pathology; black = mean and SD of the 10 measurements of the subjects of interest.

References

    1. Robert Koch Institut . Gesundheit in Deutschland. Gesundheitsberichterstattung des Bundes Gemeinsam Getragen von RKI und Destatis. Robert Koch Institut; Berlin, Germany: 2015.
    1. Hartvigsen J., Hancock M., Kongsted A., Louw Q., Ferreira M.L., Genevay S., Hoy D., Karppinen J., Pransky G., Sieper J., et al. What low back pain is and why we need to pay attention. Lancet. 2018;391:2356–2367. doi: 10.1016/S0140-6736(18)30480-X.
    1. Schmidt C.O., Raspe H., Pfingsten M., Hasenbring M.I., Basler H.D., Eich W., Kohlmann T. Back Pain in the German Adult Population. Spine. 2007;32:2005–2011. doi: 10.1097/BRS.0b013e318133fad8.
    1. Von der Lippe E., Krause L., Prost M., Wengler A., Leddin J., Müller A., Zeisler M.-L., Anton A., Rommel A., BURDEN Study Group Prävalenz von Rücken- und Nackenschmerzen in Deutschland. Ergebnisse der Krankheitslast-Studie BURDEN 2020. J. Health Monit. 2021;6:1–14. doi: 10.25646/7854.
    1. Urits I., Burshtein A., Sharma M., Testa L., Gold P.A., Orhurhu V., Viswanath O., Jones M., Sidransky M.A., Spektor B., et al. Low Back Pain, a Comprehensive Review: Pathophysiology, Diagnosis, and Treatment. Curr. Pain Headache Rep. 2019;23:23. doi: 10.1007/s11916-019-0757-1.
    1. Casser H.-R., Seddigh S., Rauschmann M. Acute Lumbar Back Pain: Investigation, Differential Diagnosis, and Treatment. Dtsch. Aerzteblatt Online. 2016;113:223–234. doi: 10.3238/arztebl.2016.0223.
    1. Koes B.W., van Tulder M., Thomas S. Diagnosis and treatment of low back pain. BMJ. 2006;332:1430–1434. doi: 10.1136/bmj.332.7555.1430.
    1. Götz-Neumann K. Gehen Verstehen. Ganganalyse in der Physiotherapie. Thieme; Stuttgart, Germany: 2016.
    1. Deyo R.A. Fusion surgery for lumbar degenerative disc disease: Still more questions than answers. Spine J. 2015;15:272–274. doi: 10.1016/j.spinee.2014.11.004.
    1. Rajaee S.S., Bae H.W., Kanim L.E., Delamarter R.B. Spinal Fusion in the United States. Spine. 2012;37:67–76. doi: 10.1097/BRS.0b013e31820cccfb.
    1. Chan C.-W., Peng P. Failed Back Surgery Syndrome. Pain Med. 2011;12:577–606. doi: 10.1111/j.1526-4637.2011.01089.x.
    1. Brox J.I., Reikerås O., Nygaard Ø., Sørensen R., Indahl A., Holm I., Keller A., Ingebrigtsen T., Grundnes O., Lange J.E., et al. Lumbar instrumented fusion compared with cognitive intervention and exercises in patients with chronic back pain after previous surgery for disc herniation: A prospective randomized controlled study. Pain. 2006;122:145–155. doi: 10.1016/j.pain.2006.01.027.
    1. Papi E., Koh W.S., McGregor A.H. Wearable technology for spine movement assessment: A systematic review. J. Biomech. 2017;64:186–197. doi: 10.1016/j.jbiomech.2017.09.037.
    1. Rast F.M., Labruyère R. Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments. J. Neuroeng. Rehabil. 2020;17:1–19. doi: 10.1186/s12984-020-00779-y.
    1. Lau H.-Y., Tong K.-Y., Zhu H. Support vector machine for classification of walking conditions of persons after stroke with dropped foot. Hum. Mov. Sci. 2009;28:504–514. doi: 10.1016/j.humov.2008.12.003.
    1. Wahid F., Begg R.K., Hass C.J., Halgamuge S., Ackland D. Classification of Parkinson’s Disease Gait Using Spatial-Temporal Gait Features. IEEE J. Biomed. Health Inform. 2015;19:1794–1802. doi: 10.1109/JBHI.2015.2450232.
    1. Dindorf C., Teufl W., Taetz B., Becker S., Bleser G., Fröhlich U. Feature extraction and gait classification in hip replacement patients on the basis of kinematic waveform data. Biomed. Hum. Kinet. 2021;13:177–186. doi: 10.2478/bhk-2021-0022.
