Do muscle mass, muscle density, strength, and physical function similarly influence risk of hospitalization in older adults?

Peggy Mannen Cawthon, Kathleen M Fox, Shravanthi R Gandra, Matthew J Delmonico, Chiun-Fang Chiou, Mary S Anthony, Ase Sewall, Bret Goodpaster, Suzanne Satterfield, Steven R Cummings, Tamara B Harris, Health, Aging and Body Composition Study, Peggy Mannen Cawthon, Kathleen M Fox, Shravanthi R Gandra, Matthew J Delmonico, Chiun-Fang Chiou, Mary S Anthony, Ase Sewall, Bret Goodpaster, Suzanne Satterfield, Steven R Cummings, Tamara B Harris, Health, Aging and Body Composition Study

Abstract

Objectives: To examine the association between strength, function, lean mass, muscle density, and risk of hospitalization.

Design: Prospective cohort study.

Setting: Two U.S. clinical centers.

Participants: Adults aged 70 to 80 (N=3,011) from the Health, Aging and Body Composition Study.

Measurements: Measurements were of grip strength, knee extension strength, lean mass, walking speed, and chair stand pace. Thigh computed tomography scans assessed muscle area and density (a proxy for muscle fat infiltration). Hospitalizations were confirmed by local review of medical records. Negative binomial regression models estimated incident rate ratios (IRRs) of hospitalization for race- and sex-specific quartiles of each muscle and function parameter separately. Multivariate models adjusted for age, body mass index, health status, and coexisting medical conditions.

Results: During an average 4.7 years of follow-up, 1,678 (55.7%) participants experienced one or more hospitalizations. Participants in the lowest quartile of muscle density were more likely to be subsequently hospitalized (multivariate IRR=1.47, 95% confidence interval (CI)=1.24-1.73) than those in the highest quartile. Similarly, participants with the weakest grip strength were at greater risk of hospitalization (multivariate IRR=1.52, 95% CI=1.30-1.78, Q1 vs. Q4). Comparable results were seen for knee strength, walking pace, and chair stands pace. Lean mass and muscle area were not associated with risk of hospitalization.

Conclusion: Weak strength, poor function, and low muscle density, but not muscle size or lean mass, were associated with greater risk of hospitalization. Interventions to reduce the disease burden associated with sarcopenia should focus on increasing muscle strength and improving physical function rather than simply increasing lean mass.

References

    1. Janssen I, Shepard DS, Katzmarzyk PT, et al. The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc. 2004;52:80–85.
    1. Graafmans WC, Ooms ME, Hofstee HM, et al. Falls in the elderly: a prospective study of risk factors and risk profiles. Am J Epidemiol. 1996;143:1129–1136.
    1. Moreland JD, Richardson JA, Goldsmith CH, et al. Muscle weakness and falls in older adults: a systematic review and meta-analysis. J Am Geriatr Soc. 2004;52:1121–1129.
    1. Stevens JA, Olson S. Reducing falls and resulting hip fractures among older women. MMWR Recomm Rep. 2000;49:3–12.
    1. Tinetti ME, Speechley M, Ginter SF. Risk factors for falls among elderly persons living in the community. N Engl J Med. 1988;319:1701–1707.
    1. Cawthon PM, Fullman RL, Marshall L, et al. Physical performance and risk of hip fractures in older men. J Bone Miner Res. 2008;23:1037–1044.
    1. Cummings SR, Nevitt MC, Browner WS, et al. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med. 1995;332:767–773.
    1. Lewis CE, Ewing SK, Taylor BC, et al. Predictors of Non-Spine Fracture in Elderly Men: The MrOS Study. J Bone Miner Res. 2007;22:211–219.
    1. Visser M, Goodpaster BH, Kritchevsky SB, et al. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol A Biol Sci Med Sci. 2005;60:324–333.
    1. Penninx BW, Ferrucci L, Leveille SG, et al. Lower extremity performance in nondisabled older persons as a predictor of subsequent hospitalization. J Gerontol A Biol Sci Med Sci. 2000;55:M691–697.
    1. Hirsch CH, Sommers L, Olsen A, et al. The natural history of functional morbidity in hospitalized older patients. J Am Geriatr Soc. 1990;38:1296–1303.
    1. Sager MA, Franke T, Inouye SK, et al. Functional outcomes of acute medical illness and hospitalization in older persons. Arch Intern Med. 1996;156:645–652.
    1. Ferrucci L, Guralnik JM, Pahor M, et al. Hospital diagnoses, Medicare charges, and nursing home admissions in the year when older persons become severely disabled. JAMA. 1997;277:728–734.
    1. Gill TM, Allore HG, Holford TR, et al. Hospitalization, restricted activity, and the development of disability among older persons. JAMA. 2004;292:2115–2124.
    1. Newman AB, Haggerty CL, Goodpaster B, et al. Strength and muscle quality in a well-functioning cohort of older adults: the Health, Aging and Body Composition Study. J Am Geriatr Soc. 2003;51:323–330.
    1. Goodpaster BH, Krishnaswami S, Harris TB, et al. Obesity, regional body fat distribution, and the metabolic syndrome in older men and women. Arch Intern Med. 2005;165:777–783.
    1. Unger RH, Orci L. Lipoapoptosis: its mechanism and its diseases. Biochim Biophys Acta. 2002;1585:202–212.
    1. Visser M, Deeg DJ, Lips P, et al. Skeletal muscle mass and muscle strength in relation to lower-extremity performance in older men and women. J Am Geriatr Soc. 2000;48:381–386.
    1. Harkonen R, Harju R, Alaranta H. Accuracy of the Jamar dynamometer. J Hand Ther. 1993;6:259–262.
    1. Goodpaster BH, Carlson CL, Visser M, et al. Attenuation of skeletal muscle and strength in the elderly: The Health ABC Study. J Appl Physiol. 2001;90:2157–2165.
    1. Visser M, Kritchevsky SB, Goodpaster BH, et al. Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the health, aging and body composition study. J Am Geriatr Soc. 2002;50:897–904.
    1. Newman AB, Kupelian V, Visser M, et al. Sarcopenia: alternative definitions and associations with lower extremity function. J Am Geriatr Soc. 2003;51:1602–1609.
    1. Byers AL, Allore H, Gill TM, et al. Application of negative binomial modeling for discrete outcomes: a case study in aging research. J Clin Epidemiol. 2003;56:559–564.
    1. Goodpaster BH, Kelley DE, Thaete FL, et al. Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol. 2000;89:104–110.
    1. Goodpaster BH, Park SW, Harris TB, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61:1059–1064.
    1. Ferrucci L, Bandinelli S, Benvenuti E, et al. Subsystems contributing to the decline in ability to walk: bridging the gap between epidemiology and geriatric practice in the InCHIANTI study. J Am Geriatr Soc. 2000;48:1618–1625.
    1. Ferrucci L, Bandinelli S, Cavazzini C, et al. Neurological examination findings to predict limitations in mobility and falls in older persons without a history of neurological disease. Am J Med. 2004;116:807–815.
    1. Cesari M, Kritchevsky SB, Penninx BW, et al. Prognostic value of usual gait speed in well-functioning older people--results from the Health, Aging and Body Composition Study. J Am Geriatr Soc. 2005;53:1675–1680.

Source: PubMed

3
Prenumerera