    1. Horst F., Lapuschkin S., Samek W., Müller K.-R., Schöllhorn W.I. Explaining the unique nature of individual gait patterns with deep learning. Sci. Rep. 2019;9:1–13. doi: 10.1038/s41598-019-38748-8.
    1. Phinyomark A., Petri G., Ibáñez-Marcelo E., Osis S.T., Ferber R. Analysis of Big Data in Gait Biomechanics: Current Trends and Future Directions. J. Med. Biol. Eng. 2018;38:244–260. doi: 10.1007/s40846-017-0297-2.
    1. Halilaj E., Rajagopal A., Fiterau M., Hicks J.L., Hastie T.J., Delp S.L. Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities. J. Biomech. 2018;81:1–11. doi: 10.1016/j.jbiomech.2018.09.009.
    1. Bzdok D., Altman N., Krzywinski M. Statistics versus machine learning. Nat. Methods. 2018;15:233–234. doi: 10.1038/nmeth.4642.
    1. Arnaout R., Curran L., Zhao Y., Levine J.C., Chinn E., Moon-Grady A.J. An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease. Nat. Med. 2021;27:882–891. doi: 10.1038/s41591-021-01342-5.
    1. Hu L., Bell D., Antani S., Xue Z., Yu K., Horning M.P., Gachuhi N., Wilson B., Jaiswal M.S., Befano B., et al. An Observational Study of Deep Learning and Automated Evaluation of Cervical Images for Cancer Screening. J. Natl. Cancer Inst. 2019;111:923–932. doi: 10.1093/jnci/djy225.
    1. Luo H., Xu G., Li C., He L., Luo L., Wang Z.-X., Jing B., Deng Y., Jin Y., Li Y., et al. Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: A multicentre, case-control, diagnostic study. Lancet Oncol. 2019;20:1645–1654. doi: 10.1016/S1470-2045(19)30637-0.
    1. Laroche D., Tolambiya A., Morisset C., Maillefert J., French R., Ornetti P., Thomas E. A classification study of kinematic gait trajectories in hip osteoarthritis. Comput. Biol. Med. 2014;55:42–48. doi: 10.1016/j.compbiomed.2014.09.012.
    1. Teufl W., Taetz B., Miezal M., Lorenz M., Pietschmann J., Jöllenbeck T., Fröhlich M., Bleser G. Towards an Inertial Sensor-Based Wearable Feedback System for Patients after Total Hip Arthroplasty: Validity and Applicability for Gait Classification with Gait Kinematics-Based Features. Sensors. 2019;19:5006. doi: 10.3390/s19225006.
    1. Adadi A., Berrada M. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) IEEE Access. 2018;6:52138–52160. doi: 10.1109/ACCESS.2018.2870052.
    1. Samek W., Müller K.-R. Towards Explainable Artificial Intelligence. In: Samek W., Montavon G., Vedaldi A., Hansen L.K., Muller K.-R., editors. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. 1st ed. Springer; Cham, Switzerland: 2019. pp. 5–22.
    1. European Union Regulation (EU) 2016/679 of the european parliament and of the council of 27 april 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing directive 95/46/ec (General Data Protection Regulation) Off. J. Eur. Union. 2016;L 119:1–88.
    1. Holzinger A., Biemann C., Pattichis C.S., Kell D.B. What Do We Need to Build Explainable AI Systems for The Medical Domain? [(accessed on 20 February 2020)]. Available online: .
    1. Dindorf C., Teufl W., Taetz B., Bleser G., Fröhlich M. Interpretability of Input Representations for Gait Classification in Patients after Total Hip Arthroplasty. Sensors. 2020;20:4385. doi: 10.3390/s20164385.
    1. Horst F., Slijepcevic D., Lapuschkin S., Raberger A.-M., Zeppelzauer M., Samek W., Breiteneder C., Schöllhorn W.I., Horsak B. On the Understanding and Interpretation of Machine Learning Predictions in Clinical Gait Analysis Using Explainable Artificial Intelligence. [(accessed on 10 March 2020)]. Available online: .
    1. Ribeiro M.T., Singh S., Guestrin C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier; Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’16); San Francisco, CA, USA. 13–17 August 2016; pp. 1135–1144.
    1. Lundberg S.M., Lee S.-I. A Unified Approach to Interpreting Model Predictions; Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017); Long Beach, CA, USA. 4–9 December 2017.
    1. Shrikumar A., Greenside P., Kundaje A. Learning important features through propagating activation differences; Proceedings of the 34th International Conference on Machine Learning; Sydney, Australia. 6–11 August 2017; pp. 3145–3153.
    1. Teufl W., Taetz B., Miezal M., Dindorf C., Fröhlich M., Trinler U., Hogam A., Bleser G. Automated detection of pathological gait patterns using a one-class support vector machine trained on discrete parameters of IMU based gait data. Clin. Biomech. 2021;89:105452. doi: 10.1016/j.clinbiomech.2021.105452.
    1. Dindorf C., Konradi J., Wolf C., Taetz B., Bleser G., Huthwelker J., Drees P., Fröhlich M., Betz U. General method for automated feature extraction and selection and its application for gender classification and biomechanical knowledge discovery of sex differences in spinal posture during stance and gait. Comput. Methods Biomech. Biomed. Eng. 2021;24:299–307. doi: 10.1080/10255842.2020.1828375.
    1. Dindorf C., Konradi J., Wolf C., Taetz B., Bleser G., Huthwelker J., Werthmann F., Drees P., Fröhlich M., Betz U. Machine learning techniques demonstrating individual movement patterns of the vertebral column: The fingerprint of spinal motion. Comput. Methods Biomech. Biomed. Eng. 2021;24 doi: 10.1080/10255842.2021.1981884.
    1. Wolf C., Betz U., Huthwelker J., Konradi J., Westphal R., Cerpa M., Lenke L., Drees P. Evaluation of 3D Vertebral and Pelvic Position by Surface Topography in Asymptomatic Females: Presentation of Normative Reference Data. [(accessed on 17 September 2021)]. Available online: .
    1. Liu F.T., Ting K.M., Zhou Z.-H. Isolation-Based Anomaly Detection. ACM Trans. Knowl. Discov. Data (TKDD) 2012;6:1–39. doi: 10.1145/2133360.2133363.
    1. Dreiseitl S., Osl M., Scheibböck C., Binder M. Outlier Detection with One-Class SVMs: An Application to Melanoma Prognosis. AMIA Annu. Symp. Proc. 2010:172–176.
    1. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011;12:2825–2830.
    1. Platt J.C. Advances in Large Margin Classifiers. MIT Press; Cambridge, MA, USA: 1999. Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods; pp. 61–74.
    1. Breiman L. Random Forests. Mach. Learn. 2001;45:5–32. doi: 10.1023/A:1010933404324.
    1. Ferro C.A.T., Fricker T.E. A bias-corrected decomposition of the Brier score. Q. J. R. Meteorol. Soc. 2012;138:1954–1960. doi: 10.1002/qj.1924.
    1. Dindorf C., Konradi J., Wolf C., Taetz B., Bleser G., Kniepert J., Drees P., Fröhlich M., Betz U. Towards a better understanding of spinal differences between healthy subjects and subjects with back pain using Explainable Artificial Intelligence (XAI); Proceedings of the 9th International Performance Analysis Workshop and Conference & 5th IACSS Conference; Vienna, Austria. 30–31 August 2021; pp. 1–3.
    1. Ract I., Meadeb J.-M., Mercy G., Cueff F., Husson J.-L., Guillin R. A review of the value of MRI signs in low back pain. Diagn. Interv. Imaging. 2015;96:239–249. doi: 10.1016/j.diii.2014.02.019.
    1. Weng W.-J., Wang W.-J., Wu M.-D., Xu Z.-H., Xu L.-L., Qiu Y. Characteristics of sagittal spine–pelvis–leg alignment in patients with severe hip osteoarthritis. Eur. Spine J. 2014;24:1228–1236. doi: 10.1007/s00586-014-3700-5.
    1. Kechagias V.A., Grivas T.B., Papagelopoulos P.J., Kontogeorgakos V.A., Vlasis K. Truncal Changes in Patients Suffering Severe Hip or Knee Osteoarthritis: A Surface Topography Study. Clin. Orthop. Surg. 2021;13:185–195. doi: 10.4055/cios20123.
    1. Scheidt S., Endres S., Gesicki M., Hofmann U.K. Using video rasterstereography and treadmill gait analysis as a tool for evaluating postoperative outcome after lumbar spinal fusion. Gait Posture. 2018;64:18–24. doi: 10.1016/j.gaitpost.2018.05.019.
    1. Hackenberg L., Hierholzer E., Pötzl W., Götze C., Liljenqvist U. Rasterstereographic back shape analysis in idiopathic scoliosis after anterior correction and fusion. Clin. Biomech. 2003;18:1–8. doi: 10.1016/S0268-0033(02)00165-1.
    1. Leirós-Rodríguez R., Arce-Fariña M.E., Álvarez C.M.M., Garcia-Soidan J.L. Definition of the proper placement point for balance assessment with accelerometers in older women. Rev. Andal. Med. Deport. 2016;9:1–6. doi: 10.1016/j.ramd.2016.09.001.
    1. Ben Brahim A., Limam M. Ensemble feature selection for high dimensional data: A new method and a comparative study. Adv. Data Anal. Classif. 2018;12:937–952. doi: 10.1007/s11634-017-0285-y.
    1. Shahrjooihaghighi A., Frigui H., Zhang X., Wei X., Shi B., Trabelsi A. An ensemble feature selection method for biomarker discovery; Proceedings of the 2017 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT); Bilbao, Spain. 18–20 December 2017; pp. 416–421.
    1. Molnar C. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. Leanpub; Victoria, BC, Canada: 2018.
    1. Schlegel J.D., Smith J.A., Schleusener R.L. Lumbar motion segment pathology adjacent to thoracolumbar, lumbar, and lumbosacral fusions. Spine. 1996;21:970–981. doi: 10.1097/00007632-199604150-00013.
    1. Bredow J., Löhrer L., Oppermann J., Scheyerer M.J., Sobottke R., Eysel P., Siewe J. Pathoanatomic Risk Factors for Instability and Adjacent Segment Disease in Lumbar Spine: How to Use Topping Off? Biomed. Res. Int. 2017;2017:2964529. doi: 10.1155/2017/2964529.
    1. Krott N.L., Wild M., Betsch M. Meta-analysis of the validity and reliability of rasterstereographic measurements of spinal posture. Eur. Spine J. 2020;29:2392–2401. doi: 10.1007/s00586-020-06402-x.
    1. Janssen M.M.A., Vincken K.L., Kemp B., Obradov M., de Kleuver M., Viergever M.A., Castelein R.M., Bartels L.W. Pre-existent vertebral rotation in the human spine is influenced by body position. Eur. Spine J. 2010;19:1728–1734. doi: 10.1007/s00586-010-1400-3.
    1. Kouwenhoven J.-W.M., Vincken K.L., Bartels L.W., Castelein R.M. Analysis of preexistent vertebral rotation in the normal spine. Spine. 2006;31:1467–1472. doi: 10.1097/01.brs.0000219938.14686.b3.
    1. Chevillotte T., Coudert P., Cawley D., Bouloussa H., Mazas S., Boissière L., Gille O. Influence of posture on relationships between pelvic parameters and lumbar lordosis: Comparison of the standing, seated, and supine positions. A preliminary study. Orthop. Traumatol. Surg. Res. 2018;104:565–568. doi: 10.1016/j.otsr.2018.06.005.
    1. Gunning D., Stefik M., Choi J., Miller T., Stumpf S., Yang G.-Z. XAI—Explainable artificial intelligence. Sci. Robot. 2019;4:eaay7120. doi: 10.1126/scirobotics.aay7120.
    1. Arendt-Nielsen L., Graven-Nielsen T., Svarrer H., Svensson P. The influence of low back pain on muscle activity and coordination during gait: A clinical and experimental study. Pain. 1996;64:231–240. doi: 10.1016/0304-3959(95)00115-8.
    1. Lamoth C.J.C., Meijer O.G., Daffertshofer A., Wuisman P.I.J.M., Beek P.J. Effects of chronic low back pain on trunk coordination and back muscle activity during walking: Changes in motor control. Eur. Spine J. 2006;15:23–40. doi: 10.1007/s00586-004-0825-y.
    1. Weinberger K.Q., Saul L.K. Distance Metric Learning for Large Margin Nearest Neighbor Classification. J. Mach. Learn. Res. 2009;10:207–244.
    1. Gao J., Cheng H., Tan P.-N. Semi-supervised outlier detection. In: Haddad H.M., editor. Proceedings of the 2006 ACM Symposium on Applied Computing—SAC’06; Dijon, France. 27 April 2006; New York, NY, USA: ACM Press; 2006. p. 635.
    1. Conforti I., Mileti I., Del Prete Z., Palermo E. Measuring Biomechanical Risk in Lifting Load Tasks Through Wearable System and Machine-Learning Approach. Sensors. 2020;20:1557. doi: 10.3390/s20061557.
    1. Picerno P. An Enhanced Planar Linked Segment Model for Predicting Lumbar Spine Loads during Symmetric Lifting Tasks. Appl. Sci. 2020;10:6700. doi: 10.3390/app10196700.

Source: PubMed

3
Prenumerera